Lampiran 0.1. Instrumen

Kisi – Kisi Instrumen Penilaian

Mata Pelajaran : Teknik Dasar Otomotif

Kelas Semester : X/2

Konsep Bahasan : Mesin Konversi Energi

Bentuk Soal : Pilihan Ganda

Standart Kompetensi : Memahami Proses Mesin Konversi Energi, Mendemontrasikan Proses Mesin Konversi Energi, Memahami Klasifikasi

Engine, Memahami Cara Kerja Engine 2 dan 4 langkah.

Dasar Kompetensi : Memahami Proses Mesin Konversi Energi, Mendemonstrasikan Mesin Konversi Energi.

Indikator	I <mark>n</mark> dikator Soal	Soal dan Jawaban	Ranah Kognitif
Pembelajaran			
Memahami proses mesin konversi energi	 Jenis jenis mesin konversi energi Proses kerja mesin konversi energi 	 Pengertian siklus pada motor 4 tak, motor bensin adalah: Proses yang selalu berulang tetapi tidak mesti berurutan. Proses kerja pada motor 4 tak yang berulangulang Proses yang berulang-ulang sehingga membentuk satu rangkaian kerja. Proses kompresi, buang, kerja dan hisap adalah satu rangkaian. Rangkaian kerja pada motor bakar sehingga mesin bisa hidup. 	\mathcal{C}_1
		 Yang dimaksud dengan mesin "Internal Combustion Engine" adalah : a. Mesin yang mekanisme pembangkit panasnya dihasilkan di dalam mesin itu. 	\mathcal{C}_1

	ł	b. Mesin yang selalu menghasilkan tenaga panas	
		dan gerak.	
	(c. Mesin dalam menghasilkan tenaga ada di luar	
		mesin itu.	
	(d. Mesin yang menghasilkan tenaga panas dari	
		mesin pembangkit lain.	
	ł	b. e. Mesin yang menghasilkan tenaga gerak	
		melalui mesin induksi.	
	3. U	Jrutan siklus kerja motor 4 tak yang benar adalah :	
	8	a. Kompresi – kerja – hisap – buang.	
	ŀ	o. Buang – hisap – kerja – kompresi.	\mathcal{C}_1
		c. Kerja – buang – kompresi – hisap.	
	(4)	d. Hisap – kompresi – kerj <mark>a –</mark> buang.	
	ϵ	e. Kompresi – buang – kerja – hisap.	
4.5	4. S	alah satu penggunaan bahan bakar yang benar	
	a	dalah :	
	2	a. Mesin diesel menggunakan bahan bakar	
	10	bensin.	
	t	o. Mesin bensin menggunakan bahan bakar solar.	\mathcal{C}_1
	1	. Mesin bensin menggunakan bahan bakar	
		minyak tanah.	
		d. Mesin diesel menggunakan bahan bakar solar.	
		e. Mesin berbahan bakar gas menggunakan bahan	
		bakar premium.	
	5. P	Pengertian langkah buang yang benar bila dikaitkan	
		lengan meknisme kerja katup/diagram kerja katup	
	a	dalah :	
	1	a. Piston bergerak dari TMA ke TMB, katup	
		masuk masih tertutup rapat, beberapa derajat	C_3
		sebelum TMB katup buang sudah terbuka lebih	
		awal sehingga gas bekas pembakaran dapat	
		keluar ke exhaust manifold.	
	ŀ	b. Piston bergerak dari TMB ke TMA, katup	
		masuk masih tertutup rapat, beberapa derajat	
		sebelum TMA katup buang sudah terbuka	
		lebih awal sehingga gas bekas pembakaran	
		dapat keluar ke exhaust manifold	
	1		

	 c. Piston bergerak dari TMA ke TMB, katup buang masih tertutup rapat, beberapa derajat sebelum TMB katup masuk terbuka lebih awal sehingga gas bekas pembakaran dapat keluar ke exhaust manifold. d. Piston bergerak dari TMA ke TMB, katup buang membuka beberapa derajat setelah TMB sehingga gas bekas pembakaran dapat keluar ke exhaust manifold. e. Piston bergerak dari TMB ke TMA, katup masuk masih tertutup rapat, beberapa derajat 	
	sebelum TMB katup buang sudah terbuka lebih awal sehingga gas bekas pembakaran dapat keluar ke exhaust manifold.	
	 6. Perbedaan motor bensin dan motor diesel secara prinsip terdapat pada : a. Kualitas bahan bakar dan proses kerjanya. b. Jumlah bahan bakar dan tipenya. c. Power yang dihasilkan dan range kerja mesin. d. Putaran mesin dan kebutuhan bahan bakarnya. e. Jenis bahan bakar dan proses kompresinya. 	C_2
	 7. 3 faktor penting yang mempengaruhi kerja mesin untuk mempertahankan mesin bekerja dengan lancer adalah: a. Suhu mesin optimal, tekanan kompresi baik, pengapian baik. b. Kualitas bahan bakar baik, kompresi mesin baik, pengapian yang baik. c. Kualitas bahan mesin yang baik, kompresi mesin baik, pengapian yang baik. d. Jumlah bahan bakar cukup, kompresi mesin baik, pengapian yang baik. e. Kualitas system pelumasan yang baik, 	C_1
8	kompresi baik, pengapian yang baik. 8. Yang dimaksud AFR (air fuel ratio) atau perbandingan udara dan bahan bakar harus stochiometry adalah:	C_2

	a. 17,4 : 1, yaitu 17,4 untuk udara dan 1 untuk	
	bensin.	
	b. 14,7 : 1, yaitu 14,7 untuk bensin dan 1 untuk	
	udara.	
	c. 14,7 : 1, yaitu 14,7 untuk udara dan 1 untuk	
	bensin.	
	d. 14,7 : 1, yaitu 14,7 untuk udara dan 1 untuk	
	bensin.	
	e. 17,4 : 1, yaitu 17,4 untuk bensin dan 1 untuk	
	udara.	
	9. Kerugian motor 4 tak diantaranya adalah:	
	a. Suara akan lebih h <mark>alus.</mark>	
	b. Terdapat mekanisme penggerak klep, sehingga	C_2
	perawatan lebih sulit.	
P. C.	c. Tidak memakai oli samping.	
	d. Panas mesin lebih tinggi dari motor 2 tak.	
	e. Putaran mesin akan lebih halus jika jumlah	
	silindernya sedikit.	
	10. Yang dimaksud langkah bilas pada motor 2 tak adalah:	
	a. Proses masuknya gas campuran bensin dan	
	udara masuk ke ruang engkol.	
	b. Proses masuknya gas campuran bensin dan	C_1
7	udara masuk ke ruang karburator.	-1
	c. Proses keluarnya gas campuran bensin dan	
	udara ke ruang engkol.	
	d. Proses pemasukan pada saat langkah hisap.	
	e. Proses masuknya gas campuran bensin dan	
	udara yang masuk ke ru <mark>a</mark> ng bakar/silinder dari	
	ruang engkol.	
	11. Sedangkan proses bilas pada motor 4 tak adalah :	
	a. Proses dimana terjadi pada saat overlap yaitu	
	kedua katup pada keadaan terbuka sehingga	C_2
	ada gas baru yang mendorong sisa gas	
	pembakaran keluar bersama-sama ke saluran	
	buang.	

b. Proses masuknya gas campuran bensin dan	
udara masuk ke ruang karburator.	
c. Proses masuknya gas campuran bensin dan	
udara masuk ke ruang engkol.	
d. Proses masuknya gas baru mengisi ke dalam	
silinder melalui saluran bilas/scavenging.	
e. Tertutupnya saluran buang sebelum piston	
mencapai TMA.	
12. Yang dimaksud dengan katup DOHC adalah:	
a. Mesin yang camshaft nya ada di samping blok	
mesin, jadi har <mark>us</mark> menggunakan mekanisme	
penghubung lagi u <mark>ntuk m</mark> enggerakkan katup.	C_2
b. Mesin yang chamshaftn <mark>ya</mark> ada di atas kepala	02
silinder dan jumlahnya do <mark>ubl</mark> e.	
c. Mesin 4 tak yang tidak menggunakan	
mekanisme katup.	
d. Mesin 4 tak yang mekanik katupnya masih	
menggunakan push rod sebagai mekanisme	
penghubung untuk menggerakakn katup.	
e. Mesin yang dipergunakan untuk kecepatan	
tinggi seperti untuk balap formula 1.	
12. Efisiensi Thermis mesin bensin adalah : a. 23% - 28%	
b. 25% - 29% c. 78% - 100%	C_2
d. 45% - 75%	
e. 29% - 38%.	
13. Sedangkan efisiensi Thermis mesin Diesel adalah :	
a. 23% - 28%	
b. 25% - 29%	C_2
c. 78% - 100%	02
d. 45% - 75%	
e. 29% - 38%.	
14. Sedangkan gas buang ternyata menyumbang	
kehilangan panas terbesar pada mesin yaitu sebesar	
	C_2
a. 32%	

	b. 36% c. 34% d. 48% e. 65%	
Mendemontrasikan proses mesin konversi energi	15. Rumus perbandingan kompresi adalah sebagai berikut : CR = <u>VL + VC</u> dimana : VC. VL = Volume langkah. VC = Volume Kompresi.	C_3
	CR = Compresi Ratio. Maka rumus di atas adalah identik dengan : a. Volume silider saat piston di TMA dibagi dengan Volume silinder saat piston di TMB. b. Volume piston saat silinder di TMA dibagi dengan Volume silinder saat piston di TMB. c. Volume silider saat piston di TMB dibagi dengan Volume silinder saat piston di TMA. d. Volume piston saat silinder di TMB dibagi dengan Volume silinder saat piston di TMA. e. Volume piston saat silinder di TMA dibagi dengan Volume silinder saat piston di TMA.	3
	16. Apa tujuan diperlukan tekanan kompresi pada mesin? a. Karena mesin dalam kondisi belum berjalan masih dalam keadaan dingin. b. Gas akan mudah terbakar dengan sempurna jika suhu awal pembakaran dapat dicapai. c. Supaya mesin larinya kencang. d. Suipaya mesin dapat bekerja dengan sedikit bahan bakar. e. Supaya tenaga yang dihasilkan oleh mesin labih basar.	C_2
	lebih besar. 17. yang disebut pree-ignition pada pembakaran tidak sempurna adalah: a. Proses pembakaran pada mesin dimana bahan bakar sulit terbakar karena tekan kompresi yang rendah sehingga butuh penyalaan lebih awal.	C_2

