Lampiran 1.1 Kisi-Kisi Tes Kemampuan Pemecahan Masalah Siswa (Uji Coba)

Satuan Pendidikan : SMA

Mata Pelajaran : Fisika

Program Studi : IPA

Kurikulum : 2013 Revisi 2016

Alokasi Waktu : 2 JP (2x45 menit)

Jumlah : 16 butir soal essay

Pokok Bahasan : Gelombang Bunyi dan Cahaya

Kompetensi Inti : 3. Memahami, menerapkan, dan menganalisis

pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.

Kopetensi Dasar

: 3.10 Menerapkan konsep dan prinsip gelombang bunyi dan cahaya dalam teknologi

4.10 Melakukan percobaan tentang gelombang bunyi dan/atau cahaya, berikut presentasi hasil dan makna fisisnya misalnya sonometer, dan kisi difraksi

Kompetensi Dasar	Indikator Pembelajaran	ŀ	Komj Kemar Peme Mas	mpua	n	No Soal
		D1	D2	D3	D4	
3.10 Menerapkan konsep dan prinsip gelombang bunyi dan cahaya dalam	Menganalisis kasus nyata untuk menentukan besaran fisis pada pemantulan gelombang bunyi	√	√	√	√	1,2
teknologi 4.10 Melakukan percobaan tentang gelombang bunyi dan/atau cahaya, berikut	Menganalisis suatu per- masalahan dalam kehi- dupan sehari-hari dalam menentukan cepat rambat bunyi pada berbagai medium	V	√	√	V	3,8
presentasi hasil dan makna fisisnya misalnya sonometer, dan kisi difraksi	Menganalisis permasala- han terkait fenomena da- wai dan pipa organa untuk memecahkan masalah dalam kehidupan sehari- hari	1	1	V	1	4,5
	Menganalisis kasus nyata fenomena efek dopler dalam kehidupan sehari- hari	V	1	V	7	6,9
	Mengambil keputusan yang tepat dalam memecahkan permasalahan terkait taraf intensitas dan intensitas bunyi	1	V	1	V	7,15
	Menganalisis suatu kasus untuk menentukan suatu besaran fisis pada interferensi dalam percobaan young	1	1	V	V	10
	Menerapkan konsep interferensi pada lapisan tipis untuk memecahkan suatu permasalahan yang disajikan	1	1	√	V	11
	Menerapkan konsep difraksi pada celah tunggal untuk memecahkan suatu permasalahan yang disajikan	V	V	V	V	12
	Menerapkan konsep kisi difraksi untuk memecahkan permasalahan yang disajika	V	1	1	1	13,16

Kompetensi Dasar	Indikator Pembelajaran	ŀ		mpua cahar alah	n 1	No Soal
		D1	D2	D3	D4	
	Menerapkan konsep polarisasi cahaya untuk memecahkan permasalahan yang disajika	√	V	V	V	14
Jumla	h Soal					16

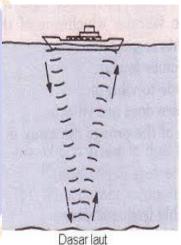
Keterangan:

D1 : Memahami Masalah

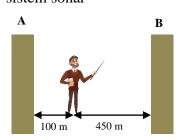
D2 : Merancang dan Merencanakan SolusiD3 : Melaksanakan Rencana Pemecahan

D4 : Memeriksa Kembali

Lampiran 1.2 Tes Kemampuan Pemecahan Masalah (Uji Coba)


TES KEMAMPUAN PEMECAHAN MASALAH

MATERI: GELOMBANG BUNYI DAN CAHAYA


(Waktu: 90 menit)

Petunjuk Pengerjaan Soal

- 1. Tulislah jawaban anda pada lembar jawaban yang telah disediakan.
- 2. Tulislah identitas anda pada kolom yang telah disediakan pada lembar jawaban.
- 3. Cermati setiap soal yang tersedia, jika terdapat soal yang kurang jelas, tanyakan pada pengawas.
- 4. Kerjakan soal yang dianggap lebih mudah terlebih dahulu.
- 5. Kerjakan soal secara jujur dan mandiri.
- 6. Waktu pengerjaan soal selama 90 menit.
- 1. Ngurah adalah seorang penyelam professional yang ingin menyelam di lautan. Namun Ngurah belum mengetahui kedalaman dasar laut yang akan ia salami. Ngurah kemudian menggunakan sebuah kapal yang dilengkapi dengan sistem sonar untuk mengukur kedalaman laut. Saat sonar dihidupkan, gelombang bunyi dengan cepat rambat sebesar 1200 m/s dipancarkan ke dalam dasar laut dan gelombang tersebut ditangkap kembali oleh alat penerima setelah ¾ sekon. Berikanlah pendapatmu, apakah Ngurah akan selamat menyelam ke dasar laut tersebut jika kedalaman laut maksimal yang mampu dicapai oleh manusia adalah sedalam 400 m?
- 2. Suatu hari Nadiem ingin melakukan percobaan sederhana untuk mengukur cepat rambat bunyi di udara. Nadiem berdiri di antara dua dinding A dan B seperti yang ditunjukan pada gambar 2. Nadiem kemudian bertepuk tangan satu kali. Ia mendapati bahwa selisih waktu terdengarnya bunyi pantul

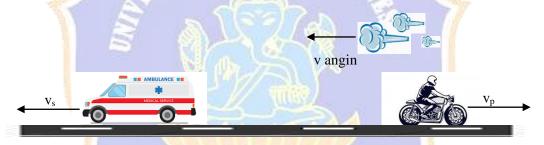

Gambar 1. Kapal dengan sistem sonar

Gambar 2. Nadiem melakukan percobaan cepat rambat bunyi

dari dinding A dan dinding B adalah sebesar 2,1 sekon. Berdasarkan hal ini, tentukanlah Berapa cepat rambat bunyi di udara?

3. Cokde dan Cok Alit sedang mengenang masa kecil mereka pada tahun 2001 saat *smart phone* belum ada seperti saat ini. Mereka ingat pada saat itu mereka bermain telepon-teleponan buatan mereka sendiri menggunakan gelas plastik yang dihubungkan dengan karet gelang. Jari-jari karet gelang sebesar 0,1 mm dengan massa jenis sebesar 27 x 10^2 Kg/m³. Saat itu, agar terdengar suara yang jelas, mereka menarik "telepon" tersebut dengan gaya sebesar 4N sehingga karet gelang bertambah panjang seperti gambar 3 ($\sigma = 1,27x10^8 N/m^2$, e = 0,15).

Gambar 3. Cokde dan Cok Alit melakukan permainan tradisional


Analisislah cepat rambat gelombang bunyi yang merambat pada karet tersebut!

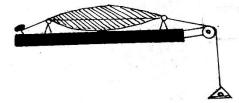
- 4. Yudi adalah seorang gitaris professional. Ia memberikan tegangan sebesar 50 Newton pada senar bermassa 1,5 gram dengan panjang 50 cm. Panjang setiap pola gelombang yang terbentuk di senar adalah 1 m. Tegangan yang diberikan diharapkan mampu membuat senar berfrekuensi 100 Hz saat dipetik. Menurutmu, apakah tegangan yang diberikan tepat untuk menghasilkan frekuensi yang diinginkan? Jika tidak berikanlah solusi agar senar yang dipetik yudi bisa menghasilkan frekuensi sebesar 100 Hz!
- 5. Satya memiliki dua buah pipa organa yaitu satu buah pipa organa terbuka dan satu buah pipa organa tertutup. Nada atas pertama yang dihasilkan dari pipa organa terbuka memiliki frekuensi sebesar 4/3 kali frekuensi dari nada dasar pipa organa

tertutup. Jika panjang pipa organa tertutup adalah 20 cm, Tentukanlah apakah pipa organa terbuka yang dimiliki Satya lebih pendek daripada pipa organa tertutupn.

