APPENDIX

Appendix 1. Letters Related to the Research

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI UNIVERSITAS PENDIDIKAN GANESHA FAKULTAS BAHASA DAN SENI Jalan A.Yani No. 67 Singaraya Bali Kode Pos 81116 Telepon (0362) 21541 Fax. (0362) 27561 Laman: fbs.undiksha.ac.id Nomor : 93/UN48.7.1/DT/2022 11 Januari 2022 Perihal : Permohonan Izin Penelitian Yth. Kepala SMP Negeri 2 Sukasada di Pancasari, Sukasada, Buleleng, Bali. Dalam rangka pengumpulan data untuk menyelesaikan Skripsi/Tugas Akhir, dengan hormat kami mohon agar Bapak/Ibu mengizinkan mahasiswa di bawah ini: Nama : Kadek Agus Prayoga NIM : 1812021068 Jurusan : Bahasa Asing Program Studi : Pendidikan Bahasa Inggris Jenjang : S1 : 2021/2022 Tahun Akademik Judul : Implementing Hyperlink PowerPoint Media for Teaching English as Foreign Language at Junior High School untuk mencari data yang diperlukan pada institusi yang Bapak/Ibu pimpin. Atas perhatian dan bantuan Bapak/Ibu, kami ucapkan terima kasih. a.n. Dekan, Wakil Dekan I, Itila Dr. Dowe Putu Ramendra, S.Pd., M.Pd. NIP 197609022000031001 Tembusan: 1. Dekan FBS Undiksha Singaraja 2. Kaprodi. Bahasa Asing 3. Sub Bagian Pendidikan FBS

	PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA SMP NEGERI 2 SUKASADA Alamat: Desa Pancasari, Kec. Sukasada, Kab. Buleleng Tiph. 0819361266571 email: smpri2_sukasada@yahoo.co.id
	<u>SURAT KETERANGAN</u> No: 234/026/SMP.2/IV/2022
Yang bertan	da tangan di bawah ini Kepala SMP Negeri 2 Sukasada dengan ini
menerangkan bah	wa :
Nama	: Kadek Agus Prayoga.
NIM	: 1812021068.
Jurusan	: Bahasa Asing
Program Stu	di : Pendidikan Bahasa Inggris.
Fakuitas	: Bahasa dan Seni.
Memang benar n	nahasiswa tersebut di atas melakukan penelitian dalam rangka
penyusunan Skri	psi / Tugas Akhir di kelas VII SMP Negeri 2 sukasada dari
tanggal 12 Januar	s/d 02 Februari 2022
Demikian su	rat keterangan ini kami buat untuk dapat dipergunakan sebagaimana
mestinya.	
	Pancasari, 09 Februari 2022.
	Kepala SMP Negeri 2 Sukasada
	I Wayan Gunada,S.Pd.
	MIP. 19090009 199702 1 004.

Appendix 2. Blue Print Test

Material

: Procedure Text

Number of question : 20

SPENDIDIKAN

Basic Competence	Class/	Material	Indicator of Question	Level o	f cognitiv	ve		Number	of
	semester			C1	C2	C3	C4	item	
3.7 Applying text structure and linguistic elements to carry out the social functions of the procedural text by stating and asking about recipes and manuals, short and simple, in accordance with the context of their use.	VII/2	Procedure Text	 3.7.1 Identifying the structure of the procedural text by stating and asking about the recipe and manual, short and simple. 3.7.2 Analyzing the language features of oral and written procedure text by providing and requesting information regarding food / beverage recipes and manuals, short 	1, 4, 5	6. 11	8, 13 9, 15	10, 14, 18 16, 17, 19, 20	10	

			and simple, in accordance				
			with the context of their use.				
Total number of item							
		ALL	UNDIKSHA UNDIKSHA	HESHA			

Appendix 3. Instrument Test

Test !

Please choose the best answer based on the text above!

1. One type of text in English that is give instructions how to do or operating something

is....

- a. Narrative text
- b. Descriptive text
- c. Procedure text
- d. Explanation text

DENDIDIZ.

- 2. When we buy an electronic device we will get a book that contains a guide, namely..
 - a. warranty book
 - b. Manual book
 - c. service book
 - d. notepad
- 3. Which one which of the following is the language feature of procedure text except?
 - a. Using compliments
 - b. Use adverbial of sequence
 - c. Use imperative sentences
 - d. Use action verbs
- 4. List of materials needed in procedure text, is an understanding of....
 - a. Result
 - b. Ingredients
 - c. Goals
 - d. Steps
- 5. List of instructions or correct sequence of steps to do something in procedure text, is the definition of....
 - a. Goals
 - b. Materials
 - c. Result
 - d. Step

How to make Balado Cassava Chips

Ingredient:

- 500 gr peeled cassava
- 1/2 tsp salt
- 3 tbsp cooking oil
- 5 red chilies that have been mashed
- 4 tbsp sugar
- 2 tbsp sour water

Instruction:

- First, slice the cassava.
- Second, boil 3 cups of salt water.
- Third, put the cassava into boiling water.
- \circ $\,$ Then wait until the cassava floats. If so, remove and drain the cassava.
- Heat the cooking oil and fry the cassava until it is quite crispy according to taste. after that, set aside.
- Reheat the cooking oil and stir-fry the salt, sugar, chili and tamarind water while stirring.
- \circ Next, add the cassava that has been set aside and mix well.
- Remove and place the cassava chips in an airtight container.
- Balado cassava chips are ready to be served.
- 6. What the goal of the text?
 - a. To entertain reader how to make balado cassava chips
 - b. To tell reader about instruction or step how to make balado cassava chips
 - c. To describe how to make balado cassava chips
 - d. To retell reader about balado cassava chips.

- 7. How many step that include in making balado cassava chips?
 - a. Nine
 - b. One
 - c. Three
 - d. Seven
- 8. Fourth step that must to do in making balado cassava chips is..
 - a. 3 tbsp cooking oil
 - b. Then wait until the cassava floats. If so, remove and drain the cassava.
 - c. 5 red chilies that have been mashed
 - d. Third, put the cassava into boiling water.
- 9. Material that not you need when making balado cassava chips is...
 - a. Salt
 - b. Onion
 - c. Cooking oil
 - d. Chilies

10. "First, Slice the cassava" The underlined word has the closest meaning to. . .

- a. Chop
- b. Grill
- c. Cut thinly
- d. Scar

How to cook instant noodles

Ingredients:

- instant fried noodles
- 200 ml of water
- 2 eggs
- vegetables

Instruction:

• Heat 200 ml of water to a boil.

- Put the noodles in it until fully submerged.
- Pour the spices in the instant noodle package into a bowl.
- Add egg and also vegetables
- If the noodles are cooked, drain.
- Pour the noodles into a bowl that has been filled with spices beforehand.

NDIDIKAN

- Stir well until the spices are mixed.
- Instant noodles are ready to be served.

11. How many material that you need to make instant noodle..

- a. Two
- b. Four
- c. Six
- d. Eight

12. What we do after Put the noodles in it until fully submerged.

- a. Heat 200 ml of water to a boil.
- b. If the noodles are cooked, drain.
- c. Pour the spices in the instant noodle package into a bowl.
- d. Add egg and also vegetables

13. Which statement is *not true* about the instruction?

- a. We need add egg and also vegetables
- b. We need 200 ml of water to a boil the noodle.
- c. We need add some chili and onion
- d. Stir well until the spices are mixed.