		 b. Bahan bakar cepat merembes ke silinder karena proses kompresi yang baik pada mesin. c. Bahan bakar terbakar dengan sendirinya akibat dari tekanan dan suhu yang cukup tinggi sebelum terjadinya penyalaan oleh busi. d. Bahan bakar mengalir dengan cepat menyebar ke silinder dan ruang bakar sebelum proses penyalaan dilaksankan sehingga pengapian tidak sempurna. e. Proses pembakaan yang tidak sempurna akibat dari tekanan kompresi yang rendah. 	
	AND	18. 3 faktor yang menjadi kendala pembakaran dalam mesin sehingga pembakaran tidak sempurna dalah : a. Bahan bakar tidak murni, udara tidak murni oksigen dan pembakaran berlangsung sangat singkat. b. Tekanan kompresi turun, udara tidak murni oksigen dan pembakaran berlangsung sangat pendek. c. Bahan bakar murni, udara tidak murni oksigen dan pembakaran berlangsung sangat lama. d. Tekanan pembakaran kecil, suhu udara rendah dan kepadatan bahan bakar sangat tinggi. e. Tekanan pembakaran yang dihasilkan besar, waktunya singkat dan tenaga yang dihasilkan besar.	C_2
		19. Fungsi sirip-sirip pada kepala silinder adalah :	<i>C</i> ₁
Memahami cara kerja engine 2 dan 4 langkah.		20. Macam – macam energi, kecuali: a. Energi mekanik b. Energi zat c. Energi potensial	C_1

d. Emmi alalytus mas matily	
d. Enrgi elektromagnetik	
e. Energi kimia	
21. Besarnya perbandingan kompresi secara umum:	
a. 14:1 s/d 25:1	
b. 14:1 s/d 24:1	\mathcal{C}_1
c. 15:1 s/d 25:1	
d. 16:1 s/d 25:1	
e. 15: 1 s/d 24: 1	
22. Gambarkan diagram kotak motor sebaris 1 silinder:	
a. 1: K – U –B - I	
b. 2: U – B – I - K	C_2
c. 3: I – K - U - B	
d. 4: B – I – K - U	
e. 5: K – U – I - B	
23. Yang dimaksud volatility dari suatu cairan bahan	
bakar adalah :	
a. Kemampuan bahan bakar beru <mark>ba</mark> h menjadi	C_2
uap.	_
b. Konsentrasi bahan bakar menurut	
klasifikasinya.	
c. Kekentalan bahan bakar sesuai dengan SAE	
nya.	
d. Kemampuan bahan bakar untuk terbakar.	
e. Kemampuan bahan bakar menjadi tenaga	
pembakaran.	
решоакаган.	
DADIKSH	

	 24. Kualitas penyalaan bahan bakar adalah : a. Kemampuan bahan bakar berubah menjadi uap. b. Konsentrasi bahan bakar menurut klasifikasinya. c. Kemampuan bahan bakar menyala atau terbakar d. Kekentalan bahan bakar sesuai dengan SAE nya e. Kemampuan bahan bakar untuk menjadi tenaga pembakaran. 	C_2
AN BERT	 25. Gas CO, HC, NOx, Sox, Pb, dan Partikulat adalah gas yang beracun yang keluar bersama gas buang. Sifat dan akibat dari gas CO yang membahayakan adalah: a. Jika terhirup dalam pernafasan akan terjadi sesak nafas. b. Jika bereaksi dengan air akan menyebakan korosi. c. Bila kepekatan melebihi ambang batas maka jumlah CO akan menhambat fungsi jantung. d. Jika bereaksi dengan hemoglobin dalam darah akan menghasilkan CO Hb, dengan bertambahnya kadar CO Hb maka fungsi pengaliran Oksigen akan terhambat. e. Dihasilkan dalam jumah besar oleh kendaraan dan tidak mudah dinetralisir. 	C_2
	26. Gas HC atau Hidro Carbon adalah merupakan ikatan kimia dari Carbon dan hydrogen. Secara umum dalam kendaraan HC adalah uap bensin atau uap bahan bakar yang tidak terbakar. Pada kendaraan Gas HC berupa: a. Charter, tangki bahan bakar dan karburator. b. Knalpot, saluran bilas dan gas bekas. c. Gas yang akan mencair pada suhu 2000°C.	C_2

	d. Gas yang tetap pada suhu udara kamar.	
	e. Blow by Gas, uap bensin pada tangki bensin	
	dan fload chamber serta pada gas buang.	
	27. Gas HC pada Blow By gas terjadi karena:	
	a. Kebocoran gas pada ring kompresi dan	
	dinding silinder pada saat langkah kompresi.	C_2
	b. Pembakaran yang tidak sempurna di ruang	
	bakar.	
	c. Adanya kebocoran pada tangki bahan bakar.	
	d. Tidak adanya reaksi antara O dan gas CO	
	e. Tidak adanya suhu pembakaran yang optimal.	
	28. Sedang gas HC pada gas buang, terjadi karena:	
	a. Pembakaran kurang sempurna.	
	b. Adanya proses pembilasan pada saat katup	C_2
	mengalami over lap.	
	c. Adanya pembakaran tunda atau knocking.	
	d. Terjadinya pree-ignition sehingga pembakaran	
	tidak sempur <mark>na</mark> .	
	e. Proses pembakaran balik pada pembakaran	
	explosive.	
	29. Untuk mengatasi adanya gas HC pada system	
	EVAP maka :	
7	a. Dipasang system EDIC pada karburator.	C_2
	b. Dipasang Anti dieseling pada karburator.	
	c. Dipasang Dash port.	
	d. Dipasang Charcoal Canister pada system	
	bahan bakar.	
	e. Dibuat aliran yang sem <mark>p</mark> urna.	
	30. Sedangkan untuk mengatasi adanya Gas HC pada	
	blow bay gas yang terjadi di dalam ruang engkol	
	adalah:	
	a. Mengeluarkan langsung ke udara bebas.	C
	b. Mengalirkan kembali ke karburator untuk	C_2
	dibakar kembali melalui katup PCV.	
	c. Mengalirkan ke knalpot/saluran pembuangan	
	untuk dibakar.	

d. Mereduksi kembali gas HC menggunakan system catalic. e. Menampung dan mengembalikan lagi ke tangki bensin.	
31. Untuk mengatasi adanya gas HC yang keluar di dalam saluran buang maka di exhaust manifold dipasang Catalic Converter, dengan tujuan : a. Menghambat laju emisi dengan menahan aliran gas buang. b. Menghambat kecepatan aliran gas buang sehingga gas yang keluar menjadi bersih. c. Gas buang menjadi bersih karena difilter oleh muffler. d. Gas buang menjadi kotor karena difilter oleh catalyc converter. e. Membakar bahan bakar yang belum terbakar untuk mengurangi tingkat emisi dengan reaksi kimia sehingga merubah gas yang berbahaya	C_2
menjadi aman. 32. Apakah yang disebut partilkulat itu: a. Partikel gas yang keluar bersama dengan gas bekas umunya berwarna hitam. b. Zat yang berbentuk padat tetapi tidak bias diurai oleh proses kimia pembakaran. c. Partikel zat yang mudah terbakar karena adanya proses fotosintesis. d. Partikel yang terjadi pada saat langkah buang. e. Partikel debu yang sangat kecil dengan ukuran lebih kurang 0.01µm, yang terbentuk dari senyawa carbon dan bahan kimia lain dalam proses pembakaran.	C ₂
33. Dibawah ini yang bukan merupakan Mekanisme katup adalah:	

a. SV (Single Valve)	C_2
b. OHV (Over Head Valve)	
c. OHC (Over Head Camshaft)	
d. BOHC (Bubble Over Head Cam	nshaft)
e. DOHC (Double Over Head Can	nshaft)
34. Gas CO, HC, NOx, Sox, Pb, dan I	Partikulat adalah
gas yang beracun yang keluar bers	sama gas buang.
Sifat dan akibat dari gas CO yang	membahayakan
adalah:	
a. Jika terhirup dalam pernafasan a	akan terjadi
sesak nafas.	
b. Jika bereaksi dengan air ak <mark>an</mark> m	enyebakan
korosi.	
c. Bila kepekatan melebihi amban	g batas maka
jumlah CO akan menhambat fur	
d. Jika bereaksi dengan hemoglob	in $\frac{d}{d}$ alam darah C_2
akan menghasilkan CO Hb, den	ga <mark>n</mark>
bertambahnya kadar CO Hb ma	ıka <mark> fungsi</mark>
pengal <mark>iran O</mark> ksigen akan terhan	nb <mark>a</mark> t.
e. Dihasilkan dalam jumah besar o	l <mark>e</mark> h kendaraan
dan tidak mudah dinetralisir.	
25 Coa HC atou Hidra Coulon ad	alah mamunakan
35. Gas HC atau Hidro Carbon ada	-
ikatan kimia dari Carbon dan hy	
umum dalam kendaraan HC adalah	tankalyan Dada
uap bahan bakar yang tidak	terbakar. Pada C_2
kendaraan Gas HC berupa:	karburatar
a. Charter, tangki bahan bakar dan	
b. Knalpot, saluran bilas dan gas b	
c. Gas yang akan mencair pada sul	
d. Gas yang tetap pada suhu udara	кашаг.

e. Blow by Gas, uap bensin pada tangki bensin	
dan fload chamber serta pada gas buang.	

SILABUS

Satuan Pendidikan : SMK

Mata Pelajaran : Teknologi Dasar Otomotif

Kelas : X

Standar Kompetensi : Memahami Proses Mesin Konversi Energi, Mendemontrasikan Proses Mesin Konversi Energi, Memahami

Klasifikasi Engine, Memahami Cara Kerja Engine 2 dan 4 Langkah, Menjelaskan Cara Kerja Engine 2 dan 4 Langkah.

Alokasi Waktu : 6 Jam

A. Kompetensi Inti

KI3: Memahami, menerapkan, menganalisis, dan mengevaluasi tentang pengetahuan faktual, konseptual, operasional dasar, dan metakognitif sesuai dengan bidang dan lingkup kerja Teknik Kendaraan Ringan Otomotif.

KI 4: Melaksanakan tugas spesifik dengan menggunakan alat, informasi, dan prosedur kerja yang lazim dilakukan serta memecahkan masalah sesuai dengan bidang kerja Teknik Kendaraan Ringan Otomotif. Menampilkan kinerja di bawah bimbingan dengan mutu dan kuantitas yang terukur sesuai dengan standar kompetensi kerja.