Gambar 4. Nada dasar pipa organa tertutup dan pipa organa terbuka

6. Oka sedang mengendarai sepeda motor dengan kecepatan 10 m/s bergerak saling menjauhi dengan agus yang mengendarai mobil ambulance dengan kecepatan 15 m/s. Pada saat itu, angin bertiup searah dengan arah gerak mobil agus dengan kecepatan 5 m/s. Jika pada saat itu, mobil ambulance yang dikendarai agus mengeluarkan bunyi sirine dengan frekuensi sebesar 700 Hz, maka berapakah frekuensi dari bunyi sirine yang didengar oleh Oka?

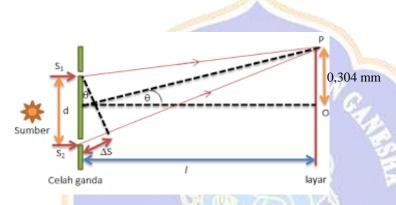
Gambar 5. Ilustrasi Pergerakan Mobil, motor dan angin


7. Suatu gelombang gempa terasa di kecamatan Seririt dengan intensitas sebesar 6 x 10⁵ W/m². Sumber gempa berasal dari suatu titik di dasar laut yang berjarak 40 km dari seririt. Diketahui bahwa jarak antara kecamatan Seririt dan Tejakula sebesar 30 km. Jika dihubungkan dengan suatu garis lurus, lokasi kedua kecamatan beserta lokasi pusat gempa membentuk segitiga siku-siku dengan sudut siku-siku

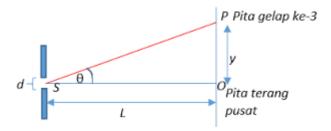
Gambar 6. Ilustrasi Koordinat gempa bumi

berada di kecamatan Seririt (perhatikan gambar 6). Berdasarkan keterangan ini, analisislah apakah intensitas gempa yang terasa di kecamatan Tejakula lebih besar daripada gempa yang dirasakan di kecamatan Seririt?

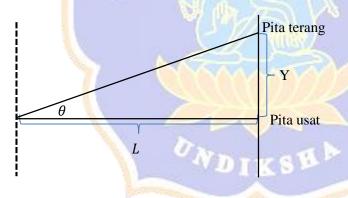
8. Bella melakukan percobaan di laboratorium fisika untuk menganalisis cepat rambat bunyi pada sebuah benda. Bella menggunakan seutas senar yang memiliki panjang 2m dan bermasssa 1g. Dalam percobaan tersebut, Bella menggantung beban 1 kg pada salah satu ujung senar yang dilewatkan melalui sebuah katrol seperti ditunjukan pada Gambar 7. Jika g = 10 m/s², maka hitunglah cepat rambat gelombang bunyi dalam senar tersebut!


Gambar 7. Senar yang digantungi sebuah massa

9. Teguh memiliki sebuah kereta dan lintasannya yang berbentuk lingkaran dengan diameter 1,5 meter. Pada saat itu, Teguh sedang bermain dengan kereta miliknya dan kereta bergerak melingkar dalam lintasan tersebut. Kereta mainan yang dimiliki teguh dapat membunyikan peluit yang memiliki frekuensi 250 Hz, dan bergerak melingkar dengan 1 putaran tiap detik. Jika teguh duduk di luar lintasan kereta, maka berapakah frekuensi minimum dan maksimum yang dapat didengar oleh teguh?


Gambar 8. Teguh bermain kereta

10. Devi melakukan percobaan interferensi Young dengan menggunakan seberkas sinar *monokromatik* (sinar satu warna) yang mengenai dua celah sempit yang terpisah pada jarak 0,4 mm. Suatu pola interferensi terjadi pada layar yang berjarak 25 cm dari kedua celah. Pada pola-pola tersebut, terlihat garis gelap dan terang (terlihat pada gambar 9). Setelah dihitung, jarak 2 garis terang yang berurutan adalah sebesar 0,304 mm. Bantulah Devi untuk menghitung panjang gelombang cahaya yang digunakan dalam percobaan tersebut!


Gambar 9. Interferensi Young

- 11. Kevin melihat suatu lapisan tipis bensin (n=1,50) mengapung di atas permukaan kaca (n=1,40). Sinar matahari jatuh hampir tegak lurus pada lapisan tipis tersebut dan kemudian memantul ke arah mata Kevin. Saat diamati oleh Kevin lapisan tipis tersebut tampak berwarna kuning. Ini karena interferensi destruktif pada lapisan menghilangkan warna biru (λ biru di udara = 468 nm) dari cahaya yang dipantulkan ke mata Kevin. Berdasarkan fenomena ini, tentukanlah ketebalan minimum t dari lapisan tipis tersebut!
- 12. Budi menyinari sebuah celah tungal selebar 0,1 mm dengan seberkas sinar yang memiliki panjang gelombang sebesar 6 x 10⁻⁷ m. Ia meletakan layar 40 cm dari celah dan mengamati pola difraksi yang terbentuk pada layar tersebut. Hitunglah jarak antara pita gelap ke tiga dengan titik tengah terang pusat!

Gambar 10. Difraksi celah tunggal

13. Soni menembakan seberkas cahaya monokromatis dengan panjang gelombang 660 nm secara tegak lurus pada sebuah kisi difraksi dan menghasilkan pola/pita interferensi pada layar di belakangnnya. Setelah di ukur, jarak antara pita tersebut adalah 6 mm. Jika soni menginginkan jarak antar pita 5 mm, maka panjang gelombang cahaya monokromatis yang diperlukan adalah sebesar?

Gambar 11. Seberkas cahaya melalui kisi difraksi

14. Sendra melakukan percobaan dengan mengarahkan seberkas cahaya tak terpolarisasi pada selembar kaca berindeks bias 1,5 yang tenggelam di dalam alkohol dengan indeks bias 1,44. Jika sudut datang yang dibentuk adalah 2,08° apakah sinar pantulnya terpolarisasi?

- 15. Pada suatu hari, terjadi aksi kejar-kejaran antara perampok dengan mobil polisi yang membunyikan sirinenya. Sirine polisi terdengar dengan keras dengan kekuatan 160.000 πwatt. Suara sirine terdengar sampai di rumah Rai yang berjarak 20 m dari sumber bunyi. Pada saat yang bersamaan, terdapat konser yang mengundang *boy band* asal korea, BTS yang taraf intensitasnya terdengar sampai rumah rai sebesar 150 dB. Apabila intensitas ambang yang terdengar dari sirine polisi tersebut adalah 10⁻¹² watt/m², maka tentukanlah banyaknya sirine mobil polisi yang diperlukan untuk menghasilkan taraf intensitas yang setara dengan konser BTS tersebut!
- 16. Agus bersama teman-temannya melakukan percobaan kisi difraksi dengan menggunakan sebuah kisi yang terdiri dari 10.000 goresan/cm. Mereka kemudian menyalakan sumber cahaya monokromatis dengan panjang gelombang yang dipancarkan sebesar 25 x 10⁻⁸ m. Setelah cahaya monokromatis dipancarkan dan melalui kisi difraksi tersebut, terlihat beberapa pola terang dan gelap pada layar. Agus penasaran dan bingung mengenai nilai sudut yang terbentuk pada garis terang orde kedua ke terang pusat, bantulah Agus menghitungnya! (mungkin susunan kalimat pertanyaannya dirubah)