14. If the noodles are cooked, drain. The underlined word has the antonym meaning to. . .

- a. Chill
- b. moisten
- c. heat
- d. freeze

15. The main ingredient in making install noodle is

- a. Egg
- b. Noodle
- c. Vegetable
- d. Water

Question 16-20 (Please fill in the blank following sentences into good steps on how to make sweet tea)

How to make sweet tea

- 1. First, put the water in the teapot, then ... (16)...... until it boils.
- 2. Second, while waiting for the water....(17)....put the tea bag into the cup.
- 3. When the water is already boiling.....(18).... into a cup filled with tea bags.
- 4. After the water changes color remove the tea bag
- 5. Add 3 to 4 spoons....(19)....so it tastes sweet
- 6. The last step is to stir using(20).....until evenly distributed, and the coffee is ready to be enjoyed.

- c. kick
- d. drain

Appendix 4. Test Result

No	Sample	Experiment group	Control Group
1	Student 1	45	25
2	Student 2	40	55
3	Student 3	60	25
4	Student 4	65	20
5	Student 5	50	30
6	Student 6	45	55
7	Student 7	40	50
8	Student 8	55	45
9	Student 9	45	45
10	Student 10	45	35
11	Student 11	40	60
12	Student 12	60 4	50
13	Student 13	<u> </u>	65
14	Student 14	35	40
15	Student 15	_65	30
16	Student 16	60	50
17	Student 17	50	15
18	Student 18	65	40
19	Student 19	35	25
20	Student 20	25	25
21	Student 21	45	50
22	Student 22	35	60
23	Student 23	65	65
2 <mark>4</mark>	Student 24	55	55
2 <mark>5</mark>	Student 25	35	35
26	Student 26	50	60
27	Student 27	45	55
28	Student 28	70	60
29	Student 29	25	55
30	Student 30	35	70
31	Student 31	40	60
32	Student 32	30	50
33	Student 33	30	
34	Student 34	40	
35	Student 35	50	
	Mean	46 42857	45 625

Appendix 5. Normality and Homogeneous Test Results

A. Normality

Tests of Normality							
		Kolmogorov-Smirnov ^a Shapiro-Wilk					Wilk
	Class	Statistic	df	Sig.	Statistic	df	Sig.
Result Post-Test	Experiment Group	.118	35	.200*	.960	35	.229
	Control Group	.177	32	.012	.937	32	.060

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

B. Homogenity

Test of Homogeneity of Variances						
		Result Post-Test				
Levene Statistic		df1	df2	Sig.		
2.546		Nn-l-cit	65	.115		
		- AVV-				

Appendix 6. Lesson Plan Experiment Group

	LESSON PLAN (Experiment group)
School	: SMP Negeri 2 Sukasada
Subject	: English language
Class/Semester	: VII
Topic	: Procedure Text
Time Allotment	: 2 x 45 Minutes

A. MAIN COMPETENCE

K1	Living and practicing the teachings of the religion they adhere to					
K2	Appreciating and living with honest behavior, discipline, responsibility, care					
	(tolerance, mutual cooperation), courteous, self-confidence, in interacting					
	effectively with the social and natural environment within reach of					
	association and existence.					
K3	Understanding knowledge (factual, conceptual, and procedural) based on					
	students curiosity about science, technology, art, culture related to visible					
	phenomena and events.					
K4	Trying, processing, and presenting in the realm of the concrete (using, unraveling, arranging, modifying, and making) and the realm of the abstract					
	(writing, reading, counting, drawing, and composing) according to what is					
	learned in schools and other sources that are the same in perspective					
	/theory.					

B. BASIC COMPETENCE AND INDICATOR OF COMPETENCE ACHIEVEMENT

Basic Competence	Indicator
3.7 Applying text structure and	3.7.1 Identifying the structure of
linguistic elements to carry out the	the procedural text by stating and
social functions of the procedural	asking about the recipe and
text by stating and asking about	manual, short and simple.
recipes and manuals, short and	
simple, in accordance with the	
context of their use.	
4.7. Capturing the meaning of	3.7.2 Analyzing the language
procedural texts, spoken and written,	features of oral and written
in the form of recipes and manuals,	procedure text by providing and
short and simple.	requesting information regarding
	food / beverage recipes and
	manuals, short and simple, in
5.7/	accordance with the context of
	their use.
4.8 Compiling procedural texts, oral	4.8.1 Creating a procedural text in
and written, short and simple, in the	the form of an essay by providing
form of recipes and manuals, taking	and requesting information
into account social functions, text	regarding food / beverage recipes
structure, and linguistic elements that	and manuals, short and simple, in
are correct and in context.	accordance with the context of its
	use.

C. LEARNING OBJECTIVES

After participating in a series of learning activities, students are able to:

- a. Identifying the structure of procedural texts.
- b. Identifying the function of procedure text.
- c. Analyzing the purpose of procedure text.
- d. Identifying the types of procedure text.

D. LEARNING MATERIAL

- a. Oral text and written of procedure text (recipe and manual)
- b. Social Function of Procedure text.
- c. Structure of procedure text.
- d. Purpose of procedure text.
- e. Types of procedure text.

E. LEARNING MEDIA

- Slide Hyperlink PowerPoint
- Laptop/Smartphone

F. STEP OF TEACHING

Introduction

- Greeting the students and asking a student to pray.
- Asking the students to fill attendant list
- Explaining the objectives learning.
- Delivering material coverage activities in teaching learning process.

Core Activities

- Teacher show/give <u>Hyperlink PowerPoint</u> to students by using slide or sent to student's phone.
- Ask general questions related to procedure text to stimulate students' curiosity

about the pictures that they have seen on the <u>Hyperlink PowerPoint</u>.

- Do you know what food in this picture on the slide?
- Have you ever eaten that food?
- What should we prepare before making Banana Fried?
- What should we do after that?
- Giving explanation to the students about procedure text (using slide on <u>Hyperlink PowerPoint).</u>
- Asking the students to read and to observe texts about procedural texts (recipe or manual on the slide).
- Asking the students to find out:
 - The structure of the text.
 - The purpose of the text.
 - The function of the text.
 - The language feature of the text.
- Discussing the answers with the students.
- Dividing students into 4 groups.
- Giving group games Hyperlink PowerPoint provide cooking game "How to make fried rice".
- Asking students to discuss on their group.
- Post-test preparation discussion session
- Give post-test to students

Closing

- Students and teachers make conclusions important points about material "Procedure Text".
- Teachers and students reflect, students can convey the difficulties and challenges they face when learning in the classroom.
- The teacher informs the activities that will be carried out at the next meeting and ends with a closing prayer.

Note: 1 Lesson plan is used for four meetings (4 Treatments)

Appendix 7. Lesson Plan Control Group

LESSON PLAN (Control group)						
School	: SMP Negeri 2 Sukasada					
Subject	: English language					
Class/Semester	: VII					
Торіс	: Procedure Text					
Time Allotment	: 2 x 45 Minutes					
S PENULUIR .						

A. MAIN COMPETENCE

A	. MAIN COMPETENCE					
K1	Living and practicing the teachings of the religion they adhere to					
K2	Appreciating and living with honest behavior, discipline, responsibility, care (tolerance, mutual cooperation), courteous, self-confidence, in interacting effectively with the social and natural environment within reach of association and existence.					
K3	Understanding knowledge (factual, conceptual, and procedural) based on students curiosity about science, technology, art, culture related to visible phenomena and events.					
K4	Trying, processing, and presenting in the realm of the concrete (using, unraveling, arranging, modifying, and making) and the realm of the abstract (writing, reading, counting, drawing, and composing) according to what is learned in schools and other sources that are the same in perspective /theory.					