B. Kompetensi Inti

Kompetensi Dasar	Materi Pokok	Kegiatan Pembelajaran	Penilaian	Alokasi Waktu	Sumber Belajar
3.1 Memahami proses mesin konversi energi3.2 Mendemontrasikan proses mesin konversi energi	 3. Jenis jenis mesin konversi energi 4. Proses kerja mesin konversi energi 	Mengamati :	Tugas: • Hasil pekerjaan mengamati jenis jenis mesin konversi energi Observasi: • Proses pelaksanaan mengamati jenis jenis mesin konversi energi	4 x 45 menit	 Buku Teknik otomotif Buku referensi dan artikel yang sesuai

3.3 Memahami klasifikasi	1. Definisi dan	pertanyaan secara aktif dan mandiri tentang proses kerja mesin konversi energi Pengumpulan Data: • Mengumpulkan data yang dipertanyakan dan menentukan sumber (melalui dokumen, buku, tutorial) untuk menjawab pertanyaan yang diajukan tentang proses kerja mesin konversi energi Mengasosiasi: • Mengkatagorikan data dan menentukan hubungannya, selanjutnya disimpulkan dengan urutan dari yang sederhana sampai pada yang lebih kompleks terkait dengan proses kerja mesin konversi energi Mengkomunikasikan: • Menyampaikan hasil konseptualisasi tentang proses kerja mesin konversi energi Mengamati:	Portofolio: • Data kemampuan dalam mengamati mengamati jenis jenis mesin konversi energi Tes: • Tes lisan/ tertulis yang terkait dengan mengamati proses kerja mesin konversi energi	4 x 45 menit	• Buku Teknik
engine	fungsi engine	Mengamati definisi dan fungsi engine	Hasil pekerjaan mengamati fungsi engine		otomotif • benda kerja

2. Jenis-jenis	Menanya:	Observasi:	Buku referensi
engine	Mengkondisikan situasi belajar untuk membiasakan	Proses pelaksanaan mengamati fungsi engine	dan artikel yang sesuai
	mengajukan	Portofolio:	
	pertanyaan secara aktif dan mandiri tentang jenis jenis engine	Data hasil kemampuan dalam mengidentifikasi jenis jenis engine	
	Pengumpulan Data :	Tes:	
	• Mengumpulkan data yang dipertanyakan dan menentukan sumber (melalui benda konkrit, dokumen, buku, eksperimen) untuk menjawab pertanyaan yang diajukan tentang jenis jenis engine	Tes lisan/ tertulis yang terkait dengan klasifikasi engine	
	Mengasosiasi:	163	
	 Mengkatagorikan data dan menentukan hubungannya, selanjutnyanya disimpulkan dengan urutan dari yang sederhana sampai pada yang lebih kompleks terkait dengan jenis jenis engine 	SHA	
	Mengkomunikasikan:		
	 Menyampaikan hasil konseptualisasi 		
	tentang jenis jenis		

		engine			
3.4 Memahami cara kerja engine 2 dan 4 langkah 3.5 Menjelaskan cara kerja engine 2 dan 4 langkah	 Definisi mesin 2 dan 4 langkah Prinsip kerja engine 2 dan 4 langkah 	 Mengamati definisi mesin 2 dan 4 langkah Mengkondisikan situasi belajar untuk membiasakan mengajukan pertanyaan secara aktif dan mandiri tentang prinsip kerja engine 2 dan 4 langkah Pengumpulan data: Mengumpulkan data yang dipertanyakan dan menentukan sumber (melalui dokumen, buku, tutorial) untuk menjawab pertanyaan yang diajukan tentang prinsip kerja engine 2 dan 4 langkah Mengasosiasi: Mengkatagorikan data dan menentukan hubungannya, selanjutnyanya disimpulkan dengan urutan dari yang sederhana sampai pada yang lebih kompleks terkait prinsip kerja engine 2 dan 4 langkah Mengkomunikasikan: 	Tugas: • Hasil pekerjaan mengamati definisi mesin 2 dan 4 langkah Observasi: • Proses pelaksanaan mengamati definisi mesin 2 dan 4 langkah Portofolio: • Data hasil kemampuan menjelaskan mesin 2 dan 4 langkah Tes: • Teslisan/ tertulis yang terkait dengan menjelaskan cara kerja mesin 2 dan 4 langkah	5x 45 menit	Buku Teknik otomotif Benda kerja Buku referensi dan artikel yang sesuai

Menyampaikan hasil konseptualisasi tentang prinsip kerja engine 2	
dan 4 langkah	

SOAL UJI COBA PRETEST HASIL BELAJAR MESIN KONVERSI ENERGI

Hari	na : as/semester : i/tanggal : CUNJUK PENGISIAN
	 Bacalah do'a sebelum anda memulai mengerjakan soal. Periksa dan soal-soal dengan seksama sebelum anda menjawabnya. Apa bila ada soal yang kurang jelas, mintalah penjelasan kepada pengewas. Dahulukan menjawab soal yang anda anggap mudah. Periksalah seluruh jawaban anda sebelum diserahkan kepada pengawas.
	SELAMAT BEKERJA
	nan ganda lah tanda silang (x) pada huruf a,b,c,d atau e pada jawaban yang paling benar!
1.	Mesin pembakaran dalam adalah mesin yang memanfaatkan kerja/gas panas hasil pembakaran ,dimana
	antaea medium yang memanfaatkan fluida kerjanya tidak di pisahkan oleh
	a. Dinding pemisah b. Dinding c. Silinder d. Blok mesin e.Tangki
2.	Perbandingan daya efektif (daya yang dihasilkan) terhadap daya indikasi (daya yang menggerakan piston
	merupan pengertian dari
	a. efisiensi termal indikatif b. efisiensi mekanis c. efisiensi termal brake
	d. efisiensi volume <mark>tr</mark> ic e. efisiensi relative
3.	Perbandingan efisiensi termal siklus actual terhadap siklus ideal adalah pengertian dari
	a. efisiensi termal indikatif b. efisiensi mekanis c. efisiensi termal brake
	d. efisiensi volumetric e. efisiensi relative
4.	Perbandingan energy dalam daya brake terhadap energy bahan bakar adalah pengertian dari
	a. efisiensi termal indikatif b. efisiensi mekanis c. efisiensi termal brake
	d. efisiensi volumetric e. efisiensi relative
5.	Efisiensi volumetric dapat dihitung berdasarkan
	a. Massa b. Volume c. volume udara d. massa dan volume udara
	e. semua salah
6.	System siklus kerja motor bensin dibedakan menjadimacam
	a. 1 b. 2 c. 3 d. 4 e. 5
7.	Motor yang pada dua langkah torak/piston (satu putaran engkol) sempurna akan menghasilkan satu tenaga
	kerja adalah motor
	a. 1 langkah b. 2 langkah c. 3 langkah d. 4 langkah e.5 langkah

8. Pesawat yang berguna untuk mengubah energi panas dari pembakaran bahan bakar didalam silender

d. Langkah buang

c. Lankah isap

menjadi energy mekanik adalah

a. Motor listrik b. Motor bakar

	e. Semua salah			
9.	Menurut bahan bakar yang diguna	akan motor d	ibedakan menjadi	macam
	a. 1 b. 2 c. 3	d. 4	e. 5	
10.). Kepanjangan dari TMA adalah			
	a. Titik mati atas b. Titik mati ba	awah c. Tit	ik mundur atas d. '	Гitik mundur bawah
	e. Semua salah			
11.	. Pada langkah isap torak bergerak	dari		
	a. TMA ke TMB b. TMB	ke TMA	c. Bawah ke atas	d. tegah ke bawah
	e. Atas ke bawah			
12.	2. Pada motor diesel saat langkah is	ap yang diisa	p adalah	
	a. Udara murni b. Campuran ba	ahan bakar	c. Air d. Bensin	e. Solar
13.	3. Komponen yang dipasang diantar	a busi dank l	xo <mark>il ad</mark> alah	
	a. Distributor b. Busi	c. Karburator	d. Baterai	e. Platina
14.	4. Energy yang dihasilkan dari peml	b <mark>ak</mark> aran baha	n bakar di dalam s <mark>il</mark>	inder disebut
	a. motor bakar b. seped <mark>a mot</mark> o	or c. ene	rgy listrik d. d	energy kimia
	e. motor torak	OLL DO	A WG	
15.	5. Tempat untuk be <mark>rlangsungnya pr</mark>	oses atau sikl	us dari motor adalal	h .
	a. Torak b. Silinder c. cinc	in torak	d. pena torak	d. pena engkol
16.	6. Bagian yang diguna <mark>k</mark> an untuk me	ncegah kebo	coran antara dinding	g silinder dengan torak adalah:
	a. Torak b. Silinder c. cinci	n torak	d. pena torak	e. pena e <mark>n</mark> gkol
17.	⁷ . Perubahan energy y <mark>an</mark> g terjadi da	lam silinder i	motor <mark>bakar adalah</mark>	
	a. Listrik menjadi kal <mark>or</mark> l	b. <mark>Kimia mer</mark>	ijadi gerak c.	Kalor me <mark>n</mark> jadi gerak d. Listrik
	menjadi kimia e. Ki <mark>m</mark> ia menja	di kalor	$\mathcal{W}\mathcal{U}$	
18.	3. Piston bergerak dari T <mark>MB</mark> ke T	MA , Kedua	k <mark>atu</mark> p tertutup. La	angkah <mark>p</mark> ada motor 4 takt ini disebut
	langkah	ND	IKSHA	
	a. Hisap/ pemasukan	c. Kompresi		Usa <mark>h</mark> a/ekspansi
	b. Pembuangan	d. Pembilasa	n	
19.	9. Komponen motor bakar torak yan	g berfungsi n	nerubah gerak naik -	- turun torak menjadi gerak putar poros
	engkol adalah			
	a. Torak	c. Batang To	rak e.	Ring torak
	b. Pen Torak	d. Poros engl	kol	
20.). Campuran ideal bahan bakar deng	gan udara unt	uk menghasilkan pe	embakaran yang sempurna adalah
	a. 1:15	c. 1:20	e. 1	1:5
	b. 1:12	d. 1:25		
21.	l. Bagian turbin uap yang merubah	energy poten	sial uap menjadi en	ergy kinetic adalah
	a. Nozel (pipa pancar)	c. Sudu sudu	turbin e.	Rumah turbin
	b. Rotor turbin	d. Gelang uta	ma turbin	

- 22. Komponen motor bensin yang bertugas menyuplai gas pembakaran pada tiap tingkat kecepatan dinamakan.....
 - a. Piston /Torak
- c. Karburator
- e. Klep/ katup

- b. Tangki bensin
- d. Distributor
- 23. Piston bergerak dari TMA ke TMB ,katup isap terbuka dan katup buang tertutup merupakan langkah....
 - a. Isap
- b. Buang
- c. Kompresi
- d. Buang
- d. Detonasi
- 24. Bagian yang digunakan untuk meneruskan gaya dari torak ke poros engkol adalah
 - a. Silinder
- b. Torak
- c. Cincin torak
- d. Poros engkol
- d. Batang torak
- 25. Bagian yang digunakan untuk mengatur pemasukan bensin dan udara ke dalam silinder yang digerakan nok dan ditutup oleh pegas adalah
 - a. Saluran masuk
- b. Saluran buang
- c. Katup masuk
- d. Katup buang

e. Silinder

Lampiran 0.4. Soal Uji Coba *Posttest* Hasil Belajar Mesin Konversi Energi

SOAL UJI COBA *POSTTEST* HASIL BELAJAR MESIN KONVERSI ENERGI

Nama : Kelas/semester : Hari/tanggal :

PETUNJUK PENGISIAN

- 1. Bacalah do'a sebelum anda memulai mengerjakan soal.
- 2. Periksa dan soal-soal dengan seksama sebelum anda menjawabnya.
- 3. Apa bila ada soal yang kurang jelas, mintalah penjelasan kepada pengewas.
- 4. Dahulukan menjawab soal yang anda anggap mudah.
- 5. Periksalah seluruh jawaban anda sebelum diserahkan kepada pengawas.