Lampiran 1.3 Kunci Jawaban Tes Kemampuan Pemecahan Masalah (Uji Coba)

No	Langkah Pemecahan Masalah	Skor
1	Memahami Masalah	
	Diketahui:	
	Cepat rambat bunyi = 1200 m/s	
	Waktu pemantulan = $\frac{3}{4}$ s	2
	Apakah ngurah akan selamat jika kedalaman maksimum yang	
	diterima manusia adalah 400 m?	
	Merancang dan merencanakan solusi	
	Konsep yang digunakan yaitu pemantulan gelombang bunyi	
	2h = vt, karena terjadi pemantulan, berarti untuk mencari	4
	kedalaman adalah $h = \frac{v}{2t}$	
	Menyelesaikan rencana pemecahan	
	$h = \frac{vt}{2}$	
	$h = \frac{1200}{2}3/4$	4
	h = 450 m	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	
	kekeliruan. Simpulan yang dapat diambil adalah ngurah tidak akan	2
	selamat jika menyelam di laut tersebut karena kedalamanya sebesar	
	800 m	
2	Memahami Masalah	
	Diketahui:	
	Selang waktu = 2,1 s	
	$S_1 = 450 \text{ m}$	2
	$S_2 = 100 \text{ m}$	
	Ditanya: Cepat rambat bunyi di udara?	
	Merancang dan merencanakan solusi	
	Konsep yang digunakan yaitu pemantulan gelombang bunyi	
		4

$2s = \frac{v}{\Delta t}$, karena terjadi pemantulan, namun karena nadiem berada di
antara ke dua dinding dengan jarak yang berbeda, maka digunakan
selisih jarak dinding tersebut $2(S_1 - S_2) = \frac{v}{\Delta t}$
$v = 2 \frac{(S_1 - S_2)}{\Delta t}$
$\nu = 2 \frac{\Delta t}{\Delta t}$
Manyalasaikan rangana namagahan

Menyelesaikan rencana pemecahan

$$v = 2\frac{(S_1 - S_2)}{\Delta t}$$

$$v = 2\frac{(450 - 100)}{2.1} = 333,33 \text{ m/s}$$

4

2

4

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cepat rambat gelombang bunyi di udara sebesar 333,33 m/s

3 Memahami masalah

Diketahui:

Jari-jari karet (r) = 0,1 mm =
$$1 \times 10^{-4}$$
m
Massa jenis karet (ρ) = 27 x 10^2 Kg/m³

$$F = 4N$$

$$l_0 = 13 \text{ m}$$

$$1 = 15 \text{ m}$$

Ditanya: cepat rambat bunyi pada karet

Merancang dan merencanakan solusi

Konsep yang digunakan adalah cepat rambat bunyi pada medium padat yaitu sebagai berikut:

$$v = \sqrt{\frac{E}{\rho}}$$

$$E = \frac{\sigma}{e}$$

$$\sigma = \frac{F}{A} \operatorname{dan} e = \frac{\Delta l}{l_0}$$

$$A = \pi r^2$$

Menyelesaikan rencana pemecahan

$$A = \pi r^{2}$$

$$A = 3,14(1x10^{-4})^{2}$$

$$A = 3,14 \times 10^{-8}m^{2}$$

$$\sigma = \frac{F}{A} = \frac{4}{3,14 \times 10^{-8}m^{2}}$$

$$\sigma = 1,27 \times 10^{8} N/m^{2}$$

$e = \frac{\lambda l}{l_0} = \frac{15-13}{13} = 0,15$ $E = \frac{\sigma}{e} = \frac{1,27 \times 10^8}{0,15} = 8,87 \times 10^8$ $v = \sqrt{\frac{E}{\rho}} = \sqrt{\frac{8,87 \times 10^8}{27 \times 10^2}}$ $v = \sqrt{0,31 \times 10^6} = 560 \text{ m/s}$ Memeriksa Kembali Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cepat rambat gelombang bunyi yang merambat pada karet adalah sebesar 560 m/s 4 Memahami masalah Diketahui: Tegangan yang diberikan = 50 N Massa senar = 1,5 gram = 0,0015 kg Panjang senar = 50 cm = 0,5 m Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
$v = \sqrt{\frac{E}{\rho}} = \sqrt{\frac{8.87 \times 10^8}{27 \times 10^2}}$ $v = \sqrt{0.31 \times 10^6} = 560 \text{ m/s}$ Memeriksa Kembali Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cepat rambat gelombang bunyi yang merambat pada karet adalah sebesar 560 m/s 4 Memahami masalah Diketahui: Tegangan yang diberikan = 50 N Massa senar = $1.5 \text{ gram} = 0.0015 \text{ kg}$ Panjang senar = $50 \text{ cm} = 0.5 \text{ m}$ Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	4
$v = \sqrt{\frac{E}{\rho}} = \sqrt{\frac{8.87x \times 10^8}{27 \times 10^2}}$ $v = \sqrt{0.31x \times 10^6} = 560 \text{ m/s}$ Memeriksa Kembali Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cepat rambat gelombang bunyi yang merambat pada karet adalah sebesar 560 m/s 4 Memahami masalah Diketahui: Tegangan yang diberikan = 50 N Massa senar = $1.5 \text{ gram} = 0.0015 \text{ kg}$ Panjang senar = $50 \text{ cm} = 0.5 \text{ m}$ Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	4
 v = √0,31x 10⁶ = 560 m/s Memeriksa Kembali Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cepat rambat gelombang bunyi yang merambat pada karet adalah sebesar 560 m/s 4 Memahami masalah Diketahui: Tegangan yang diberikan = 50 N Massa senar = 1,5 gram = 0,0015 kg Panjang senar = 50 cm = 0,5 m Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai v = λf = √Fl/m² F = m(λf)²/l Menyelesaikan rencana pemecahan 	
 Memeriksa Kembali Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cepat rambat gelombang bunyi yang merambat pada karet adalah sebesar 560 m/s 4 Memahami masalah Diketahui: Tegangan yang diberikan = 50 N Massa senar = 1,5 gram = 0,0015 kg Panjang senar = 50 cm = 0,5 m Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai v = λf = √Fl/m, F = m(λf)²/l Menyelesaikan rencana pemecahan 	
Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cepat rambat gelombang bunyi yang merambat pada karet adalah sebesar 560 m/s 4 Memahami masalah Diketahui: Tegangan yang diberikan = 50 N Massa senar = 1,5 gram = 0,0015 kg Panjang senar = 50 cm = 0,5 m Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai v = \(\lambda f = \frac{\inftit{Fl}}{m}, \) F = \(\frac{m(\lambda f)^2}{m} \) Menyelesaikan rencana pemecahan	
kekeliruan. Simpulan yang dapat diambil adalah cepat rambat gelombang bunyi yang merambat pada karet adalah sebesar $560 m/s$ 4 Memahami masalah Diketahui: Tegangan yang diberikan = 50N Massa senar = $1.5 \text{gram} = 0.0015 \text{kg}$ Panjang senar = $50 \text{cm} = 0.5 \text{m}$ Panjang gelombang = 1m Frekuensi yang diharapkan = 100Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
gelombang bunyi yang merambat pada karet adalah sebesar $560 m/s$ 4 Memahami masalah Diketahui: Tegangan yang diberikan = 50N Massa senar = $1,5 \text{gram} = 0,0015 \text{kg}$ Panjang senar = $50 \text{cm} = 0,5 \text{m}$ Panjang gelombang = 1m Frekuensi yang diharapkan = 100Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	2.
4 Memahami masalah Diketahui: Tegangan yang diberikan = 50 N Massa senar = 1,5 gram = 0,0015 kg Panjang senar = 50 cm = 0,5 m Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	_
4 Memahami masalah Diketahui: Tegangan yang diberikan = 50 N Massa senar = 1,5 gram = 0,0015 kg Panjang senar = 50 cm = 0,5 m Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
Diketahui: Tegangan yang diberikan = 50 N Massa senar = 1,5 gram = 0,0015 kg Panjang senar = 50 cm = 0,5 m Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
Tegangan yang diberikan = 50 N Massa senar = 1,5 gram = 0,0015 kg Panjang senar = 50 cm = 0,5 m Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
Massa senar = 1,5 gram = 0,0015 kg Panjang senar = 50 cm = 0,5 m Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
Panjang senar = 50 cm = 0,5 m Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
Panjang gelombang = 1 m Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	2
Frekuensi yang diharapkan = 100 Hz Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
Ditanya: Apakah tegangan yang diberikan mampu memberikan frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
frekuensi 100 Hz Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
Merancang dan merencanakan solusi Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
Konsep yang digunakan yaitu cepat rambat gelombang pada dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
dawai $v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
$v = \lambda f = \sqrt{\frac{Fl}{m}},$ $F = \frac{m(\lambda f)^2}{l}$ Menyelesaikan rencana pemecahan	
Menyelesaikan rencana pemecahan	4
Menyelesaikan rencana pemecahan	4
Menyelesaikan rencana pemecahan	
The state of the s	
$v = \lambda f = \sqrt{\frac{Fl}{m}}$	
$F = \frac{m(\lambda f)^2}{l}$	4
$F = \frac{0,0015 x (1x100)^2}{0,5}$	
$F = \frac{0,0015 \times 10000}{0,5}$	
F = 30 N	
Memeriksa Kembali	
Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	
kekeliruan. Simpulan yang dapat diambil adalah bahwa tegangan	2