B. BASIC COMPETENCE AND INDICATOR OF COMPETENCE ACHIEVEMENT

Basic Competence	Indicator
3.7 Applying text structure and	3.7.1 Identifying the structure of
linguistic elements to carry out the social functions of the procedural	the procedural text by stating and
text by stating and asking about	asking about the recipe and
simple, in accordance with the context of their use.	manual, short and simple.
4.7. Capturing the meaning of	3.7.2 Analyzing the language
procedural texts, spoken and written, in the form of recipes and manuals,	features of oral and written
short and simple.	procedure text by providing and
ALLAD -	requesting information regarding
	food / beverage recipes and
	manuals, short and simple, in
	accordance with the context of
	their use.
4.8 Compiling procedural texts, oral	4.8.1 Creating a procedural text in
and written, short and simple, in the form of recipes and manuals, taking	the form of an essay by providing
into account social functions, text	and requesting information
structure, and linguistic elements that are correct and in context.	regarding food / beverage recipes
	and manuals, short and simple, in
	accordance with the context of its
NDT.	use.

C. LEARNING OBJECTIVES

After participating in a series of learning activities, students are able to:

- a. Identifying the structure of procedural texts.
- b. Identifying the function of procedure text.
- c. Analyzing the purpose of procedure text.
- d. Identifying the types of procedure text.

D. LEARNING MATERIAL

- a. Oral text and written of procedure text (recipe and manual)
- b. Social Function of Procedure text.
- c. Structure of procedure text.
- d. Purpose of procedure text.
- e. Types of procedure text.

E. LEARNING MEDIA

- Students Worksheet (Lembar Kerja Siswa)
- Notebook

F. STEP OF TEACHING

Introduction

- Greeting the students and asking a student to pray.
- Asking the students to fill attendant list
- Explaining the objectives learning.
- Delivering material coverage activities in teaching learning process.

Core Activities

- Teacher instruct students to open <u>student worksheets</u> and find material related to Procedure text
- Ask general questions related to procedure text to stimulate students' curiosity
 - Do you know banana fried?
 - Have you ever eaten that food?
 - What should we prepare before making Banana Fried?
 - What should we do after that?
- Giving explanation to the students about procedure text (<u>using student</u> <u>worksheet</u>).
- Asking the students to read and to observe texts about procedural texts (example on the student worksheet).
- Asking the students to find out:

- The structure of the text.
- The purpose of the text.
- The function of the text.
- The type of the texts.
- Discussing the answers with the students.
- Dividing students into 4 groups.
- Giving each group texts example about procedure text on the student worksheet.
- Asking students to discuss on their group.
- Post-test preparation discussion session
- Give post-test to students

Closing

- Students and teachers make conclusions important points about material
 "Procedure Text".
- Teachers and students reflect, students can convey the difficulties and challenges they face when learning in the classroom.
- The teacher informs the activities that will be carried out at the next meeting and ends with a closing prayer.

NDIKSH

Note: 1 Lesson plan is used for four meetings (4 Treatments)

Appendix 8. Blueprint Post-test

Material

: Procedure Text

Number of question : 20

Basic Competence	Class/	Material	Indicator of Question		Level of c	cognitive		No of item
	semester			C1	C2	C3	C4	
3.7 Applying text structure and linguistic elements	VII/2	Procedure Text	3.7.1 Identifying the structure of the	1, 4, 5	6. 11	8, 13	10, 15, 16, 18	10
to carry out the social functions of the procedural text by stating and asking about recipes and manuals, short and simple, in accordance with the context of their use.			procedural text by stating and asking about the recipe and manual, short and simple. 3.7.2 Analyzing the language features of oral and written procedure text by providing and	2, 3	7, 12	9, 14	17, 19, 20	10

SPENDIDIKA

Appendix 9. Instrument Post-test

Post-test

Please choose the best answer based on the text above!

- 1. Base on meaning, what is the procedure text?
 - a. Procedure text that is text that is give instructions how to do or operating something
 - b. Procedure Text that is text that give notice about how to do something
 - c. Procedure Text that is text have purpose to entertain reader
 - d. Procedure Text that is text is a text that aims or describes something.
- 2. The tenses used in procedure text are:
 - a. Future Tense
 - b. Past Tense
 - c. Simple Present Tense
 - d. Past Continuous Tense
- 3. Which of the following is a generic structure procedure text?
 - a. Resolution
 - b. Goals
 - c. Command
 - d. Complication
- 4. List of instructions or correct sequence of steps to do something in procedure text, is the definition of....

DIKSH

- e. Goals
- f. Result
- g. Materials
- h. Step
- 5. Which of the following includes imperative sentences (command form) in the procedure text ?
 - a. first, second, third
 - b. don't mix , turn on , cut into slices
 - c. always, sometime, not ever
 - d. get up, wake up, something

How to Make Potato Bregedel

• 150 g potato

_ _ _ _ _ _ _ _ _ _ _

- 1 tablespoon flour
- 1 egg
- 1 spoon chicken flavoring
- 1 cup vegetable oil for frying

Steps:

- Boiled potatoes about 15 minutes
- Mash the potato with a fork.
- Put the mashed potato in a bowl and mix with the flour and chicken flavoring, followed by an egg.
- Shape the potato into the size of a golf ball and flatten a little with a fork.
- Heat the vegetable oil in a medium flame. When the oil is hot, drop the potato dough into the oil, five or six at a time.
- Fry until golden brown on both sides, drain on absorbent paper and serve hot with chili or sauce.
- 6. Which statement is *true* about the instruction?
 - a. We need the big fire to make oil become hot.

- b. We drop the potato dough into the oil, five or six at a time when the oil is hot.
- c. We fork to flatten the shape of potato.
- d. We fry the potato before golden brown.
- 7. What is the main ingredient of the potato bregedel?
 - a. Potato
 - b. flour
 - c. chicken flavoring
 - d. Oil

- 8. When we add the egg in making potato bregedel?
 - a. After we shape the potato and before we mask the potato.
 - b. After we drop the potato into the oil.
 - c. Between we masked the potato and shape the potato.
 - d. While we shape the potato.
- 9. What is the social function of this text?
 - a. To entertain the readers about potato Bregedel.
 - b. To retell about potato Bregedel.
 - c. To describe about potato Bregedel
 - d. To information about how to make patato Bregedel
- 10. Mash the Potato with a fork. The underlined word has the closest meaning to. .
 - a. Crush
 - b. cut
 - c. Slice
 - d. Mix

Please read the following text for answer question 10-15!