SELAMAT BEKERJA

Pilihan ganda

Berilah tanda silang (x) pada huruf a,b,c,d atau e pada jawaban yang paling benar!

- 1. Pengertian siklus pada motor 4 tak, motor bensin adalah :
 - a. Proses yang selalu berulang tetapi tidak mesti berurutan.
 - b. Proses kerja pada motor 4 tak yang berulang-ulang
 - c. Proses yang berulang-ulang sehingga membentuk satu rangkaian kerja.
 - d. Proses kompresi, buang, kerja dan hisap adalah satu rangkaian.
 - e. Rangkaian kerja pada motor bakar sehingga mesin bisa hidup.
- 2. Yang dimaksud dengan mesin "Internal Combustion Engine" adalah :
 - a. Mesin yang mekanisme pembangkit panasnya dihasilkan di dalam mesin itu.
 - b. Mesin yang selalu menghasilkan tenaga panas dan gerak.
 - c. Mesin dalam menghasilkan tenaga ada di luar mesin itu.
 - d. Mesin yang menghasilkan tenaga panas dari mesin pembangkit lain.
 - e. Mesin yang menghasilkan tenaga gerak melalui mesin induksi.
- 3. Urutan siklus kerja motor 4 tak yang benar adalah :
 - a. Kompresi kerja hisap buang.
 - b. Buang hisap kerja kompresi.
 - c. Kerja buang kompresi hisap.
 - d. Hisap kompresi kerja buang.
 - e. Kompresi buang kerja hisap.
- 4. Salah satu penggunaan bahan bakar yang benar adalah :
 - a. Mesin diesel menggunakan bahan bakar bensin.
 - b. Mesin bensin menggunakan bahan bakar solar.

- c. Mesin bensin menggunakan bahan bakar minyak tanah.
- d. Mesin diesel menggunakan bahan bakar solar.
- e. Mesin berbahan bakar gas menggunakan bahan bakar premium.
- 5. Pengertian langkah buang yang benar bila dikaitkan dengan meknisme kerja katup/diagram kerja katup adalah :
 - a. Piston bergerak dari TMA ke TMB, katup masuk masih tertutup rapat, beberapa derajat sebelum TMB katup buang sudah terbuka lebih awal sehingga gas bekas pembakaran dapat keluar ke exhaust manifold.
 - b. Piston bergerak dari TMB ke TMA, katup masuk masih tertutup rapat, beberapa derajat sebelum TMA katup buang sudah terbuka lebih awal sehingga gas bekas pembakaran dapat keluar ke exhaust manifold
 - c. Piston bergerak dari TMA ke TMB, katup buang masih tertutup rapat, beberapa derajat sebelum TMB katup masuk terbuka lebih awal sehingga gas bekas pembakaran dapat keluar ke exhaust manifold.
 - d. Piston bergerak dari TMA ke TMB, katup buang membuka beberapa derajat setelah TMB sehingga gas bekas pembakaran dapat keluar ke exhaust manifold.
 - e. Piston bergerak dari TMB ke TMA, katup masuk masih tertutup rapat, beberapa derajat sebelum TMB katup buang sudah terbuka lebih awal sehingga gas bekas pembakaran dapat keluar ke exhaust manifold.
- 6. Perbedaan motor bensin dan motor diesel secara prinsip terdapat pada :
 - a. Kualitas bahan bakar dan proses kerjanya.
 - b. Jumlah bahan bakar dan tipenya.
 - c. Power yang dihasilkan dan range kerja mesin.
 - d. Putaran mesin dan kebutuhan bahan bakarnya.
 - e. Jenis bahan bakar dan proses kompresinya.
- 7. 3 faktor penting yang mempengaruhi kerja mesin untuk mempertahankan mesin bekerja dengan lancer adalah :
 - a. Suhu mesin optimal, tekanan kompresi baik, pengapian baik.
 - b. Kualitas bahan bakar baik, kompresi mesin baik, pengapian yang baik.
 - c. Kualitas bahan mesin yang baik, kompresi mesin baik, pengapian yang baik.
 - d. Jumlah bahan bakar cukup, kompresi mesin baik, pengapian yang baik.
 - e. Kualitas system pelumasan yang baik, kompresi baik, pengapian yang baik.
- 8. Sedangkan gas buang ternyata menyumbang kehilangan panas terbesar pada mesin yaitu sebesar:

a. 32% b. 36% c. 34% d. 48% e. 65%

- 9. Kerugian motor 4 tak diantaranya adalah:
 - a. Suara akan lebih halus.
 - b. Terdapat mekanisme penggerak klep, sehingga perawatan lebih sulit.
 - c. Tidak memakai oli samping.
 - d. Panas mesin lebih tinggi dari motor 2 tak.
 - e. Putaran mesin akan lebih halus jika jumlah silindernya sedikit.
- 10. Yang dimaksud langkah bilas pada motor 2 tak adalah :
 - a. Proses masuknya gas campuran bensin dan udara masuk ke ruang engkol.
 - b. Proses masuknya gas campuran bensin dan udara masuk ke ruang karburator.
 - c. Proses keluarnya gas campuran bensin dan udara ke ruang engkol.
 - d. Proses pemasukan pada saat langkah hisap.
 - e. Proses masuknya gas campuran bensin dan udara yang masuk ke ruang bakar/silinder dari ruang engkol.
- 11. Sedangkan proses bilas pada motor 4 tak adalah :
 - a. Proses dimana terjadi pada saat overlap yaitu kedua katup pada keadaan terbuka sehingga ada gas baru yang mendorong sisa gas pembakaran keluar bersama-sama ke saluran buang.
 - b. Proses masuknya gas campuran bensin dan udara masuk ke ruang karburator.
 - c. Proses masuknya gas campuran bensin dan udara masuk ke ruang engkol.
 - d. Proses masuknya gas baru mengisi ke dalam silinder melalui saluran bilas/scavenging.
 - e. Tertutupnya saluran buang sebelum piston mencapai TMA.
- 12. Yang dimaksud dengan katup DOHC adalah:
 - a. Mesin yang camshaft nya ada di samping blok mesin, jadi harus menggunakan mekanisme penghubung lagi untuk menggerakkan katup.
 - b. Mesin yang chamshaftnya ada di atas kepala silinder dan jumlahnya double.
 - c. Mesin 4 tak yang tidak menggunakan mekanisme katup.
 - d. Mesin 4 tak yang mekanik katupnya masih menggunakan push rod sebagai mekanisme penghubung untuk menggerakakn katup.
 - e. Mesin yang dipergunakan untuk kecepatan tinggi seperti untuk balap formula 1.
- 13. Efisiensi Thermis mesin bensin adalah:
 - a. 23% 28% b. 25% 29% c. 78% 100% d. 45% 75%
 - e. 29% 38%.
- 14. Sedangkan efisiensi Thermis mesin Diesel adalah:

- a. 23% 28% b. 25% 29%
- c. 78% 100%
- d. 45% 75%

- e. 29% 38%.
- 15. Rumus perbandingan kompresi adalah sebagai berikut : CR = VL + VC dimana : VC.
 - VL = Volume langkah. VC = Volume Kompresi. CR = Compresi Ratio. Maka rumus di atas adalah identik dengan :
 - a. Volume silider saat piston di TMA dibagi dengan Volume silinder saat piston di TMB.
 - Volume piston saat silinder di TMA dibagi dengan Volume silinder saat piston di TMB.
 - c. Volume silider saat piston di TMB dibagi dengan Volume silinder saat piston di TMA.
 - Volume piston saat silinder di TMB dibagi dengan Volume silinder saat piston di TMA.
 - e. Volume piston saat silinder di TMA dibagi dengan Volume silinder saat piston di TMB.
- 16. Apa tujuan diperlukan tekanan kompresi pada mesin?
 - a. Karena mesin dalam kondisi belum berjalan masih dalam keadaan dingin.
 - b. Gas akan mudah terbakar dengan sempurna jika suhu awal pembakaran dapat dicapai.
 - c. Supaya mesin larinya kencang.
 - d. Suipaya mesin dapat bekerja dengan sedikit bahan bakar.
 - e. Supaya tenaga yang dihasilkan oleh mesin lebih besar.
- 17. yang disebut pree-ignition pada pembakaran tidak sempurna adalah :
 - a. Proses pembakaran pada mesin dimana bahan bakar sulit terbakar karena tekan kompresi yang rendah sehingga butuh penyalaan lebih awal.
 - Bahan bakar cepat merembes ke silinder karena proses kompresi yang baik pada mesin.
 - c. Bahan bakar terbakar dengan sendirinya akibat dari tekanan dan suhu yang cukup tinggi sebelum terjadinya penyalaan oleh busi.
 - d. Bahan bakar mengalir dengan cepat menyebar ke silinder dan ruang bakar sebelum proses penyalaan dilaksankan sehingga pengapian tidak sempurna.
 - e. Proses pembakaan yang tidak sempurna akibat dari tekanan kompresi yang rendah.
- 18. 3 faktor yang menjadi kendala pembakaran dalam mesin sehingga pembakaran tidak sempurna dalah :
 - a. Bahan bakar tidak murni, udara tidak murni oksigen dan pembakaran berlangsung sangat singkat.