	yang diberikan pada senar kurang tepat untuk menghasilkan frekuensi 100 Hz, tegangan yang tepat untuk menghasilkan frekuensi 100 Hz sebesar 30 N	
5	Memahami masalah	
	Diketahui:	2
	Satya memiliki pipa organa terbuka dan tertutup	2
	Frekuensi nada dasar pipa organa terbuka f _b adalah kuart dari nada	
	dasar pipa organa tertutup	
	$l_B = 20 \text{ cm} = 0.2 \text{ m}$	
	Merancang dan merencanakan solusi	
	$f_B = 4/3 f_T$	
	panjang gelombang pipa organa terbuka	
	$\lambda_b = \frac{2l_B}{n+1}$	4
	panjang gelombang pipa organa tertutup	•
	$\lambda_T = \frac{4l_T}{2n+1}$	
	Menyelesaikan rencana pemecahan	
	*panjang gelombang pipa organa terbuka pada nada atas 1	
	$\lambda_B = \frac{2l_B}{1+1} = l_B$, jadi $l_B = \lambda_B$	
	$v = \lambda_B f_B$	
	$f_B = \frac{v}{\lambda_B} = \frac{v}{l_B}$	
	* panjang gelomb <mark>ang pipa organa tertutup pada</mark> nada dasar	
	$\lambda_T = \frac{4l_T}{2(0)+1} = 4l_T$	
	$v = \lambda_T f_T$	
	$f_T = \frac{v}{\lambda_T} = \frac{v}{4l_T}$	
	*menghitung panjang l_B menggunakan perbantingan frekuensi	
	$f_{R} = \frac{v}{l_{R}}$	4
	$\frac{f_B}{f_T} = \frac{\frac{\nu}{l_B}}{\frac{\nu}{4l_T}}$	4
	$\frac{f_B}{f_T} = \frac{4l_T}{l_B}$	
	$l_B = \frac{f_T}{f_B} 4l_T$	
	$l_B = \frac{3}{4}(4)20$	
	•	
	$l_B = 60 cm$	
	Memeriksa Kembali	

	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	2
	kekeliruan. Simpulan yang dapat diambil adalah bahwa panjang	
	pipa organa terbuka yang dimiliki satya adalah 60 cm, sehingga	
	pipa organa terbukanya lebih panjang daripada pipa organa tertutup	
	yang dimilikinya	
6	Memahami masalah	
	Diketahui:	
	Oka dan Agus bergerak saling menjauhi, angin bergerak searah	
	dengan agus	
	Kecepatan pengamat $v_p = 10 \text{ m/s}$	
	·	2
	Kecepatan sumber $v_s = 15 m/s$	2
	Kecepatan angin $v_a = 5 \text{ m/s}$	
	Frekuensi sumber $f_s = 700 Hz$	
	Ditanya: Frekuensi yang didengar pengamat?	
	ATTA CATTE	
	Merancang dan merencanakan solusi	
	Pada soal diketahui bahwa pengamat dan pendengar bergerak	
	saling menjauhi, sedangkan arah angin menjauhi pendengar, maka	4
	d <mark>al</mark> am kasus ini berla <mark>ku</mark> :	4
	$f_p = \frac{v - v_a - v_p}{v - v_a + v_s} f_s$	
	Menyelesaikan rencana pemecahan	
	$f_p = \frac{(340-5)-10}{(340-5)+15} 700$	
	$f_p = \frac{\frac{325}{350}}{700}$	
	550	4
	$f_p = 650 Hz$	
	Memeriksa Kembali	
	Setelah diperik <mark>s</mark> a baik konsep, dan perhitungan tidak te <mark>rd</mark> apat	
	kekeliruan. Simpulan yang dapat diambil adalah bahwa frekuensi	2
	yang didengar pengamat sebesar 650 Hz.	
7	Memahami masalah	
	Diketahui:	
	Intensitasi gempa di Seririt ($I_s = 6x10^5W/m^2$)	
	Jarak seririt ke sumber gempa (SP) =40 km	2
	Jarak seririt ke tejakula (ST) sebesar 30 km	
	Ditanya: Berapakah intensitas gempa di tejakula?	
-		

Merancang dan merencanakan solusi

Untuk mencari jarak antara Tejakula dengan pusat gempa (TP) maka digunakan persamaan phytagoras

$$TP = \sqrt{SP^2 + ST^2}$$

$$I = \frac{P}{A} = \frac{P}{4\pi r^2}$$

Dengan perbandingan intensitas bunyi maka:

$$\frac{I_T}{I_S} = \frac{\frac{P}{4\pi T P^2}}{\frac{P}{4\pi S P^2}} = \frac{SP^2}{TP^2}$$

Menyelesaikan rencana pemecahan

$$TP = \sqrt{SP^2 + ST^2}$$

$$TP = \sqrt{40^2 + 30^2} = 50$$

$$I_T = \frac{SP^2}{TP^2} I_S$$

$$I_T = \frac{40^2}{50^2} 6x \cdot 10^5 = 3.8 \times 10^5 W/m^2$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah intensitas gempa yang terasadi Tejakula sebesar $3.8 \times 10^5 W/m^2$ yang menunjukan lebih kecil daripada intensitas gempa yang terasa di Seririt.

8 Memahami masalah

Diketahui:

Panjang kawat $(l_{kawat} = 2 m)$

Massa kawat ($m_{kawat} = 1 \text{ gr} = 10^{-3} \text{ kg}$)

Massa beban $(m_b = 1 \text{ kg})$

Ditanya: cepat rambat gelombang bunyi pada kawat senar?