- 11. We need flannel . . . to make rose ring.
 - a. Less than 10x10cm
 - b. About 10x10cm
 - c. Twice 10x10cm
 - d. More than 10x10cm

- 12. What should we do after we cut round the flannel?
 - a. Glue each side of the flannel
 - b. Twist from the central until the end
 - c. Cut it in spiral form
 - d. Put the rose in a rectangle and glue it.
- 13. Material that we need when make flannel rose ring, except?
 - a. Knife
 - b. Scissors
 - c. Red Flannel
 - d. Glue
- 14. Which statement is *not true* about the instruction?
 - a. We need glue each side of spiral flannel.
 - b. We need cut the flannel in a rectangle
 - c. We need to wash the ring after it's done
 - d. We need put the rose in a rectangle.
- 15. <u>*Cut*</u> round the flannel about 5×3 cm and make spiral in it. The underlined word has the closest meaning to. . .
 - a. Paste
 - b. Chop
 - c. Mix
 - d. Roll

Question 16-20 (Please fill in the blank following sentences into good steps on how to make coffee)

How to make coffee

- First, put $\dots(16)$ in a teapot, then heat it until it boils.
- Second, while waiting for the water to(17)....add 2 spoons of coffee powder and 1 half spoon of sugar into the cup.
- Then stir until the coffee powder and sugar are(18).....
- Fourth, when the water is boiling.....(19).... it into a cup containing a mixture of coffee and sugar.
- Make sure that the water is not too much, because if there is too much water will make taste not good.
- The last step stir using(20).....until evenly distributed, and the coffee is ready to be enjoyed.

- 16. a. sugar
 - b. coffee powder
 - c. water
 - d. oil
- 17. a. freeze
 - b. boiling
 - c. chill
 - d. drain
- 18. a. mixed
 - b. separated
 - c. changed
 - d. moist

- 19. a. throw
 - b. slice
 - c. kick
 - d. pour
- 20. a. spoon
 - b. Cup
 - c. Teapot
 - d. sugar

SPENDIDIK

NDIKSHA

No	Sample	Experiment group	Control Group
1	Student 1	75	55
2	Student 2	85	70
3	Student 3	80	70
4	Student 4	75	65
5	Student 5	80	45
6	Student 6	60	70
7	Student 7	60	65
8	Student 8	70	75
9	Student 9	60	75
10	Student 10	75	50
11	Student 11	65	55
12	Student 12	70 4	60
13	Student 13	<u> </u>	75
14	Student 14	65	75
15	Student 15	65	60
16	Student 16	80	65
17	Student 17	70	45
18	Student 18	70	55
19	Student 19	50	35
20	Student 20	65	45
21	Student 21	50	65
22	Student 22	75	55
23	Student 23	65	75
24	Student 24	65	60
25	Student 25	60	45
26	Student 26	60	75
27	Student 27	70	85
28	Student 28	95	65
29	Student 29	40	60
30	Student 30	55	85
31	Student 31	50	60
32	Student 32	70	70
33	Student 33	70	
34	Student 34	80	
35	Student 35	75	
	Mean	68.00	62 8125

Appendix 11. Content Validity

Expert Judge Sheet

Instrument: Blueprint Try-Out Post Test

Expert Judge 1: Prof. Dr. Nyoman Padmadewi. M.A.

Number	Resp	onses	Suggestions
of Item	Relevant	Irrelevant	
1	✓	-	-
2	✓	-	-
3	×	TENDI	
4	\checkmark	S K HUPT	LK A A
5	\checkmark	- <	
6		- 🥋	<u> </u>
7			
8			
9	\sim		
10	· √		
11	\checkmark		
12	\checkmark	シーズノイ	
13	\checkmark		
14	\checkmark		
15	\checkmark		
16	\checkmark		$\gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma - \gamma \gamma$
17	\checkmark		
18	~	-/-/	-
19	~		-
20	\checkmark	-	
		VDIK	SH

Expert Judge Sheet

Instrument: Blueprint Try-Out Post Test

Expert Judge 2: Ni Putu Astiti Pratiwi. S.Pd,.M.Pd

Number	Resp	onses	Suggestions
of Item	Relevant	Irrelevant	
1	\checkmark	-	-
2	✓	-	-
3	\checkmark	-	-
4	~		-
5	✓	-	-
6	✓	-	-
7	\checkmark	PEND	
8	\checkmark		
9	\checkmark	4	
10		-///	
11	\sim		
12	\sim		
13	\sim		
14			
15	✓	大学家	
16	\checkmark		
17	\checkmark		
18	✓ ∧		
19		\sim	
20	\checkmark		

Gregory content validity category.

Co	ontent Validity	Qualification	n
	0.80 - 1.00	Very high	
	0.60 - 0.79	High	
	0.40 - 0.59	Moderate	
	0.20 - 0.39	Low	
	0.00 – 0.19	Very Low	
	SPEN	DIDIKAN	
	Content Validity = -	D (A+B+C+D)	
		20	2

Base on the result, score of the instrument is 1. It can be conclude the qualification category content validity is very high.

NDIKSE

=

= 1

0 + 0 + 0 + 20

Appendix 12. Instrument Validity Post-test

Respondent										Nur	nber	of Ite	em								
	X1	X2	X3	X4	X5	X6	X7	X8	X9	Χ	Χ	Х	Х	Χ	X	Х	Х	Х	Х	Х	Total
								21	DIT.	10	11	12	13	14	15	16	17	18	19	20	
R1	1	1	1	1	0	10	1	0	1	0	0	1	1	1	0	1	1	1	1	1	15
R2	1	1	1	1	1	1	1	1	1/	0	1	1	1	1	1	1	1	1	0	0	17
R3	0	1	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	16
R4	1	0	1	1	0	1	1	1	0	1	/1/	0	1	1	1	1	1	0	1	1	15
R5	1	1	1	1	Ą	1	1	1	1	1	1	1	1	0	1	1	0	1	0	0	16
R6	1	1	1	1	1	0	1	0	1	X	0	0	0	0	0	0	0	0	1	1	12
R7	0	1	1	1	0	0	0		0	1	-1-	0	1	1	0	1	1	0	1	1	12
R8	0	0	0	1	1	1	1	0	45	1	1	4	1	1	1	1	1	0	1	0	14
R9	1	1	0	0	1	0	1	0	1^{1}	1	0	1	0	1	0	0	1	1	1	1	12
R10	1	1	0	1	1	1	1	0	1	0	0	1	1	1	1	1	1	1	0	1	15
R11	1	1	1	0	1	1	0	1	1	0	1	0	1	1	1	1	1	0	0	0	13
R12	1	1	1	1	1	0	1	0	1	7	0	0	0	1	1	0	1	1	1	1	14
R13	1	1	0	1	1	1	10	1.	1	0	1	1	0	1	1	1	1	1	0	1	16
R14	1	1	1	0	0	1	0	1	0_	0	1	0	1	1	1	1	1	0	0	1	13
R15	1	1	1	1	1	1	1	0	1	0	0	1	1	0	1	0	0	1	0	1	13