- b. Tekanan kompresi turun, udara tidak murni oksigen dan pembakaran berlangsung sangat pendek.
- c. Bahan bakar murni, udara tidak murni oksigen dan pembakaran berlangsung sangat lama.
- d. Tekanan pembakaran kecil, suhu udara rendah dan kepadatan bahan bakar sangat tinggi.
- e. Tekanan pembakaran yang dihasilkan besar, waktunya singkat dan tenaga yang dihasilkan besar.
- 19. Sedangkan gas buang ternyata menyumbang kehilangan panas terbesar pada mesin yaitu sebesar :
 - a. 32% b. 36% c. *34%* d. 48% e. 65%
- 20. Yang dimaksud volatility dari suatu cairan bahan bakar adalah :
 - a. Kemampuan bahan bakar berubah menjadi uap.
 - b. Konsentrasi bahan bakar menurut klasifikasinya.
 - c. Kekentalan bahan bakar sesuai dengan SAE nya.
 - d. Kemampuan bahan bakar untuk terbakar.
 - e. Kemampuan bahan bakar menjadi tenaga pembakaran.
- 21. Kualitas penyalaan bahan bakar adalah:
 - a. Kemampuan bahan bakar berubah menjadi uap.
 - b. Konsentrasi bahan bakar menurut klasifikasinya.
 - c. Kemampuan bahan bakar menyala atau terbakar
 - d. Kekentalan bahan bakar sesuai dengan SAE nya
 - e. Kemampuan bahan bakar untuk menjadi tenaga pembakaran.
- 22. Gas HC atau Hidro Carbon adalah merupakan ikatan kimia dari Carbon dan hydrogen. Secara umum dalam kendaraan HC adalah uap bensin atau uap bahan bakar yang tidak terbakar. Pada kendaraan Gas HC berupa :
 - a. Charter, tangki bahan bakar dan karburator.
 - b. Knalpot, saluran bilas dan gas bekas.
 - c. Gas yang akan mencair pada suhu 2000°C.
 - d. Gas yang tetap pada suhu udara kamar.
 - e. Blow by Gas, uap bensin pada tangki bensin dan fload chamber serta pada gas buang.
- 23. Gas HC pada Blow By gas terjadi karena:
 - a. Kebocoran gas pada ring kompresi dan dinding silinder pada saat langkah kompresi.
 - b. Pembakaran yang tidak sempurna di ruang bakar.

- c. Adanya kebocoran pada tangki bahan bakar.
- d. Tidak adanya reaksi antara o² dan gas CO
- e. Tidak adanya suhu pembakaran yang optimal.
- 24. Sedangkan gas HC pada gas buang, terjadi karena :
 - a. Pembakaran kurang sempurna.
 - b. Adanya proses pembilasan pada saat katup mengalami over lap.
 - c. Adanya pembakaran tunda atau knocking.
 - d. Terjadinya pree-ignition sehingga pembakaran tidak sempurna.
 - e. Proses pembakaran balik pada pembakaran explosive.
- 25. Sedangkan untuk mengatasi adanya Gas HC pada blow bay gas yang terjadi di dalam ruang engkol adalah :
 - a. Mengeluarkan langsung ke udara bebas.
 - b. Mengalirkan kembali ke karburator untuk dibakar kembali melalui katup PCV.
 - c. Mengalirkan ke knalpot/saluran pembuangan untuk dibakar.
 - d. Mereduksi kembali gas HC menggunakan system catalic.
 - e. Menampung dan mengembalikan lagi ke tangki bensin.
- 26. Sifat buruk gas HC yang terjadi pada Blow By Gas terhadap system pelumasan adalah :
 - a. Pelumasan akan menjadi cepat merambat.
 - b. Oli akan semakin bagus kualitasnya.
 - c. Kualitas oli akan cepat rusak/menjadi lumpur.
 - d. Pelumasan menjadi tekanannya sangat tinggi.
 - e. Pelumasan tidak akan terganggu dengan adanya blow by gas.
- 27. Faktor-faktor yang mempengaruhi emisi gas buang pada kendaraan terutama pada system bahan bakar adalah, kecuali:
 - a. Perbandingan campuran udara dan bensin tidak tepat.
 - b. Penyetelan pelampung terlalu tinggi.
 - c. Saringan bahan bakar kotor.
 - d. Pengapian terlalu maju.
 - e. Injector rusak.
- 28. Untuk mengatasi adanya kadar HC yang tinggi pada emsis gas buang adalah dengan cara:
 - a. Membersihkan filter udara.
 - b. Mengganti minyak pelumas dengan yang baru.
 - c. Melakukan penyetelan timing ignition, mengganti busi dan platina/kontak point.
 - d. Melaksanakan tune up berkala.

- e. Mengganti bahan bakar dengan kualitas di atasnya.
- 29. Keuntungan dengan adanya merawat emisi adalah, kecuali :
 - a. Emisi rendah, udara bersih, hidup lebih sehat.
 - b. Penghematan bahan bakar, penghematan uang.
 - c. Penghematan sumber alam.
 - d. Mesin awet, hemat biaya perawatan.
 - e. Kendaraan jadi irit.
- 30. Syarat pembakaran yang efisien pada mesin adalah, kecuali :
 - a. Bahan bakar bebas.
 - b. Campuran udara dan bahan bakar yang tepat.
 - c. Kompresi bagus
 - d. Pengapian yang tepat.
 - e. Api dari busi juga bagus.

Lampiran 0.5. Analis Uji Validasi Soal

ANALISIS UJI VALIDITAS SOAL

	No. RESPONDEN																-17 - 07	80	TIR SO	AL			a =8		-									28		TOT 41
1	No. RESPONDEN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24 2	26	27	26	29	30	31	32	33	34	36	TOTAL
1	1		1		1	0	1	1	1	1		1	1	1	_	1	1		1		1		1	0		_	1	0	1	1	-1	1	1	1	0	27
1	2	_	_	_	_	-	-		_	_	_	_	_	_	_	-	_	-	_		-			_	_	_	-	-	-	_	_	_		_	-	30
1	3		_	_	-	_	_		_	_	_	_	_	_	_	-	_				-	$\overline{}$			_	_	-	-	-		_	_	_	_	-	
1	4	_	_	_	-	_	-	-	_	_	_	_	_	-		_	_	_	_	_			-	_	_	_	-	-	-	-	1		_	$\overline{}$	$\overline{}$	
1	6		_		_		_				-		_									$\overline{}$				_	-		-	-	1	-	-	$\overline{}$	_	
3	7	1	1	1	1	1	1	0	1	1		1	1	1	1	0	1	_	1	0	-	$\overline{}$	1	1	0 1	1	_	+	1	1	1	1	1	1	0	
	8	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	0	32
1	9		_		-				_				-			_													-	-	_	-	-	-	$\overline{}$	27
3	10	_	_	_	_	-	-	-	_	_	_	_	_	_	_	_	_	-	_		-	-	_		_	_	-	_	-	_	-	_	-	_	_	
3 1 1 1 1 1 1 1 1 1	11				-			-	_																	_			-	_	_		_	$\overline{}$		_
1		_	-		-	_	_		_	_	_			_		_	_	-	_		_		-		_	_	_		-	-	_		-	$\overline{}$	$\overline{}$	
1	14		-	_	-	_	_	-	_	-			_		_			-	_		_		-		_	_	_	-		-	_		-	$\overline{}$	_	-
1	15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	
1	16	_	1	1	1	0	+-	-	1	1	-	_	1	-	1	-		-	_	_	-	-	-		_	1	-	0	1	1	1	-	1	1	-	26
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17		_		-					_		_							_											-	1	-	-	$\overline{}$	-	
			_	_	-	-	_	-	-	_	_		_	_	_	-	-	-				$\overline{}$	-		_		_		-	-	_		-	-	-	_
			-	_	_		_	_	_	_					_									_	-	_		_	-	-	_	_	_	_	_	
98 98 98 99 99 99 99 99	21	_	-		•		-	-		_				_			-	-							_				-	-	-		_	$\overline{}$		
92 93 94 95 95 95 95 95 95 95	22	_	-	_	-	_	_	+	_	_		_	-		_	_				_	_		_		_	_	-	_	-		_			$\overline{}$	_	
1	23		-	_	_	_	-	-	_		_	_	_	-	-	_	_	-		_	-	-	_		_	_	_	-	-	1	1	_	-	$\overline{}$	-	-
1	24	_	1	1	1	1	0	1	1	1	_	1	1	1	1	1	1	-	1	0	-	0	1	1	1 1	1	1	1	1	1	1	1	1	1	1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	_	_	_	-	_	_	_	_			_			_	_									_	_		_	-		_		_	$\overline{}$	_	_
98 98 98 99 99 99 99 99	26	_	-	_	-		-		_	_	_	_	_	_	_	_			_		-	-	-		_	_	_		-	_	_		_		-	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27		-	_	-				-	_																			-	-	_		_			-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	_	_	_		-		_	_		_	_					-			$\overline{}$	$\overline{}$			_	_	_	_	-	-	_		_	_	-	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	_	_	_	-	_	_		_		_		_		_	_		-	_		-			_	_	_	_	-	_	-	_	_	-	$\overline{}$		-
1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1	91		_	_	-	-	_	-	_	_	-	_	_	-	_	-	_		_		-	-	-		_	_	-	-	-	_		_	-	$\overline{}$	-	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32		_	_	-					_															_	_			-	0	_			-		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33		1	_			_	-	1	0				_	_	1		-						1		_				1	_		1	1		28
96 1 1 1 1 1 1 1 1 1	34		_	_	_		_		_	_	_	_	_	_	_	_			_	_	$\overline{}$	$\overline{}$		_	_	_	_	-	_	1		_	-	-	$\overline{}$	30
1	35		-	_	-	_		-	_	-																	_	-	-	-	_		_	$\overline{}$		-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-	-	$\overline{}$	-		_	_		_	-			-	_						-				_	-	-	-	-	_	-	-	-	1.175
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_	_	-	-	_	-	-	_	$\overline{}$	_	_	_	_	-	_	-	_	_	_	$\overline{}$	-			_	$\overline{}$	_	-	-	_	_	-	$\overline{}$	$\overline{}$	
1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1	39		_	_	_	_	-	-	_	-	_	_	_	_	_	_	_		_	_	-		_	_	_	_	_	-	-	-	_		_	$\overline{}$	_	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40		-	_	-				-	_						_														-			_	-		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41	-	1	1	1	1	_	_	1	0		1	1			1	1									_			1	1	_	1	1	1		31
1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0	42	_	_	_	-	-	-	-	-	_	_	_	_	_	_	_	-	-	_		-	-			_	_	-		-	-	_	_	_	-	$\overline{}$	32
15 1	43		-	_	-				_	_			_			_					_	$\overline{}$					-		-	-	_		_	$\overline{}$		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	_	_	-		_	-	_	_	_			_	_						-		-			_	_	-	_	_	-	_	-	-	-	
1. 1		_	_	_	-		_	-	_	_			_		_				_	_	_	$\overline{}$	_		_	_	_	_	-	-	_		-	_	-	
1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0	47	_	_	-	_	_	-	-	_	_		_	_	_	_	-	_			_		-			_	_	_	-	-	-	_		_	$\overline{}$	-	20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48		-	_	-	_	_	-	_	_				_	_										_	_	_	-	-	-	_	_		$\overline{}$	_	23
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0	49	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1 1	1	1	0	1	1	0	1	1	1	1	26
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50		_	_	-	_	_		-	_	_	_	_	_		_	_	-	-	_	$\overline{}$	-				_	-	-	1	_	_	_	1	-	-	32
0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1	\$1			_	-	_	_	-	_				-						_				_		_		_	-	-	-	_		-	$\overline{}$	$\overline{}$	-
	52	_	_	_	-		-		-	_		_									-			_	_	_	-		-	_	_	_	-	-	-	
56 1	53		_	_	_		_			_									_	_	_						_	_	-		_				$\overline{}$	
1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1	55		-	_	_	$\overline{}$	-		_	_	_		_	_	_	_		-	_	_	$\overline{}$	-			_	_	_	-	-	-	_		-	_	$\overline{}$	24
97 98 99 99 99 99 99 99	56		-		_		-	-	_	_	_		_			_		-	_	_	_	$\overline{}$	-		_	_		-	_	-	_		_	_	_	27
68	57	_	1	1	0	1	1	-	1	1			1				1									_	_		1	1	1		1	1	1	29
00 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58	_	_	_	-	-	-	-	_	_	-	_	_	-	_	-	_	_	_	_	$\overline{}$	-	-	_	_	_	_	-	-	-	_	_	_	-	-	
6 1 1 1 1 1 1 1 1 1	59																																			
62	60	_	_	-	_	_	_	_	_	_			_	_		-												_	-	-	_	_	-	$\overline{}$	-	31
66 1 1 1 1 1 1 1 1 1	61							-	_																			_	-	-						31
0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1			_	_	_		_	_	_	_			_			-											-	-								
66	64									_			-						_	_					_	_	_	_		-				-		
66 1	65									_				1	1	1	1	1			1	1	1	1	1 0	1	0							1	0	29
66 1	66		_	_	-		-	-	_	_	-	_		_	_	-	_	_			-	$\overline{}$	-	_	_	_	_	-	-	-	_	_	-	1	1	28
69	67																																-			
70	68																														_		-	$\overline{}$		
71																																				
72	71						-							_											_	_	_		_	_	_		-			
73	72	_	_	_	-		_	-			_	_		_	_	_		-	_			$\overline{}$	-		-						_		$\overline{}$	_		_
Σx	73												_																	-	_	-	-	-	-	_
Try 0,03 0,29 0,15 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,3		66	66	66	66	56																												63	31	
Tribbel 0,3 0,2 0,1 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	Σγ	2080																																		
Fished 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3		0,03	0,29	0,15	0,3	5 0,35	0,30	0,31	0,26	0,30	0,31	0,60	0,42	0,52	0,49	0,29	0,48	0,28	0,30	-0,12	0,33	0,41	0.53	0,31 0	54 -0,0	2 0,46	0,27	0,28	0,34	0,39	0,22	0,46	0,38	0,38	0,27	
Marcol	rtabel	-	-	-	-	_	_	+		_		_	_	-	_	_		_	-		_	_	_	_	_	-	_	-	-	-	-	-	-	0,23	0,23	
Keterangan	ALR.	D)	pille	3	pille	3	3	iii	3	plie	all d	plie	3	pile	alle	plid	pile	all a	3	200	a a	P. In	3	3	3 3) ji	all d	- Pile	3	3	3	plie	pile	pile	plie	
F F	Keterangan	> 4	3	3	1 3	>	>	>	3	5	>	5	>	>	>	>	>	3	>	*	>	>	>	>		5	>	>	>	3		>	5	>	>	
		1		F	_	-		1			_									P				_	12		_	1_		_	1			-		