Merancang dan merencanakan solusi

Untuk menyelesaikan permasalahan tersebut, dapat digunakan konsep cepat rambat gelombang transversal dalam kawat, yaitu

$$v=\sqrt{rac{F}{\mu}}$$
, dengan $\mu=rac{massa\ kawat}{panjang\ kawat}$, dan F adalah gaya berat yang

disebabkan oleh beban

4

4

4

2

2

	Menyelesaikan rencana pemecahan	
	$\mu = \frac{1x10^{-3}}{2} = 5 \times 10^{-4} kg/m$	
	_	4
	F = 1x10 = 10N	
	$v = \sqrt{\frac{5 \times 10^{-4}}{10}} = 100\sqrt{2} m/s$	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	2
	kekeliruan. Simpulan yang dapat diambil adalah cepat rambat	_
	bunyi pada kawat dawai tersebut sebesar $100\sqrt{2} m/s$	
9	Memahami masalah	
	Diketahui:	
	Diameter lintasan kereta ($d = 1,5m, r = 0,75 m$)	
	Frekuensi peluit = $f_s = 250 \text{ Hz}$	2
	Frekuensi putaran kereta = $f_k = 1 \text{ Hz}$	
	Ditanya: Frekuensi maksimum dan minimum yang didengar oleh	
	pendengar?	
	Mer <mark>an</mark> cang dan merencanakan solusi	
	Pada permasalahan tersebut, terdapat dua frekuensi yaitu frekuensi	
	pe <mark>l</mark> uit dan frekuensi p <mark>ut</mark> aran kereta. Teguh akan mendengarkan	
	frekuensi maksimum saat kereta mendekatinya, dan ia akan	
	mendengarkan frekuensi minimum saat kereta menjauhinya	
	Kecepatan linier kreta: $vs = 2\pi f_k r$	4
	frekue <mark>ns</mark> i maksumum:	
	$f_{\max} = \frac{v}{v - vs} fs$	
	Frekuensi minimum:	
	$f_{\min} = \frac{v}{v + vs} fs$	
	Menyelesaikan rencana pemecahan	
	$vs = 2\pi f_k r = 2\pi 1(0.75) = 1.5\pi \text{ m/s}$	4
	frekuensi maksumum:	4
	$f_{\text{max}} = \frac{340}{340 - 1.5\pi} 250 = 253,5 Hz$	
	,	
	Frekuensi minimum:	
	$f_{\min} = \frac{340}{340 + 1.5\pi} 250 = 246.6 Hz$	
	$340 + 1,5\pi$	
<u> </u>		

	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah frekuensi maksimum pendengar sebesar 253,5 Hz dan frekuensi minimum pendengar sebesar 246,6 Hz	2
10	Memahami masalah	
	Diketahui:	
	$d = 0.4 \text{ mm} = 4 \times 10^{-4} m$	
	$\Delta p = 0.304 \ mm = 3.04 \ x \ 10^{-4} m$	2
	l = 25 cm = 0.25 m	
	Perintah: hitunglah panjang gelombang cahaya datang tersebut!	
	Merancang dan merencanakan solusi	
	Lokasi pita terang ke m dapat dicari dengan konsep berikut:	
	$m\lambda=drac{p_m}{l}$ $p_m=rac{m\lambda l}{d}$	
	S PUR DILL	
	$p_m = \frac{m \lambda t}{l}$	
	Jarak dua pita terang berturut-turut dapat dicari dengan	
	mengambil pita ke m dan pita ke (m+1)	4
	$\Delta p = p_{m+1} - p_m$	
	$\Delta p = \frac{(m+1)\lambda l}{d} - \frac{m\lambda l}{d} = \frac{\lambda l}{d}$ $\lambda = d\frac{\Delta p}{l}$	
	d d d	
	$\lambda = d \frac{\Delta p}{l}$	
	Menyelesaikan rencana pemecahan	
	$\lambda = d \frac{\Delta p}{l}$	
	n - u l	4
	$\lambda = \frac{4 \times 10^{-4} \cdot 3,04 \times 10^{-4}}{3.304 \times 10^{-4}}$	4
	0,25	
	$\lambda = 4,864 \ x \ x \ 10^{-7} m$	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	2
	kekeliruan. Simpulan yang dapat diambil adalah panjang gelombang	
11	cahaya tersebut sebesar $4,864 \times 10^{-7} m$	
11	Memahami masalah	
	Diketahui:	2
	n bensin = 1,50 $n bensin = 1,40$	2
	n kaca = 1,40	
<u></u>	$\lambda \text{ biru} = 468 \text{ nm}$	

	Ditanya: Ketebalan minimum t dari lapisan tipis?	
	Merancang dan merencanakan solusi	
	Syarat cahaya biru mengalami interferensi destruktif pada lapisan	
	tipis adalah	
	$2nt = m\lambda ; m = 0, 1, 2, \dots$	4
	$t = \frac{m\lambda}{2n}$	
	Untuk t minimum dengan $t \neq 0$, diperoleh dengan mengambil	
	bilangan bulat m = 1.	
	Menyelesaikan rencana pemecahan	
	$t = \frac{m\lambda}{2n}$	4
	Lit.	4
	$t = \frac{1(468)}{21.5} = 156 nm$	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	2
	kekelir <mark>uan</mark> . Simpulan yang dapat diambil adalah keteba <mark>lan</mark>	2
	minimum lapisan tipis tersebut sebesar 156 nm	
12	Me <mark>mah</mark> ami masalah	
	Diketahui:	
	Panjang gelombang $\lambda = 6 \times 10^{-7} m = 6000 \times 10^{-7} mm$	_
	Lebar celah d = 0,1 mm	2
	Jarak celah ke layar $L = 40 \text{ cm} = 400 \text{ mm}$	
	Pita gelap ke-3 berarti n = 3	
	Ditanya: jarak antara pita gelap ke tiga dengan titik tengah terang	
	pusat?	
	Meranca <mark>ng dan merencanakan solusi</mark>	
	P Pita gelap ke-3	
	Menghitung sudut simpang θ :	
	$d\sin\theta = n\lambda$	4
	$\lim_{L} \frac{\partial}{\partial t} = \frac{\partial}{\partial t}$ $\lim_{L} \frac{\partial}{\partial t} = \frac{\partial}{\partial t}$	4
	$\sin \theta = \frac{Y}{L}$	
	$\sin \theta = \frac{Y}{L}$	
	$Y = L \sin \theta$	
	Menyelesaikan rencana pemecahan	
	$0.1\sin\theta = 3(6000 \times 10^{-7})$	
	$\sin\theta = \frac{18000 x 10^{-7}}{0.01} = 0.018 mm$	4
	$Y = L\sin\theta$	
		<u> </u>

	Y = 400(0.018) = 7.2 mm	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	
	kekeliruan. Simpulan yang dapat diambil adalah jarak pita gelap	
	ke 3 dengan terang pusat sebsar 7,2 mm	2
13	Memahami masalah	
	Diketahui:	
	$\lambda = 660 \text{ nm}$	
	jarak antara pita = 6 mm	2
	Ditanya: Bila diinginkan jarak antar pita 5 mm, maka panjang	
	gelombang cahaya monokromatis yang diperlukan sebesar?	
	Merancang dan merencanakan solusi	
	Syarat terjadi pit <mark>a t</mark> erang untuk kisis difraksi a <mark>d</mark> alah	
	$d\sin\theta = n\lambda$	
	$d\frac{Y}{L} = n\lambda$ maka $y = n\frac{\lambda L}{d}$	
	Jarak antara pita terang, misalnya pita terang ke-1, y ₁ , dan pita	
	terang ke-2, y ₂ adalah	
	$\Delta y = y_2 - y_1$	
	$2\frac{\lambda L}{d} - 1\frac{\lambda L}{d}$	
	$\Delta y = \frac{\lambda L}{d}$	4
	Untuk kisi difraksi yang sama, L dan d tetap, sehinggga Δy	
	seba <mark>nd</mark> ing denga <mark>n λ, maka</mark>	
	$\frac{\Delta y^2}{\Delta y^1} = \frac{\lambda^2}{\lambda^2}$	
	Menyelesaikan rencana pemecahan	
	$\Delta y2 = \lambda 2$	
	$\frac{1}{\Delta y_1} = \frac{1}{\lambda_1}$	4
	$\lambda 2 = \lambda 1 \frac{\Delta y^2}{\Delta y^1}$	•
	$\lambda 2 = 600 \frac{5}{6}$	
	$\lambda 2 = 550 nm$	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	
	kekeliruan. Simpulan yang dapat diambil adalah panjang	2
	gelombang cahaya monokromatis yang diperlukan sebesar 550 nm	
14	Memahami masalah	
	Diketahui:	
	Indeks bias kaca = 1,5	