R16	1	1	0	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	16
R17	1	1	1	1	1	1	1	0	1	1	0	0	0	1	1	0	1	0	1	1	14
R18	1	1	0	1	0	1	1	1	0	1	0	1	1	1	1	1	1	1	1	0	14
R19	0	1	1	0	1	1	0	0	1	0	1	0	0	1	1	0	1	0	0	1	10
R20	1	1	1	1	1	1	1	0	11	1	0	1	0	0	0	1	0	1	1	0	13
R21	1	1	1	1	0	0	4	1	0	0	0	1	1	0	1	1	0	0	0	0	10
R22	0	1	0	1	1	0	1	1	1	1	1	1	0	1	0	1	1	1	1	1	15
R23	1	1	1	1	0	0	1	0	0	1	1	1	0	0	1	1	0	1	1	1	13
R24	0	0	1	0	1	1	1	0 <	-1_	0	0	1	0	1	-	1	1	1	0	1	13
R25	1	1	1	1	1	1	0	1	0	0	1	4	1	0	0	1	0	1	0	0	12
R26	1	1	0	0	Ą	1	1	0	1	1	0	1	0	1	0	0	1	0	1	1	12
R27	1	1	1	1	1	1	1	1	1	0	7	1	1	0	1	1	0	0	0	0	14
R28	1	1	0	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	19
R29	0	0	1	0	0	1	1	0	-0	1	0	0	0	1	0	0	1	0	1	1	8
R30	1	0	1	0	1	0	0	1	1	0	1	0	1	1	1	1	1	0	0	0	11
R31	0	1	1	0	1	0	1	0	1	1	0	1	0	0	1	0	0	0	1	1	10
R32	1	1	1	1	1	1	1	1	1	0	1	0	0	1	1	1	1	0	0	0	14
R33	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0	1	0	1	1	0	14
R34	1	1	1	1	1	1	10	1	1	0	1	0	1	1	1	1	1	0	0	1	16
R35	1	1	0	0	1	1	1	0	-1_	1	1	1	1	1	0	0	1	1	1	0	15
R36	1	1	1	1	1	0	1	1	1	0	0	0	1	0	1	1	0	0	0	1	11

R37	1	1	1	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	1	1	14
R38	1	1	1	1	0	1	1	1	0	0	1	0	1	1	1	1	1	0	0	1	14
R39	1	1	1	0	1	1	0	1	1	1	0	1	1	0	0	1	0	1	1	0	13
R40	0	0	0	1	0	0	1	1	0	0	1	0	1	1	0	1	1	1	0	0	9
R41	1	1	0	0	1	1	1	0	11	1	0	1	0	1	1	0	1	1	1	1	14
R42	1	1	1	1	1	1	4	1	0	1	1	0	1	0	1	1	0	0	0	0	13
R43	0	1	0	1	1	10	1	0	1	1	1	1	0	1	1	0	1	1	1	1	15
R44	1	1	1	1	1	5	1	1	4/	1	0	1	1	0	1	1	0	1	0	0	15
R45	1	0	1	0	0	0	0	1	0	0	1	0	1	1	0	1	1	0	1	1	10
R46	1	1	1	1	1	0	1	0	1	1	0	1	0	0	Ŧ	0	0	1	0	0	11
R47	1	1	1	1	Ą	1	0	1	0	1	1	0	1	0	0	1	0	0	0	1	12
R48	1	1	0	1	1	1	1	1	1	T	0	1	1	0	0	1	0	1	1	1	15
R49	1	1	0	1	1	0	1	1	1	0	0	1	1	1	1	1	1	1	0	1	15
R50	1	1	1	1	1	1	1	0	45	1	1	0	1	0	1	0	0	0	0	0	12
R51	1	1	0	1	0	1	0	$\sqrt{1}$	0	\mathbf{A}_{q}	0	1	1	1	0	1	1	1	1	0	13
R52	1	1	1	0	1	0	1	0	1	0	1	0	0	1	0	0	1	0	0	0	9
R53	1	0	0	1	0	1	0	1	0	1	0	1	1	0	0	1	0	1	1	1	11
R54	0	1	1	1	1	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	7
R55	1	1	1	1	0	1	10	0	0	0	0	0	0	1	0	1	1	0	0	0	9
R56	1	1	0	0	1	1	0	1	-1_	1	0	1	1	0	0	1	0	1	1	1	13
R57	1	1	1	1	1	1	1	0	1	0	1	0	0	1	0	0	1	0	0	0	11

R58	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	0	0	1	1	15
R59	1	1	0	0	0	1	0	1	0	0	0	1	1	1	1	1	1	1	1	0	12
R60	1	1	1	0	1	0	1	0	1	1	0	1	0	0	0	0	0	1	0	0	9
R61	1	1	0	1	0	1	1	1	0	1	1	0	1	1	1	1	1	0	1	1	15
R62	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	17
R63	1	1	1	1	1	1	0	1	1	0	1	0	1	0	1	1	0	0	0	1	13
R64	1	1	0	1	0	10	1	1	0	1	0	1	1	0	0	1	0	1	1	0	12
R65	1	1	1	0	1	1	1	1	4(1	1	0	1	1	1	1	1	0	1	1	17
R66	1	1	0	1	0	1	1	1	0	0	0	1	1	0	0	1	0	1	1	0	12
R67	1	1	0	1		1	1	0	1	1	1	0	0	1	1	0	1	0	1	1	14
					1		N C	8/			Ý.		2								
Total	61	61	5 <mark>8</mark>	55	50	53	51	44	45	33	37	36	40	36	31	40	36	38	34	39	

UNDIKSHA NDIKSHA

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											C	orrelatio	ns										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	X20	Total
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1	Pearson Correlatio n	1	.334**	.075	.095	.004	.205	.130	.196	039	036	156	.033	.189	200	.074	.135	200	.074	075	130	.258*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sig. (2- tailed)		.006	.548	.445	.974	.097	.295	.111	.755	.775	.207	.791	.126	.105	.554	.277	.105	.554	.546	.293	.035
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	X2	Pearson Correlatio n	.334**	1	.001	.192	.296*	.103	.118	032	.247*	.073	054	.155	072	209	.028	150	209	.120	054	032	.269*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sig. (2- tailed)	.006		.991	.119	.015	.409	.343	.797	.044	.558	.665	.212	.561	.090	.825	.227	.090	.334	.665	.797	.027
X3 Pearson Correlatio n .075 .001 1 .050 .089 .166 .070 .091 .011 .256 .112 .466 .151 .151 .056 319** .468* .446* 466* 153 .305 Sig. (2- tailed) .548 .991 .689 .472 .179 .572 .466 .930 .036 .367 .000 .408 .008 .224 .655 .008 .000 .000 .216 .01 N 67 <td></td> <td>Ν</td> <td>67</td> <td>67</td> <td>67</td> <td><mark>6</mark>7</td> <td>67</td>		Ν	67	67	67	<mark>6</mark> 7	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	X3	Pearson Correlatio n	.075	.001	1	.0 <mark>5</mark> 0	.089	166	070	091	.011	- .256 [*]	.112	- .466**	103	319**	.151	056	319**	.468**	- .446** *	153	.305*
N 67 </td <td></td> <td>Sig. (2- tailed)</td> <td>.548</td> <td>.991</td> <td></td> <td>.6<mark>8</mark>9</td> <td>.472</td> <td>.179</td> <td>.572</td> <td>.466</td> <td>.930</td> <td>.036</td> <td>.367</td> <td>.000</td> <td>.408</td> <td>.008</td> <td>.224</td> <td>.655</td> <td>.008</td> <td>.000</td> <td>.000</td> <td>.216</td> <td>.012</td>		Sig. (2- tailed)	.548	.991		.6 <mark>8</mark> 9	.472	.179	.572	.466	.930	.036	.367	.000	.408	.008	.224	.655	.008	.000	.000	.216	.012
X4 Pearson Correlatio n .095 .192 050 1 063 .111 .292* .169 119 .051 .131 .033 .200 223 .045 .244* 223 .113 072 036 .312 Sig. (2- tailed) .445 .119 .689 .610 .372 .016 .171 .337 .681 .289 .793 .105 .069 .716 .047 .069 .363 .564 .774 .01 N 67 <td></td> <td>N</td> <td>67</td>		N	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
Sig. (2- tailed) .445 .119 .689 .610 .372 .016 .171 .337 .681 .289 .793 .105 .069 .716 .047 .069 .363 .564 .774 .01 N 67	X4	Pearson Correlatio n	.095	.192	050	1	063	.111	.292*	.169	119	.051	.131	.033	.200	223	.045	.244*	223	.113	072	036	.312*
N 67 </td <td></td> <td>Sig. (2- tailed)</td> <td>.445</td> <td>.119</td> <td>.689</td> <td></td> <td>.610</td> <td>.372</td> <td>.016</td> <td>.171</td> <td>.337</td> <td>.681</td> <td>.289</td> <td>.793</td> <td>.105</td> <td>.069</td> <td>.716</td> <td>.047</td> <td>.069</td> <td>.363</td> <td>.564</td> <td>.774</td> <td>.010</td>		Sig. (2- tailed)	.445	.119	.689		.610	.372	.016	.171	.337	.681	.289	.793	.105	.069	.716	.047	.069	.363	.564	.774	.010
X5 Pearson Correlatio n .004 .296* .089 - .033 .134 - .824* .120 .131 .101 255 .113 - 155 .045 207 .033 .269 Sig. (2- tailed) .974 .015 .472 .610 .788 .278 .050 .000 .334 .289 .417 .067 .211 .363 .005 .211 .716 .093 .793 .02 N 67 6		Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
Sig. (2- tailed) .974 .015 .472 .610 .788 .278 .050 .000 .334 .289 .417 .067 .211 .363 .005 .211 .716 .093 .793 .02 N 67	X5	Pearson Correlatio n	.004	.296*	.089	.063	1	.033	.134	.240*	.824*	.120	.131	.101	225	155	.113	.337*	155	.045	207	.033	.269*
N 67 67 67 67 67 67 67 67 67 67 67 67 67		Sig. (2- tailed)	.974	.015	.472	.610		.788	.278	.050	.000	.334	.289	.417	.067	.211	.363	.005	.211	.716	.093	.793	.028
		Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67