JUDGES - I

LEMBAR PENILAIAN JUDGES ANGKET RESPON SISWA

Nomor	Penilai	an*	Saran dan/atau
Soal	Tidak Relevan	Relevan	Perbaikan
1	V		bount jeuration you lebri. Spirifoli.
2		V	_
3		V	mut book you letit Johns penagurannya
4		V	-
5		V	
6		V	_
7		V	_
8			pelanti Javalom Ford.
9		V	
10		/	
11		✓	-
12			
13		V	_
14		/	-

Nomor	Penilai	an*	Saran dan/atau
: Soal	Fidak Relevan	Relevan	Perbaikan
15		V	_
16		~	-
17		✓	
18		~	
19	V		Pubarli log Forbra!
20	V	AS PI	fabrili penulitam pring.
21	V	RAIT	Perbula penalisan nunusnya
22	VE		perhatis penuliona numeraya.
23		V	The state of the s
24	7		
25		40	
26			IKSE
27		V	-
28		~	-
29		V	-
30		V	-

Nomor	Penilai	an*	Saran dan/atau						
Soal	Tidak Relevan	Relevan	Perbaikan						
31		V	_						
32		V	_						
33	V	-	Somme de foul no 8						
34	V		fame of four no ro						
35	V		Same of Sorl up ab.						

Catatan		
Perfordin exa an Setucifin de Huclar, Istal any Establish dan Japahan banyah yang Sama ! 3 Pehabhan dalam pundhan remus, but penjaman	Bret	I miny
(2) Soal dan Jagoshan Brugal yang Sama!		J
(3) Petrablan Salam fenulism Asmus, burt permusus	yay	Jelas !
* saran. Diisi dengan menggunakan tanda centang (N).	0	

Singaraja, 18 Maret 2019 Judges,

I Gede Wiratmaja, S.T., M.T. NIP. 19881028 201903 1 009

JUDGES - II

LEMBAR PENILAIAN JUDGES ANGKET RESPON SISWA

Nomor	Penilai	an*	Saran dan/atau
Soal	Tidak Relevan	Relevan	Perbaikan
1		V	
2		✓	
3		V	
4		V	
5		V	
6		V	
7		V	
8	~		opr C' som 'd' sours
9		V	
10		V	
11		V	
12		✓	
13	V		Tidale both was your about lease
14	V		Tidale botch runggunsten, both luturn of aux leshwar
15		,	(1)

Nomor	Penilai	an*	Saran dan/atau
Soal	Tidak Relevan	Relevan	Perbaikan
32			
33		~	
34		V	
35		V	

Catatai	n																
		 	 	 	٠	 	 	 •									
		 	 ٠.														

Singaraja 18 Maret 2019 Judges,

Ketut Gunawan, S.T., M.T. NIP. 19791223 201504 1 001

^{*}suran Duvi dengan menggunakan tanda centang (N)

Lampiran 0.7. Daftar Nilai *Pretest* Kelompok Eksperimen

NO	NAMA	ITEM																										
IVO	IVAIVIA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Total Skor	Nilai
1	ADI PURNOMO SODIK	1	1	0	1	1	1	1	1	1	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	1	14	56
2	GEDE ADI SUARTAMA	0	0	0	1	1	1	1	0	0	1	1	1	0	0	1	1	0	0	0	0	0	1	1	1	1	13	52
3	GEDE AGUS HENDRAWAN	1	1	0	1	1	1	1	1	0	1	0	0	1	0	1	0	0	0	1	0	0	1	1	0	1	14	56
4	GEDE AGUS SUDARMAWAN	0	0	0	1	1	1	1	1	1	1	1	0	0	1	1	0	0	0	1	0	0	1	1	0	1	14	56
5	GEDE ARYA DANA YASA	0	0	0	1	1	1	1	1	1	1	1	0	0	1	1	0	0	0	1	0	0	1	1	0	1	14	56
6	GEDE BAYU MAHARDIPA	1	1	0	1	1	1	1	1	0	1	1	0	0	0	1	1	0	0	1	0	0	1	1	0	1	15	60
7	GEDE EKA EKA DARMAWAN	0	0	0	1	1	1	1	0	0	1	1	1	0	0	1	1	0	0	0	0	0	1	1	1	1	13	52
8	GEDE ESA PUTRA	0	0	0	1	1	1	1	1	0	1	1	0	0	0	1	0	0	0	0	0	0	1	1	1	1	12	48
9	GEDE SOMAGIRI	1	0	0	1	1	1	1	1	1	1	1	0	0	0	1	0	0	0	1	0	0	0	1	0	1	13	52
10	HAIRIL ANWAR	0	1	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	0	1	0	0	0	1	0	1	16	64
11	I GEDE APRIAYANA	0	0	0	1	1	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	1	1	1	1	12	48
12	KADEK ARYA WARDANA	1	1	0	1	1	1	1	1	1	1	1	1	0	0	0	1	0	0	1	0	0	0	1	0	1	15	60
13	KADEK HENDRA JODI SASTRAWAN	1	0	0	1	1	1	1	1	1	1	1	0	0	0	0	1	0	0	1	0	0	0	1	0	1	13	52
14	KADEK INDRA SUCIPTA	0	0	0	0	1	0	1	1	0	0	1	0	0	1	0	1	0	0	0	0	1	1	1	0	0	9	36
15	KADEK NANDA UDAYANA	1	0	0	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	0	0	0	1	0	1	16	64
16	KADEK PURWA ATMAJA	1	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	0	0	0	1	1	0	1	17	68
17	KADEK SUDIARTA	0	0	0	1	1	1	1	0	0	1	1	0	0	0	1	0	0	0	0	0	0	1	1	0	1	10	40

18	KETUT ANANDAM SURYADI	1	0	0	1	1	1	1	1	1	1	1	0	0	0	1	1	0	0	1	0	0	0	1	0	1	14	56
19	KOMANG ARYA SEPUTRA	0	0	0	0	1	0	1	0	1	1	1	0	0	0	0	0	0	1	0	0	1	1	1	0	0	9	36
20	KOMANG DARMIKA	0	1	0	1	1	1	1	1	0	1	1	0	0	0	1	1	0	0	0	0	0	1	1	0	1	13	52
21	KOMANG WIDIANTARA	1	0	0	1	1	1	1	1	1	1	1	0	0	0	1	1	0	0	1	0	0	0	1	0	1	14	56
22	MADE ARISTYA WIBAWA	1	1	0	1	1	1	1	1	1	1	1	0	0	0	1	1	0	0	0	0	0	0	1	0	1	14	56
23	MADE EVA SUDAYANA	0	1	0	1	1	0	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	1	1	0	1	11	44
24	MADE YUDANA ARTA	0	0	0	1	1	1	1	1	1	1	1	0	0	0	1	1	0	0	1	0	0	1	1	0	1	14	56
25	MOH RIFAI	1	0	0	1	1	1	1	1	1	1	1	1	0	0	1	1	0	0	0	0	0	1	1	0	1	15	60
26	MYOMAN EDI RESKIAWAN	0	1	0	1	1	0	1	1	0	1	1	0	0	1	1	1	1	0	1	0	0	0	1	1	1	15	60
27	PUTU AGUS INDRAWAN	0	0	0	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	0	0	0	1	0	1	15	60
28	PUTU NOVA ARISTYA YUDA	1	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	1	0	1	16	64
29	PUTU SULANDRA	0	0	0	1	1	1	0	0	1	1	1	0	0	1	1	0	0	0	1	0	0	1	1	0	1	12	48
30	PUTU WIIRA ADRIANA	0	0	0	1	1	1	1	0	0	1	1	0	0	0	1	0	0	0	0	0	0	1	1	0	1	10	40
31	REZA AL GHIFARI	0	0	0	1	1	1	1	1	0	1	1	0	0	0	1	1	0	0	0	0	0	1	1	0	1	12	48
32	RIZAL ZIBRAN	1	1	0	1	1	1	1	0	0	1	1	0	0	1	1	1	0	0	1	0	0	0	1	0	1	14	56
33	RIZKI MAULANA	0	1	0	1	1	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	1	1	0	1	12	48