	Indeks bias kaca = 1,44	2
	sudut datang yang dibentuk adalah 2,08	
	Ditanya: apakah sinar pantulnya terpolarisasi?	
	Merancang dan merencanakan solusi	
	Berdasarkan Hukum Brewster, sudut pantul sinar terpolarisasi	
	adalah	4
		-
	$\tan i_p = \frac{n_2}{n_1}$	
	$i_p = \tan^{-1}\left(\frac{n_2}{n_1}\right)$	
	Menyelesaikan rencana pemecahan	
	$i_p = \tan^{-1}\left(\frac{n_2}{n_1}\right)$	
	$i_p = \tan^{-1}\left(\frac{1,5}{1,44}\right)$ $i_p = 46,1^o$	4
	$i_p = 46.1^o$	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	2
	ke <mark>k</mark> eliruan. Simpulan yang dapat d <mark>i</mark> ambil adalah cahaya tidak	
	mengalami polarisasi, sudut yang dibentuk harusnya 46,1°	
15	Memahami masalah	
	Diketahui:	
	Jarak <mark>r</mark> umah ke p <mark>usat suara = 20m</mark>	
	Indeks bias kaca = 1,44	2
	sudut datang yang dibentuk adalah 2,08	
	Ditanya: apakah sinar pantulnya terpolarisasi?	
	Merancang dan merencanakan solusi	
	Menentukan intensitas bunyi sirine polisi	
	$I = \frac{P}{A} = \frac{P}{A\pi r^2}$	
	71 1717	
	Menentukan taraf intensitas bunyi sirine polisi	
	$TI = 10 \log \frac{I}{I_0}$	4
	Untuk menganalisis berapa sirine polisi yang diperlukan agar	
	setara dengan taraf intensitas konser BTS, digunakan persamaan	
	$Tl_n = Tl + 10\log n$	
	Menyelesaikan rencana pemecahan	

	D 460,000	T
	$I = \frac{P}{4\pi r^2} = \frac{160.000\pi}{\pi 40^2} = 100 \text{ watt/m}^2$	
	ī	
	$TI = 10 \log \frac{I}{I_0}$	
	-0	
	$TI = 10\log\frac{100}{10^{-12}}$	
	$TI = 10\log 10^{14} = 140 \ dB$	4
		4
	Menganalisis kesetaraan taraf intensitas	
	$Tl_n = Tl + 10\log n$	
	$150 = 140 + 10 \log n$	
	$10\log n = 10$	
	$\log n = 1$	
	$\log n = \log 10^1$	
	n = 10	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	
	kekeliruan. Simpulan yang dapat diambil adalah agar taraf	
	intensitas sirine polisi setara dengan taraf intensitas konser maka	
	diperlukan 10 sirine polisi	2
16	Memahami masalah	
	Diketahui:	
	N = 10.000 goresan/cm	
	$\lambda = 25 \times 10^{-8} m$	2
	n=2	
	Merancang dan merencanakan solusi	
	Ditanya: sudut yang terbentuk pada garsi terang orde ke dua	
	$d\sin\theta = n\lambda$	
	$\sin\theta = \frac{n\lambda}{d}$	4
	$d=\frac{1}{N}$	
	$a - \frac{1}{N}$	
	Menyelesaikan rencana pemecahan	
	$d = \frac{1}{N} = \frac{1}{10.000} = 1 \times 10^{-4} cm$	
1	$ \begin{array}{ccc} N & 10.000 \\ d = 1x10^{-6}m \end{array} $	
	$a - 1v \cdots v = v $	
	Menentukan sudut difraksi yang terbentuk pada garis terang orde	
		4
	Menentukan sudut difraksi yang terbentuk pada garis terang orde	4

$$\sin \theta = \frac{n\lambda}{d}$$

$$\sin \theta = \frac{2(25 \times 10^{-8})}{1 \times 10^{-6}}$$

$$\sin \theta = \frac{50 \times 10^{-8}}{1 \times 10^{-6}}$$

$$\sin \theta = 5 \times 10^{-1}$$

$$\theta = 30^{\circ}$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah sudut yang terbentuk pada terang ke dua dan terang pusat adalah 30°

Lampiran 1.4 Kisi-Kisi Tes Kemampuan Pemecahan Masalah (*Pretest* dan *Posttest*)

Satuan Pendidikan : SMA

Mata Pelajaran : Fisika

Program Studi : IPA

Kurikulum : 2013 Revisi 2016

Alokasi Waktu : 2 JP (2x45 menit)

Jumlah : 16 butir soal essay

Pokok Bahasan : Gelombang Bunyi dan Cahaya

Kompetensi Inti : 3. Memahami, menerapkan, dan menganalisis

pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang

2

kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.

Kopetensi Dasar

- : 3.10 Menerapkan konsep dan prinsip gelombang bunyi dan cahaya dalam teknologi
- 4.10 Melakukan percobaan tentang gelombang bunyi dan/atau cahaya, berikut presentasi hasil dan makna fisisnya misalnya sonometer, dan kisi difraksi

Kompetensi Dasar	Kemampua		Indikator Pembelajaran	Komponen Kemampuan Pemecahan Masalah		No Soal
		D1	D2	D3	D4	
3.10 Menerapkan konsep dan prinsip gelombang bunyi dan cahaya dalam	Menganalisis kasus nyata untuk menentukan besaran fisis pada pemantulan gelombang bunyi	1	V	√	V	1
teknologi 4.10 Melakukan percobaan tentang gelombang bunyi dan/atau cahaya, berikut	Menganalisis suatu per- masalahan dalam kehi- dupan sehari-hari dalam menentukan cepat rambat bunyi pada berbagai medium	V	√	V	V	2
presentasi hasil dan makna fisisnya misalnya sonometer, dan kisi difraksi	Menganalisis permasala- han terkait fenomena da- wai dan pipa organa untuk memecahkan masalah dalam kehidupan sehari- hari	V	1	1	V	3
	Menganalisis kasus nyata fenomena efek dopler dalam kehidupan sehari- hari	V	V	V	√	4
	Mengambil keputusan yang tepat dalam memecahkan permasalahan terkait taraf intensitas dan intensitas bunyi	V	V	V	1	5
	Menganalisis suatu kasus untuk menentukan suatu	1	V	V	V	6

Kompetensi Dasar	Indikator Pembelajaran	Komponen Kemampuan Pemecahan Masalah D1 D2 D3 D4		No Soal		
	besaran fisis pada interferensi dalam percobaan young					
	Menerapkan konsep interferensi pada lapisan tipis untuk memecahkan suatu permasalahan yang disajikan	V	V	V	~	7
	Menerapkan konsep difraksi pada celah tunggal untuk memecahkan suatu permasalahan yang disajikan	1	1	V	√	8
	Menerapkan konsep kisi difraksi untuk memecahkan permasalahan yang disajika	V	V	1	1	9
Ama	Menerapkan konsep polarisasi cahaya untuk memecahkan permasalahan yang disajika	V	1	V	7	10
Jumla	h Soal	di .				10