X6	Pearson Correlatio n	.205	.103	166	.111	.033	1	005	.132	024	.080	.096	.132	.229	.080	.078	.198	.080	.078	.096	007	.476**
	Sig. (2- tailed)	.097	.409	.179	.372	.788		.969	.288	.845	.518	.441	.288	.063	.518	.530	.109	.518	.530	.441	.953	.000
	N	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X7	Pearson Correlatio n	.130	.118	070	.292	.134	005	1	.333*	.225	.182	152	.164	.331*	.039	.182	228	.039	.112	.059	.022	.277*
	Sig. (2- tailed)	.295	.343	.572	.016	.278	.969	3	.006	.067	.140	.218	.184	.006	.751	.140	.064	.751	.366	.636	.858	.023
	Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X8	Pearson Correlatio n	.196	032	091	.169	.240 [*]	.132	.333**	1	.377*	141	.211	043	.662*	079	.063	.732*	079	.003	094	104	.294*
	Sig. (2- tailed)	.111	.797	.466	.171	.050	.288	.006	Ś	.002	.255	.087	.729	.000	.524	.610	.000	.524	.983	.451	.400	.016
	Ν	67	67	67	<mark>6</mark> 7	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X9	Pearson Correlatio n	039	.247*	.011	- .119	.824**	024	.225	.377*		.035	.039	.145	.285*	.035	.147	.387*	.035	.083	091	.145	.302*
	Sig. (2- tailed)	.755	.044	.930	.337	.000	.845	.067	.002		.777	.756	.241	.019	.777	.234	.001	.777	.505	.465	.241	.013
	N	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X1 0	Pearson Correlatio n	036	.073	.256*	.051	.120	.080	.182	141	.035		128	.229	145	179	213	227	179	.214	.668**	.168	.255*
	Sig. (2- tailed)	.775	.558	.036	.681	.334	.518	.140	.255	.777		.302	.062	.240	.148	. <mark>08</mark> 3	.065	.148	.082	.000	.175	.037
	Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X1 1	Pearson Correlatio n	156	054	.112	.131	.131	.096	152	.211	.039	128	S ¹	.398*	.171	.239	.128	.103	.239	.354*	207	.028	.243*
	Sig. (2- tailed)	.207	.665	.367	.289	.289	.441	.218	.087	.756	.302		.001	.167	.051	.304	.405	.051	.003	.092	.821	.048
	Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67

X1 2	Pearson Correlatio n	.033	.155	.466**	.033	.101	.132	.164	043	.145	.229	.398 [*]	1	.025	203	119	.080	203	.792**	.272*	104	.306*
	Sig. (2- tailed)	.791	.212	.000	.793	.417	.288	.184	.729	.241	.062	.001		.843	.100	.339	.521	.100	.000	.026	.400	.012
	N	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X1 3	Pearson Correlatio n	.189	072	103	.200	225	.229	.331 [*]	.662*	.285*	145	.171	.025	1	145	.023	.596*	145	.023	082	166	.258*
	Sig. (2- tailed)	.126	.561	.408	.105	.067	.063	.006	.000	.019	.240	.167	.843	C	.240	.856	.000	.240	.856	.509	.178	.035
	Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X1 4	Pearson Correlatio n	200	209	.319*	.223	155	.080	.039	079	.035	179	.239	203	145	1	.153	030	1.000*	091	.117	.229	.242*
	Sig. (2- tailed)	.105	.090	.008	. <mark>0</mark> 69	.211	.518	.751	.524	.777	.148	.051	.100	.240	H	.216	.807	0.000	.464	.346	.062	.048
	N	67	67	67	<mark>6</mark> 7	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X1 5	Pearson Correlatio n	.074	.028	.151	.0 <mark>4</mark> 5	.113	.078	.182	.063	.147	213	.128	119	.023	.153	1	.083	.153	201	.354*	.063	.294*
	Sig. (2- tailed)	.554	.825	.224	.716	.363	.530	.140	.610	.234	.083	.304	.339	.856	.216		.505	.216	.103	.003	.610	.016
	Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X1 6	Pearson Correlatio n	.135	150	056	.244	.337 [*]	.198	228	.732*	.387*	227	.103	.080	.596* *	030	.083	1	030	.083	091	116	.302*
	Sig. (2- tailed)	.277	.227	.655	.047	.005	.109	.064	.000	.001	.065	.405	.521	.000	.807	. <mark>5</mark> 05		.807	.505	.465	.350	.013
	Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X1 7	Pearson Correlatio n	200	209	.319*	.223	155	.080	.039	079	.035	179	.239	203	145	1.000*	.153	030	1	091	.117	.229	.242*
	Sig. (2- tailed)	.105	.090	.008	.069	.211	.518	.751	.524	.777	.148	.051	.100	.240	0.000	.216	.807		.464	.346	.062	.048
	N	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67