Lampiran 0.8. Daftar Nilai *Posttest* Kelompok Eksperimen

NO	NAMA				0000				10.70		Marie Company	× - 505	Acres III		CA PATRICIO	ITI	E M		A January Bar		year to year		ucition ex	W. C.	200000		MUIDAN	7000000	oren ne m	vonestine.			10000000
NO	NAMA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Total Skor	Nilai
1	ADI PURNOMO SODIK	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	0	1	1	1	1	0	1	1	24	80,00
2	GEDE ADI SUARTAMA	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	0	1	1	25	83,33
3	GEDE AGUS HENDRAWAN	1	1	1	1	1	1	0	1	1	1	1	1	1	0	0	1	1	1	0	1	1	0	1	1	1	1	0	0	1	1	23	76,67
4	GEDE AGUS SUDARMAWAN	1	1	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	0	1	1	0	0	1	1	1	1	0	1	0	23	76,67
5	GEDE ARYA DANA YASA	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	1	1	0	0	1	1	1	1	1	1	0	1	0	1	23	76,67
6	GEDE BAYU MAHARDIPA	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	0	1	1	1	1	0	1	1	0	1	1	1	25	83,33
7	GEDE EKA EKA DARMAWAN	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	27	90,00
8	GEDE ESA PUTRA	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0	1	0	1	0	1	0	1	1	1	1	1	1	0	1	1	23	76,67
9	GEDE SOMAGIRI	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0	1	1	27	90,00
10	HAIRIL ANWAR	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1	1	1	0	1	1	1	1	1	1	27	90,00
11	I GEDE APRIAYANA	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0	1	0	1	1	1	0	1	1	1	1	1	1	1	25	83,33
12	KADEK ARYA WARDANA	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1	0	0	1	1	24	80,00
13	KADEK HENDRA JODI SASTRAWAN	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	26	86,67
14	KADEK INDRA SUCIPTA	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	0	1	1	1	27	90,00
15	KADEK NANDA UDAYANA	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	0	1	0	1	1	1	1	0	1	1	24	80,00
16	KADEK PURWA ATMAJA	1	1	1	1	1	0	0	1	1	1	1	1	1	1	0	1	1	1	0	1	1	1	1	0	1	1	0	1	1	1	24	80,00
17	KADEK SUDIARTA	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	0	1	1	26	86,67
18	KETUT ANANDAM SURYADI	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	25	83,33
19	KOMANG ARYA SEPUTRA	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	0	1	1	26	86,67
20	KOMANG DARMIKA	1	1	1	1	0	1	0	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	0	1	1	1	1	0	1	1	22	73,33
21	KOMANG WIDIANTARA	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	0	1	1	26	86,67
22	MADE ARISTYA WIBAWA	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	28	93,33

23	MADE EVA SUDAYANA	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1	1	1	25	83,33
24	MADE YUDANA ARTA	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	25	83,33
25	MOH RIFAI	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0	1	1	27	90,00
26	MYOMAN EDI RESKIAWAN	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	27	90,00
27	PUTU AGUS INDRAWAN	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	0	1	1	26	86,67
28	PUTU NOVA ARISTYA YUDA	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	1	0	1	1	1	26	86,67
29	PUTU SULANDRA	1	1	1	1	0	1	1	1	0	0	1	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	24	80,00
30	PUTU WIIRA ADRIANA	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	0	1	1	1	0	1	1	1	24	80,00
31	REZA AL GHIFARI	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	25	83,33
32	RIZAL ZIBRAN	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	0	1	1	26	86,67
33	RIZKI MAULANA	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1	0	1	1	1	24	80,00

Lampiran 0.9. Daftar Nilai *Pretest* Kelompok Kontrol

NO	NAMA													ITEN	1												-	
NO	NAMA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Total Skor	Nilai
1	DEWA BAGUS ARDHA MARENDRA	1	1	1	0	1	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	0	10	40
2	DEWA MADE AGUS PUTRAWAN	0	1	0	0	1	0	1	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	10	40
3	GEDE AGUS DHARMA ARTHA	0	0	0	1	1	0	0	0	0	1	1	1	0	1	0	0	1	0	0	1	0	1	0	0	0	9	36
4	GEDE ARI AMARTA	0	0	0	1	1	1	1	1	0	1	1	0	1	0	1	0	0	0	0	0	0	1	0	1	0	11	44
5	GEDE BUDI ARSANA PUTRA	1	0	0	0	0	0	1	1	0	1	1	1	0	1	0	0	0	0	1	0	0	0	0	1	0	9	36
6	GEDE BUDIASA	1	1	0	1	0	0	0	1	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0:	0	0	10	40
7	GEDE DONY NOVENDI ARSUDI	0	0	0	0	0	0	1	0	1	0	1	0	1	1	0	1	0	0	1	1	1	0	0	0	0	9	36
8	GEDE GINA ADNYANA	0	1	0	1	1	0	1	0	1	0	1	0	0	0	0	1	1	0	0	1	1	0	1	0	0	11	44
9	GEDE JUNI ARTA	1	0	0	0	0	0	1	0	0	1	1	1	1	0	1	1	0	0	0	1	0	0	0	0	0	9	36
10	GEDE WINDA PRATAMA	0	0	0	0	0	0	1	1	0	1	1	1	0	0	1	1	0	0	1	0	0	1	1	0	1	11	44
11	I GEDE ASTIKA	0	1	1	1	0	1	0	1	0	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	1	12	48
12	I GEDE TEGAR DUTA PRATAMA	0	0	0	1	0	0	0	1	1	1	0	0	0	0	1	0	1	0	0	1	1	0	1	0	0	9	36
13	I KADEK DIKA ANDRIANA	0	0	0	1	0	1	1	1	0	0	0	0	1	1	0	1	0	1	1	0	1	0	0	0	0	10	40
14	I MADE DARMAWAN	0	1	0	1	0	1	0	1	1	13	1	1	0	1	1	0	0	0	0	0	0	0	1	0	0	11	44
15	I PUTU NUGRAHA SASTRA WIGUNA	1	1	0	1	0	1	1	0	0	1	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	9	36
16	IDA BAGUS NYOMAN REDITYAMA	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	9	36
17	KADEK BUDI WIARSANA	0	1	0	1	0	1	0	1	1	1	1	1	0	1	1	0	0	0	1	1	1	0	1	0	1	15	60

18	KADEK INDRA DWI SAPUTRA	1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	1	1	1	1	0	1	1	1	0	13	52
19	KADEK JULI ARJATAWAN	1	1	0	0	1	0	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	1	0	1	9	36
20	KADEK YUDI WIRAWAN	1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	1	1	1	1	0	1	1	1	0	13	52
21	KEN MORETTI FANANI	1	0	0	0	0	0	1	0	0	0	1	1	0	1	0	0	0	0	1	1	0	0	1	0	1	9	36
22	KETUT SUKADANA	1	0	0	0	0	1	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	9	36
23	KOMANG ERDI ARIDINATA	1	1	0	1	1	0	0	1	1	1	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	10	40
24	KOMANG FERI SUSTRAWAN	0	0	0	0	1	0	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	9	36
25	MADE ANDIRA ARTA RANDY	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	1	0	0	1	1	1	0	1	9	36
26	NGURAH MADE CANDRA KUSUMA	0	1	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	1	0	1	0	1	0	9	36
27	NIZAM ERSYANDA YUNARZAT FANANY	1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	1	1	1	1	0	1	1	1	0	13	52
28	NYOMAN ADI FERY PRATAMA	0	0	0	0	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	9	36
29	PUTU JULIARTA	1	0	0	1	1	1	1	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	0	0	0	9	36
30	PUTU JUNI PRATAMA	1	0	0	0	0	1	1	1	1	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	9	36
31	PUTU PRASTEKA	0	1	0	0	1	0	1	1	1	1	0	1	1	0	0	1	1	0	0	1	0	0	0	0	1	12	48
32	RAHMAT RIZAL	0	1	0	1	1	0	0	1	1	1	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	9	36
33	RIZKI SYAHBANA	0	1	0	0	0	0	1	1	0	1	1	0	1	1	1	0	0	0	0	0	0	1	1	0	1	11	44

Lampiran 10. Daftar Nilai *Posttest* Kelompok Kontrol

NO	NAMA	60 66 - 0	15 - 1	n - v		100	05 0	0 8	8	120	01 -	()c		120	05 ·	ΙT	EM	FEC	01	0 5		720	05	2 5		110 i	05 - 5	0	38	100	-		*
NO	IVAIVA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Total Skor	Nilai
1	DEWA BAGUS ARDHA MARENDRA	1	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	22	73,33
2	DEWA MADE AGUS PUTRAWAN	0	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	0	1	0	1	0	1	1	1	0	0	0	0	0	0	17	56,67
3	GEDE AGUS DHARMA ARTHA	1	1	1	1	0	0	1	0	1	1	0	0	0	0	0	1	0	1	1	1	1	0	1	0	1	1	0	1	0	1	17	56,67
4	GEDE ARI AMARTA	1	0	1	1	0	1	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	1	1	1	1	1	0	1	0	1	15	50,00
5	GEDE BUDI ARSANA PUTRA	1	1	1	1	0	1	0	1	1	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	1	0	0	1	0	1	15	50,00
6	GEDE BUDIASA	1	1	1	1	0	0	1	0	1	1	0	0	1	0	0	1	0	1	0	1	1	0	0	0	1	1	0	1	0	1	16	53,33
7	GEDE DONY NOVENDI ARSUDI	0	0	1	1	0	0	1	1	0	0	1	1	1	1	0	1	0	0	1	0	1	1	1	1	0	1	0	0	0	1	16	53,33
8	GEDE GINA ADNYANA	1	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	22	73,33
9	GEDE JUNI ARTA	0	1	1	1	0	1	1	1	1	1	1	1	0	1	0	1	0	1	1	0	1	1	1	1	1	1	1	1	0	1	23	76,67
10	GEDE WINDA PRATAMA	0	1	1	1	0	1	1	0	0	1	1	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1	0	1	0	1	17	56,67
11	I GEDE ASTIKA	0	1	1	1	0	1	1	1	0	1	1	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	0	1	0	1	16	53,33
12	I GEDE TEGAR DUTA PRATAMA	0	0	1	1	0	0	1	1	0	1	0	0	1	0	1	1	0	0	1	0	0	1	1	1	1	1	0	1	0	1	16	53,33
13	I KADEK DIKA ANDRIANA	1	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	22	73,33
14	I MADE DARMAWAN	1	1	1	1	1	1	0	1	1	1	0	1	0	0	1	1	0	0	1	0	1	0	0	0	0	0	0	0	0	1	15	50,00
15	I PUTU NUGRAHA SASTRA WIGUNA	0	1	1	1	0	1	1	1	1	1	1	1	0	1	0	1	0	1	1	0	1	1	1	1	1	1	1	1	0	1	23	76,67
16	IDA BAGUS NYOMAN REDITYAMA	1	1	1	1	0	1	1	1	0	1	1	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	0	1	0	1	17	56,67
17	KADEK BUDI WIARSANA	1	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	22	73,33