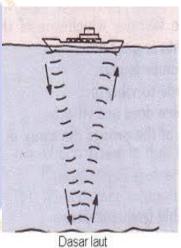
Keterangan:

D1 : Memahami Masalah

D2 : Merancang dan Merencanakan Solusi D3 : Melaksanakan Rencana Pemecahan

D4 : Memeriksa Kembali

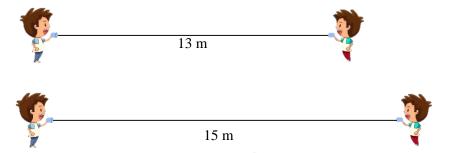
Lampiran 1.5 Tes Kemampuan Pemecahan Masalah (Pretest dan Posttest)


TES KEMAMPUAN PEMECAHAN MASALAH

MATERI: GELOMBANG BUNYI DAN CAHAYA

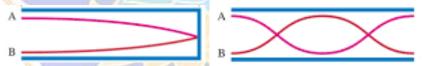
(Waktu: 90 menit)

Petunjuk Pengerjaan Soal

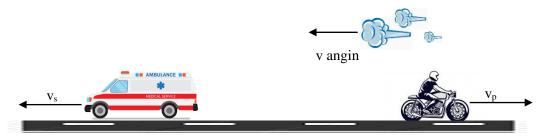

- 1. Tulislah jawaban anda pada lembar jawaban yang telah disediakan.
- 2. Tulislah identitas anda pada kolom yang telah disediakan pada lembar jawaban.
- 3. Cermati setiap soal yang tersedia, jika terdapat soal yang kurang jelas, tanyakan pada pengawas.
- 4. Kerjakan soal yang dianggap lebih mudah terlebih dahulu.
- 5. Kerjakan soal secara jujur dan mandiri.
- 6. Waktu pengerjaan soal selama 90 menit.
- 1. Ngurah adalah seorang penyelam professional yang ingin menyelam di lautan. Namun Ngurah belum mengetahui kedalaman dasar laut yang akan ia salami. Ngurah kemudian menggunakan sebuah kapal yang dilengkapi dengan sistem sonar untuk mengukur kedalaman laut. Saat sonar dihidupkan, gelombang bunyi dengan cepat rambat sebesar 1200 m/s dipancarkan ke dalam dasar laut dan gelombang tersebut ditangkap kembali oleh alat penerima setelah ¾ sekon. Berikanlah pendapatmu, apakah Ngurah akan selamat menyelam ke dasar laut tersebut jika kedalaman laut maksimal yang mampu dicapai oleh manusia adalah sedalam 400 m?

Gambar 1. Kapal dengan sistem sonar

2. Cokde dan Cok Alit sedang mengenang masa kecil mereka pada tahun 2001 saat *smart phone* belum ada seperti saat ini. Mereka ingat pada saat itu mereka bermain telepon-teleponan buatan mereka sendiri menggunakan gelas plastik yang dihubungkan dengan karet gelang. Jari-jari karet gelang sebesar 0,1 mm dengan massa jenis sebesar 27 x 10² Kg/m³. Saat itu, agar terdengar suara yang jelas,


mereka menarik "telepon" tersebut dengan gaya sebesar 4N sehingga karet gelang bertambah panjang seperti gambar 3 ($\sigma = 1,27x10^8 N/m^2$, e = 0,15).

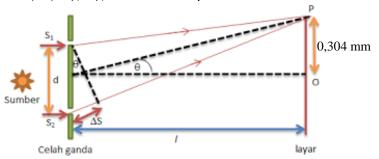
Gambar 2. Cokde dan Cok Alit melakukan permainan tradisional


Analisislah cepat rambat gelombang bunyi yang merambat pada karet tersebut!

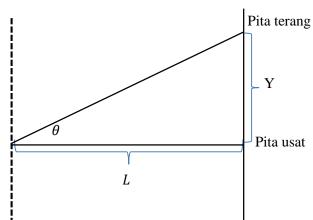
3. Satya memiliki dua buah pipa organa yaitu satu buah pipa organa terbuka dan satu buah pipa organa tertutup. Nada atas pertama yang dihasilkan dari pipa organa terbuka memiliki frekuensi sebesar 4/3 kali frekuensi dari nada dasar pipa organa tertutup. Jika panjang pipa organa tertutup adalah 20 cm, Tentukanlah apakah pipa organa terbuka yang dimiliki Satya lebih pendek daripada pipa organa tertutupnya?

Gambar 3. Nada dasar pipa organa tertutup dan pipa organa terbuka

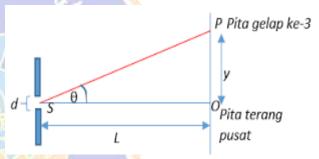
4. Oka sedang mengendarai sepeda motor dengan kecepatan 10 m/s bergerak saling menjauhi dengan agus yang mengendarai mobil ambulance dengan kecepatan 15 m/s. Pada saat itu, angin bertiup searah dengan arah gerak mobil agus dengan kecepatan 5 m/s. Jika pada saat itu, mobil ambulance yang dikendarai agus mengeluarkan bunyi sirine dengan frekuensi sebesar 700 Hz, maka berapakah frekuensi dari bunyi sirine yang didengar oleh Oka?



5. Suatu gelombang gempa terasa di kecamatan Seririt dengan intensitas sebesar 6 x 10⁵ W/m². Sumber gempa berasal dari suatu titik di dasar laut yang berjarak 40 km dari seririt. Diketahui bahwa jarak antara kecamatan Seririt dan Tejakula sebesar 30 km. Jika dihubungkan dengan suatu garis lurus, lokasi kedua kecamatan beserta lokasi pusat gempa membentuk segitiga siku-siku dengan sudut siku-siku berada di kecamatan Seririt (perhatikan gambar 6). Berdasarkan keterangan ini, analisislah apakah intensitas gempa yang terasa di kecamatan Tejakula lebih besar daripada gempa yang dirasakan di kecamatan Seririt?


Gambar 5. Ilustrasi Koordinat gempa bumi

6. Devi melakukan percobaan interferensi Young dengan menggunakan seberkas sinar *monokromatik* (sinar satu warna) yang mengenai dua celah sempit yang terpisah pada jarak 0,4 mm. Suatu pola interferensi terjadi pada layar yang berjarak 25 cm dari kedua celah. Pada pola-pola tersebut, terlihat garis gelap dan terang (terlihat pada gambar 9). Setelah dihitung, jarak 2 garis terang yang berurutan adalah sebesar 0,304 mm. Bantulah Devi untuk menghitung panjang gelombang cahaya yang digunakan dalam percobaan tersebut!


Gambar 6. Interferensi Young

7. Kevin melihat suatu lapisan tipis bensin (n=1,50) mengapung di atas permukaan kaca (n=1,40). Sinar matahari jatuh hampir tegak lurus pada lapisan tipis tersebut dan kemudian memantul ke arah mata Kevin. Saat diamati oleh Kevin lapisan tipis tersebut tampak berwarna kuning. Ini karena interferensi destruktif pada lapisan menghilangkan warna biru (λ biru di udara = 468 nm) dari cahaya yang dipantulkan ke mata Kevin.

Berdasarkan fenomena ini, tentukanlah ketebalan minimum *t* dari lapisan tipis tersebut!