X1 8	Pearson Correlatio	.074	.120	.468**	.113	.045	.078	.112	.003	.083	.214	.354*	.792**	.023	091	201	.083	091	1	.248*	058	.332**
	n Sig. (2- tailed)	.554	.334	.000	.363	.716	.530	.366	.983	.505	.082	.003	.000	.856	.464	.103	.505	.464		.043	.641	.006
	Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X1 9	Pearson Correlatio n	075	054	.446*	.072	207	.096	<mark>.0</mark> 59	094	091	.668**	207	.272*	082	.117	.354*	091	.117	.248*	1	.332**	.256*
	Sig. (2- tailed)	.546	.665	.000	.564	.093	.441	.636	.451	.465	.000	.092	.026	.509	.346	.003	.465	.346	.043		.006	.037
	Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
X2 0	Pearson Correlatio n	130	032	153	.036	.033	007	.022	104	.145	.168	.028	104	166	.229	.063	116	.229	058	.332**	1	.294*
	Sig. (2- tailed)	.293	.797	.216	.774	.793	.953	.858	.400	.241	.175	.821	.400	.178	.062	.610	.350	.062	.641	.006		.016
	Ν	67	67	67	<mark>6</mark> 7	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
Fotal	Pearson Correlatio n	.258*	.269*	.305*	.312	.269*	.476**	.277*	.294*	.302*	.255*	.243*	.306*	.258*	.242*	.294*	.302*	.242*	.332**	.256*	.294*	1
	Sig. (2- tailed)	.035	.027	.012	.010	.028	.000	.023	.016	.013	.037	.048	.012	.035	.048	.016	.013	.048	.006	.037	.016	
	Ν	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67
**. C	orrelation is si	gnificant	at the 0.0)1 level (2	2-tailed)	• // /	·			YY	VY	YY	<u> </u>		•		•		•			
*. Co	rrelation is sig	nificant a	t the 0.05	5 level (2-	tailed).				1.1		\mathbf{V}	17	$I I_{2}$									

Conclusion Validity Post-test

Item	Pearson Correlation	Sig. (2-tailed)	Criteria
X1	.258*	.035	Valid
X2	.269*	.027	Valid
X3	305*	.012	Valid
X4	.312*	.010	Valid
X5	.269*	.028	Valid
X6	.476**	.000	Valid
<mark>X</mark> 7	.277* 🧹	.023	. Valid
X8	.294* 🚽	.016	Valid
X9	.302*	.013	Valid
X10	.255*	.037	Valid
X11	.243*	.048	Valid
X12	.306*	.012	Valid
X13	.258*	.035	Valid
X 14	.242*	.048	Valid
X15	.294*	.016	Val <mark>id</mark>
<mark>X</mark> 16	.302*	.013	Val <mark>i</mark> d
X17	.242*	.048	Valid
X18	.332**	.006	Valid
X19	.256*	.037	Valid
X20	.294*	.016	Valid

If Sig 2-tailed is less than 0.05 (p < 0.05) the instrument is valid, but if Sig 2-tailed is higher than 0.05 (p > 0.05) the instrument can be said invalid.

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Appendix 13. Reliability Analysis

Cronbach's Alpha score	Level of Reliability
0.0 - 0.20	Less Reliable
>0.20 - 0.40	Rather Reliable
>0.40 - 0.60	Quite Reliable
>0.60 - 0.80	Reliable
>0.80 - 1.00	Very Reliable

Output Cronbach's Alpha Reliability

Reli	ability	Statistics	
Cronbach's Alpha	6,	N of Items	2
	.591		21

Based on the category table, the value is .591 > 0.40-0.60. It means that the

DIKSB

reliability of the instrument is quite reliable.

Appendix 14. Data Description of Post-test Experiment Group

			Experimen	nt ist	
		Frequency	Percent	Valid Percent	Cumulative
			$\overline{\Lambda}$	TVV	Percent
Valid	40	1	2.9	2.9	2.9
	50	2	5.7	5.7	8 <mark>.6</mark>
	60	6	17.1	17.1	<mark>25</mark> .7
	65	70	20.0	20.0	45.7
	70	6	17.1 K	17.1	62.9
	75	6	17.1	17.1	80.0
	80	5	14.3	14.3	94.3
	85	1	2.9	2.9	97.1
	95	1	2.9	2.9	100.0
	Total	35	100.0	100.0	

Appendix 15. Data Description Post-test of Control Group

		•	Contro	IL I	
		Frequency	Percent	Valid	Cumulative Percent
)))	Percent	
Valid	35	1	3.1	3.1	<mark>3</mark> .1
	45	4	12.5	12.5	1 <mark>5</mark> .6
	50	1	3.1	3.1	18.8
	55	4	12.5	12.5	31.3
	60	5 1	15.6	15.6	46.9
	65	5	15.6	15.6	62.5
	70	4	12.5	12.5	75.0
	75	6	18.8	18.8	93.8
	85	2	6.3	6.3	100.0
	Total	32	100.0	100.0	

Appendix 16. Result Normality Post-test

Image: Marcine with the system Valid Missing Total Class N Percent N							Cases	
ClassNPercentNPercentNPercentResult Post-TestExperiment Group35100.0%00.0%35100.0%			V	alid	Mis	sing		Total
Result Post-Test Experiment Group 35 100.0% 0 0.0% 35 100.0%		Class	Ν	Percent	N	Percent	N	Percent
	Result Post-Test	Experiment Group	35	100.0%	0	0.0%	35	100.0%
Control Group 32 100.0% 0 0.0% 32 100.0%		Control Group	32	100.0%	0	0.0%	32	100.0%

S 📣

		Des			
		Class	(新静)	Statistic	Std. Error
Result Post-Test	Experiment Group	Mear		68. <mark>7</mark> 1	1.814
	7	95% Confid <mark>ence Interval</mark>	Lower Bound	6 <mark>5.</mark> 03	
		for Mean	Upper Bound	7 <mark>2.</mark> 40	
		5% Trimme	d Mean	<mark>6</mark> 8.85	
		Media	ın	70.00	
		Varian	ce 🚽 🖌 🕨	115.210	
		Std. Devi	ation	10.734	
		Minimu	um	40	

		Maxir	num	95	
		Ran	ge	55	
		Interguarti	le Range	15	
		Skew	ness	251	.398
		Kurte		944	778
	Control Group	Mea	an	62.81	2.153
		95% Confidence Interval	Lower Bound	58.42	
		for Mean	Upper Bound	67.20	
		5% Trimm	ed Mean	62.92	
		Med	ian 🕗 🕗	65.00	
		S Varia	ince	148.286	
		Std. De	viation	12.177	
		Minin	num	35	
		Maxir	num	85	
		Ran	ge	50	
		Interguarti	le Range	19	
		Skew	ness	267	.414
		Kurto	osis	338	.809
		Interquarti Skew Kurto	le Range ness osis	19 <mark>2</mark> 67 338	.414 .809

-				6313 01 1011	nanty		
		Koln	nogorov-Smir	nov ^a			Shapiro-Wilk
	Class	Statistic	df	Sig.	Statistic	df	Sig.
Result Post-Test	Experiment Group	.123	35	.200 [*]	.964	35	.304
	Control Group	.103	32	.200 [*]	.964	32	.354

Tests of Normality

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Appendix 17. Result Homogeneity Post-test

...