18	KADEK INDRA DWI SAPUTRA	0	0	1	0	0	1	1	0	0	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	16	53,33
19	KADEK JULI ARJATAWAN	1	1	1	1	0	1	0	1	1	0	0	0	1	0	0	1	1	1	1	1	1	0	1	1	1	0	0	0	0	1	18	60,00
20	KADEK YUDI WIRAWAN	1	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	23	76,67
21	KEN MORETTI FANANI	1	1	1	0	0	1	0	1	0	1	0	1	0	0	1	1	0	1	1	1	1	0	1	1	1	0	1	1	0	0	18	60,00
22	KETUT SUKADANA	1	1	1	1	0	1	1	0	0	1	1	0	0	0	0	1	1	0	1	0	0	1	1	1	1	1	0	1	0	1	18	60,00
23	KOMANG ERDI ARIDINATA	1	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	22	73,33
24	KOMANG FERI SUSTRAWAN	1	1	1	1	0	1	1	0	1	1	1	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	0	1	0	1	17	56,67
25	MADE ANDIRA ARTA RANDY	1	1	1	1	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	0	0	1	1	1	1	1	0	0	0	1	15	50,00
26	NGURAH MADE CANDRA KUSUMA	1	1	1	1	0	1	0	0	1	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	1	1	0	1	0	0	18	60,00
27	NIZAM ERSYANDA YUNARZAT FANANY	0	0	1	1	1	0	1	0	1	0	0	0	0	0	1	0	1	1	1	0	0	1	1	1	1	1	0	1	0	1	16	53,33
28	NYOMAN ADI FERY PRATAMA	0	1	1	1	0	1	1	1	1	1	1	1	0	1	0	1	0	1	1	0	1	1	1	1	1	1	1	1	0	1	23	76,67
29	PUTU JULIARTA	0	1	1	1	0	1	0	1	0	0	0	0	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	1	0	1	16	53,33
30	PUTU JUNI PRATAMA	1	1	1	1	0	1	1	1	1	1	0	0	1	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	23	76,67
31	PUTU PRASTEKA	1	1	1	1	0	0	1	0	1	0	0	1	1	0	0	1	0	0	1	0	0	1	1	1	1	1	1	1	0	1	18	60,00
32	RAHMAT RIZAL	0	1	1	1	0	1	1	0	1	1	0	1	0	0	0	0	0	1	0	1	0	1	1	1	1	1	1	1	0	1	18	60,00
33	RIZKI SYAHBANA	0	1	1	1	0	1	1	1	0	1	1	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	0	1	0	1	16	53,33

Lampiran 11. Dokumentasi Penelitian Kelas Kontrol TKRO X.2 SMKN 3 Singaraja

(Dokumentasi Sedang Berlangsungnya Pemberian *Pretest* Sebelum Materi Di Mulai)

(Dokumentasi Sedang Berlangsungnya Proses Belajar Kelompok Kecil)

(Dokumentasi Sedang Berlangsungnya Pemberian Materi dan Tanpa Perlakuan *Trainer Engine Stand*)

(Dokumentasi Sedang Berlangsungnya Pemberian *Posttest* di Akhir Materi Yang di Ajarkan)

Lampiran 12. Dokumentasi Penelitian Kelas Eksperimen TKRO X.3 SMKN 3 Singaraja

(Dokumentasi Sedang Berlangsungnya Pemberian *Pretest* Sebelum Materi Di Mulai)

(Dokumentasi Sedang Berlangsungnya Proses Belajar Kelompok Kecil)

(Dokumentasi Sedang Berlangsungnya Pemberian Materi dan Perlakuan *Trainer Engine Stand*)

(Dokumentasi Sedang Berlangsungnya Pemberian *Posttest* di Akhir Materi Yang di Ajarkan)

Lampiran 13. Surat Keterangan Permohonan Data.

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI UNIVERSITAS PENDIDIKAN GANESHA FAKULTAS TEKNIK DAN KEJURUAN

Alamat: Jalan Udayana No. 11 Singaraja – Bali http://ftk.undiksha.ac.id Telp. (0362) 25571, Fax. (0362) 25571 Kode Pos. 81116

Nomor

: 564/UN48.11.1/DT/2019

Singaraja, 2 April 2019

Lampiran : -

Hal

: Permohonan Data

Yth. Kepala SMK Negeri 3 Singaraja di tempat

Dengan hormat, dalam rangka melengkapi persyaratan penyusunan Skripsi, bersama ini dimohon bantuannya untuk memberikan informasi yang diperlukan terkait data mengenai "Media Berbasis Engine Stand", kepada mahasiswa berikut.

Nama

: M. Syahrul Utama

NIM

: 1415071027

Program Studi : Pendidikan Teknik Mesin

Semester

: X (sepuluh)

Demikian surat ini disampaikan, atas perkenaan dan kerjasamanya diucapkan terima kasih.

fith. Br. Keyrog TKRO

Moho Rifwilifas' cenca'

lial di mas.

a.n. Dekan

Wakil Dekan Bidang Akademik,

Neknik dan Kejuruan

ben Dantes, S.T., M.TI

212003121001

Walsabid Kur

PEMERINTAH PROVINSI BALI DINAS PENDIDIKAN, KEPEMUDAAN DAN OLAHRAGA SMK NEGERI 3 SINGARAJA

Jalan Gempol, Banyuning, Singaraja, Bali 81151Tlp./Fax. (0362) 24544
Web site http://www.smkn3singaraja.sch.id E-Mail smk3singaraja@yahoo.co.id

SURAT KETERANGAN

Nomor: 423.4/364/SMKN.3.SGR/2020

Yang bertanda tangan di bawah ini

Nama Drs. I Nyoman Suastika, M.Pd

NIP 19620306 198703 1 015

Jabatan Kepala SMK Negeri 3 Singaraja

menerangkan bahwa mahasiswa tersebut di bawah ini

Nama : M. Syahrul Utama

NIM : 1415071027

Program Studi : Pendidikan Teknik Mesin

Semester X (Sepuluh)

Fakultas : Teknik dan Kejuruan – Undiksha

Memang benar Mahasiswa tersebut telah melaksanakan Penelitian dan Permohonan Data pada tanggal 15 s/d 29 April 2019 di Kelas X TKR 2 dan X TKR 3 SMK Negeri 3 Singaraja.

Demikian surat keterangan ini dibuat dengan sebenarnya untuk dapat digunakan sebagaimana mestinya

ingaraja, 10 Pebruari 2020

Kepala Sekolah

SDINDER Nyoman Suastika, M.Pd.

Pembina Tk.1 NIP. 19620306 198703 1 015

RIWAYAT HIDUP

Nama: M. Syahrul Utama lahir di Kumbung Desa Kumbang Kecamatan Masbagik Lombok Timur, Nusat Tenggara Barat (NTB) pada tanggal 20 Januari 1995. Penulis

merupakan Anak ketiga (Bungsu) dari pasangan Suami Istri yakni Bapak Satri dan Ibu Sareah. Penulis berkebangsaan Indonesia dan beragama Islam. Kini penulis beralamat di Jalan Ngurah Rai No. 12 Kota Singaraja, Provinsi Bali. Penulis menyelesaikan pendidikan dasar di SD Negeri 2 Danger dan lulus pada tahun 2008. Kemudian penulis melanjutkan Sekolah Menengah Pertama di MTs NW Lendang Nangka dan lulus pada tahun 2011. Pada tahun 2014, penulis lulus dari Sekolah Menengah Atas di SMK NW Anjani jurusan Teknik Kendaraan Ringan. dan melanjutkan ke program Strata Satu (S1) Jurusan

Teknologi Industri di Universitas Pendidikan Ganesha. Selanjutnya, mulai tahun 2014 sampai dengan penulisan skripsi ini, penulis masih terdaftar sebagai mahasiswa Program Studi Pendidikan Teknik Mesin di Universitas Pendidikan Ganesha. Dalam Organisasi (Internal) Kampus, aktif dalam kepengurusan Himpunan Mahasiswa Mesin (HMM) Pendidikan Teknik Mesin Undiksha (Tahun 2014 – 2016) dan pada Tahun 2015 – 2017, aktif juga dalam organisasi kemahasiswaan yakni, Pengajian Mahasiswa Muslim (PMM) Al – Hikmah Undiksha. Dalam Organisasi (Eksternal) aktif dalam kepengurusan Himpunan Mahasiswa Lombok (HIPMAL) Singaraja (Tahun 2016 – 2017). Serta aktif dalam Organisasi Kepemudaan (OKP) lainnya.

PERNYATAAN

Dengan ini saya menyatakan bahwa karya tulis yang berjudul "Pengaruh Media Pembelajaran Berbasis *Engine Stand* Terhadap Hasil Belajar Mesin Konversi Energi Siswa Kelas X Jurusan Teknik Kendaraan Ringan Di SMK Negeri 3 Singaraja" beserta seluruh isinya adalah benar-benar karya sendiri dan saya tidak melakukan penjiplakan dan pengutipan dengan cara-cara yang tidak sesuai dengan etika yang berlaku dalam masyarakat keilmuan. Atas pernyataan ini, saya siap menanggung risiko/sanksi yang dijatuhkan kepada saya apabila kemudian ditemukan adanya pelanggaran atas etika keilmuan dalam karya saya ini atau ada klaim terhadap keaslian karya saya ini.

Singaraja, Februari 2020 Yang membuat pernyataan,

M. Syahrul Utama