Test of Homogeneity of Variances							
Result							
Levene Statistic	df1	df2	Sig.				
.882	1	65	.351				

Result					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	582.251	1	582.251	4.445	.039
Within Groups	8514.018	65	130.985		
Total	9096.269	66			

ANOVA

Appendix 18. Result T-test Post-test

Independent Samples Test															
		Levene for Equa Varia	's Tes <mark>t</mark> ality of nces	t-test for Equality of Means											
		F	Sig.	t	df	Sig.	Mean	Std. Error	95% Con	fidence					
					Res	(2-	Difference	Difference	Interval	of the					
			17.	I a		tailed)	SH		Differe	ence					
				N/m		XX.			Lower	Upper					
Result	Equal variances	.882	.351	2.108	65	.039	5.902	2.799	.311	11.49					
Post-	assumed				前前 🔪					2					
Test				E	\sim										
	Equal variances not			2.096	62.109	.040	5.902	2.815	.274	11.52					
	assumed									9					

UNDIKSHA

 \wedge

130

									1	ADW T	AL PE	PELAN	N SEMES	TER G	INAP 2									
ET AS		Sen		Selana					Raba							Kamis		-	Ju	THE .	-	Sabta		
	1 2 3 4 5 6 1 2 3 4 5 6 7					1	1 2 3 4 5 6				1				1 2 3 4 3 1					-				
VEA			25			ENO:		MIK	PJ	•	100	•	DNG			- HON	1999	-		-			-	
VILB			5	вк	1.00	0		194A	72	5	INC		15		B DIG		MIK	MOR	1	3 4				
VBC		ю.	~ 11	Key .	P25				0.50	ал —	25	MTR	(PRON)		MTK		8.940			SBK		1	24	
VED	NAME OF	-			P25	180		8.040	20	3 200	ers.						28			MITE	SBK	3	141	
VIE	8.8	0	MT		11 A		11. 1	58K		NDO		1/14	MTK		5			BDD	0		The second		20	
VILA	P25	PR	1	-	275 B	INDO		218		IPS		81	NDO				MTK				MTK			
VILLE	725	-	175	RA	BD			MTK	MTK		-		BBALL	80	DO	24	175		80					
VIIC	.0	-	0	10	MD	ε		85	9.24	00		1.010	IPS		MTK	-	100				P25			
VED	MI	ĸ	2.25	9	29			I NBO	23	۹.			A INDO		-		-	195			P15		мтк	
VIER		5	24		MINDO	8.8	411	PRA	-		MTK		-			MTK		ADM		-	1.00		-	
VIEF			MI		BBALI	125		0.00	AD	м	-	00	MTK							-				
IX.A			-	2	-	7	ON	Taxa .			MTK		-		11	10	ACM			MIK	166	30	10	
IX B	198.4	- 53	16 N		.01		-	B. MT		-	15	,	enx:		-		-	100			-		MOM	
ixc	M	ĸ			MIK		OM.			8 2 MG			-					-		TOX DS				
IXD	ia pe	100	125		-			MTK 2	IK	N	AD	2M	D AND			25	MIL			-	100			
IXE			MT		1.24	23		25	MIK		-		PNQ.	175	AD	м	-	a parte			-			
IX.F	-	1		-	-	-		8 INDO	175	MERK			noi		MIK		8 9 900	19		ACM				
ixe	m	3%	8.00	20	ING	MTK		-	3.00	00	14	N	ADM		-		195	MIX		1000				
		-	Me Kej	ngetah pala Sek	il. olah,															Pancasari, 8.3 Wakasak Kuri	enueri 2023 kulum	1		

Appendix 19. Class Schedule SMP Negeri 2 Sukasada

Teaching schedule in the Experiment group and Control group

Appendix 20. Documentation

Meeting 1 (Test) - 13/01/2022

Meeting 2 (Learning material) - 17/01/2022

Meeting 3 (Exercise quiz) – 18/01/2022

Meeting 4 (play cooking games) 25/01/2022

Meeting 5 (Present assignment) 26/01/2022

Meeting 6 (Post-Test) 03 /02/2022

Picture with head master

Appendix 21. Name of Students Sample

No	VII A Students	VII D Students
1	Gd.Aby Nanda Pradipta	Gede Paundra Sastra Wiguna
2	Gede Agus Shivayana	Gede Predi Peratama
3	Gede Wenten Ariana	Gede Risky Merta Dinata
4	I Gusti Ngurah Nyoman Budiawan	Gusti Ayu Komang Suniantari
5	I Kadek Redita Yasa	I Gusti Ayu Kania Kusuma Dewi
6	I Komang Putra Triyasa	I Kadek Pande Sumerta Yasa
7	I Made Andi Saputra	I Ketut Rai Sujatiyasa
8	I Made Deni Juliastrawan	I Made Arya Axia Ariawan Putra
9	I Wayan Suta Arianta	Kadek Adi Suputra
10	Kadek Andika Prawinata	Kadek Agus Widiana
11	Kadek Apriliani	Kadek Dwi Wirya Wiranata
12	Kadek Ari Sinta Astuti	Kadek Elza Mertania
13	Kadek Arya Nugrahita Kumara	Kadek Vania Diandra Putri
14	Kadek Delia Sukma Cahyani	Kadek Yuda Indrawan
15	Kadek Dwi Septemberiani	Ketut Purnamayanti
16	Kadek Januarta	Komang Della Sri Rahayu
17	Kadek Widiana	Komang Nanda Puspita
18	Ketut Ari Dwipa Yana Suputra	Komang Ratna Suteni
19	Ketut Damayanti	Made Dwi Citrawan
20	Ketut Septiasari	Made Murni Sari
21	Ketut Sutari Verayani	Made Sudarma Yasa
22	Komang Adi Sastrawan	Md. Rastika Yasa
23	Komang Aldy Nugraha	Ni Komang Trisnawati
24	Komang Anik Artini	Ni Luh Emi Evayanti
25	Luh Devalia Sintia Dewi	Ni Luh Putu Arista Dewi
26	Luh Gede <mark>Shintya Natalia</mark>	Ni Putu Lidya Pebri Lestari
27	Ni Kadek Bela Agustin	Nyoman Trisna Melyani
28	Ni Ketut Ratna Widianti	Putu Danta Pranata Putra
29	Putu Bela Andani	Putu Dika Arta Wiguna
30	Putu Dama Yanti	Putu Dika Juliana
31	Putu Nanda Putra Darmawan	Putu Diva Dirliawan
32	Putu Sukreni Kertiani	Putu Juli Damayanti
33		Putu Yodi Pratama
34		Satyam Agung
35		Zildan Fahrija

RIWAYAT HIDUP PENULIS

Kadek Agus Prayoga atau akrab di panggil Agus/Yoga lahir di Singaraja pada tanggal 20 Desember 1999. Penulis merupakan anak ke-empat dari pasangan suami istri Bapak Made Sumayasa dan Ibu Ketut Kartini. Penulis berkebangsaan Indonesia dan beragama Hindu. Penulis beralamat di Jalan Pahlawan, Gang 16, RT 16, Kelurahan

Banjar Tegal, Kecamatan Buleleng, Kota Singaraja, Provinsi Bali.

Terkait Riwayat Pendidikan, Penulis menyelesaikan pendidikan sekolah dasar di SD Nomor 2 Candikuning yang berlokasi di Kabupaten Tabanan dan lulus pada tahun 2012. Setelah tamat sekolah dasar penulis melanjutkan di jenjang Sekolah Menengah Pertama Negeri 2 Sukasada yang berlokasi di desa Pancasari dan lulus pada tahun 2015. Untuk jenjang SMA penulis melanjutkan pendidikan di Sekolah Mengah Atas Negeri 2 Singaraja yang berlokasi di desa Sambangan, dengan jurusan kelas Bahasa (IBB "Ilmu Bahasa dan Budaya") dan lulus pada tahun 2018. Setelah lulus SMA penulis melanjutkan pendidikan di Universitas Pendidikan Ganesha dengan progrom studi Pendidikan Bahasa Inggris. Mulai dari tahun 2018 sampai dengan penulisan Skripsi ini, penulis masih terdaftar sebagai mahasiswa program studi Pendidikan Bahasa Inggris di Universitas Pendidikan