8. Budi menyinari sebuah celah tungal selebar 0,1 mm dengan seberkas sinar yang memiliki panjang gelombang sebesar 6 x 10⁻⁷ m. Ia meletakan layar 40 cm dari celah dan mengamati pola difraksi yang terbentuk pada layar tersebut. Hitunglah jarak antara pita gelap ke tiga dengan titik tengah terang pusat!

Gambar 7. Difraksi celah tunggal

9. Soni menembakan seberkas cahaya monokromatis dengan panjang gelombang 660 nm secara tegak lurus pada sebuah kisi difraksi dan menghasilkan pola/pita interferensi pada layar di belakangnnya. Setelah di ukur, jarak antara pita tersebut adalah 6 mm. Jika soni menginginkan jarak antar pita 5 mm, maka panjang gelombang cahaya monokromatis yang diperlukan adalah sebesar?

ONDIKSH

10. Sendra melakukan percobaan dengan mengarahkan seberkas cahaya tak terpolarisasi pada selembar kaca berindeks
Gambar 8. Seberkas cahaya melalui kisi difraksi

bias 1,5 yang tenggelam di dalam alkohol dengan indeks bias 1,44. Jika sudut datang yang dibentuk adalah 2,08° apakah sinar pantulnya terpolarisasi?

Lampiran 1.6 Kunci Jawaban Tes Kemampuan Pemecahan Masalah (Uji Coba)

No	Langkah Pemecahan Masalah	Skor
1	Memahami Masalah	
	Diketahui:	
	Cepat rambat bunyi = 1200 m/s	
	Waktu pemantulan = $\frac{3}{4}$ s	2
	Apakah ngurah akan selamat jika kedalaman maksimum yang	
	diterima manusia adalah 400 m?	
	Merancang dan merencanakan solusi	
	Konsep yang digunakan yaitu pemantulan gelombang bunyi	
	2h = vt, karena terjadi pemantulan, berarti untuk menc <mark>ari</mark>	4
	kedalaman adalah $h = \frac{v}{2t}$	
	Menyelesaikan rencana pemecahan	
	$h = \frac{vt}{2}$	
	$h = \frac{1200}{2}3/4$	4
	h = 450 m	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	
	kekeliruan. Simpulan yang dapat diambil adalah ngurah tidak akan	
	selamat jika menyelam di laut tersebut karena kedalamanya sebesar	2
	800 m	
	M DIKS!	
2	Memahami m <mark>a</mark> salah	
	Diketahui:	
	Jari-jari karet (r) = 0,1 mm = 1×10^{-4} m	
	Massa jenis karet (ρ) = 27 x 10 ² Kg/m ³ F = 4N	2
		2
	$l_0 = 13 \text{ m}$	
	l = 15 m	
	Ditanya: cepat rambat bunyi pada karet	
	Merancang dan merencanakan solusi	
	Konsep yang digunakan adalah cepat rambat bunyi pada medium	
	padat yaitu sebagai berikut:	

	$v = \sqrt{\frac{E}{ ho}}$	
	•	
	$E = \frac{\sigma}{e}$	
	$\sigma = \frac{F}{A} \operatorname{dan} e = \frac{\Delta l}{l_0}$	4
	$A = \pi r^2$	4
	Menyelesaikan rencana pemecahan	
	$A = \pi r^2$	
	$A = 3.14(1 \times 10^{-4})^2$	
	$A = 3.14 \times 10^{-8} m^2$	4
	$\sigma = \frac{F}{A} = \frac{4}{3.14 \times 10^{-8} m^2}$	
	$\sigma = 1,27x \ 10^{8} N/m^2$	
	$e = \frac{\Delta l}{l_0} = \frac{15 - 13}{13} = 0.15$	
	.0	
	$E = \frac{\sigma}{e} = \frac{1,27x \cdot 10^8}{0,15} = 8,87x \cdot 10^8$	
	$v = \sqrt{\frac{E}{\rho}} = \sqrt{\frac{8.87 \times 10^8}{27 \times 10^2}}$	
	$v = \sqrt{0.31 \times 10^6} = 560 \text{m/s}$	
	Mem <mark>er</mark> iksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	
	ke <mark>k</mark> eliruan. Simpulan yang dapat <mark>diam</mark> bil adalah cepat ra <mark>m</mark> bat	2
	gel <mark>omb</mark> ang bunyi yang merambat pada karet adalah sebesar	
	560 m/s	
3	Memahami masalah	
	Diketahui:	2
	Satya me <mark>m</mark> iliki pipa organa terbuka dan tertutup Frekuensi n <mark>a</mark> da dasar pipa organa terbuka f _b adalah kuart dari nada	2
	dasar pipa organa tertutup	
	$l_B = 20 \text{ cm} = 0.2 \text{ m}$	
	Merancang dan merencanakan solusi	
	$f_{\rm B} = 4/3 \; f_{\rm T}$	
	panjang gelombang pipa organa terbuka	
	$\lambda_b = \frac{2l_B}{n+1}$	4
	panjang gelombang pipa organa tertutup	4
	$\lambda_T = \frac{4l_T}{2n+1}$	
	Menyelesaikan rencana pemecahan	
	*panjang gelombang pipa organa terbuka pada nada atas 1	
<u></u>	1 3 00 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0	

	T	
	$\lambda_B = rac{2l_B}{1+1} = l_B$, jadi $l_B = \lambda_B$	
	$v = \lambda_B f_B$	
	$f_B = \frac{v}{\lambda_B} = \frac{v}{l_B}$	
	* panjang gelombang pipa organa tertutup pada nada dasar	
	$\lambda_T = \frac{4l_T}{2(0)+1} = 4l_T$	
	$v = \lambda_T f_T$	
	$f_T = \frac{v}{\lambda_T} = \frac{v}{4l_T}$	
	*menghitung panjang l_B menggunakan perbantingan frekuensi	
	$\frac{f_B}{f_T} = \frac{\frac{v}{l_B}}{\frac{v}{d_{d_D}}}$	4
	$\frac{1}{f_T} - \frac{v}{4l_T}$	•
	$\frac{f_B}{f_T} = \frac{4l_T}{l_B}$	
	$l_B = \frac{f_T}{f_B} 4l_T$	
	$l_B = \frac{3}{4}(4)20$	
	$l_B = 60 cm$	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah bahwa panjang	
	pipa organa terbuka yang dimiliki satya adalah 60 cm, sehingga	
	pipa organa terbukanya lebih panjang daripada pipa organa tertutup	2
	yang dimilikinya	
4	Memahami masalah	
	Diketahui:	
	Oka dan Agus bergerak saling menjauhi, angin bergerak searah	
	dengan agus	
	Kecepatan pengamat $v_p = 10 \text{ m/s}$	2
	Kecepatan sumber $v_s = 15 \text{ m/s}$	2
	Kecepatan angin $v_a = 5 m/s$ Frekuensi sumber $f_s = 700 Hz$	
	Ditanya: Frekuensi yang didengar pengamat?	
	yan	
	Merancang dan merencanakan solusi	
	Pada soal diketahui bahwa pengamat dan pendengar bergerak	
	saling menjauhi, sedangkan arah angin menjauhi pendengar, maka	
	dalam kasus ini berlaku:	4
		4

£ _	<u>v</u> –	v_a –	v_{p}	
$f_p =$	\overline{v} –	$\frac{u}{v_a + }$	$\overline{v_s}^{J_S}$	

Menyelesaikan rencana pemecahan

$$f_p = \frac{(340-5)-10}{(340-5)+15}700$$

$$f_p = \frac{325}{350}700$$

$$f_p = 650 \; Hz$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah bahwa frekuensi yang didengar pengamat sebesar 650 Hz.

2

2

4

5 Memahami masalah

Diketahui:

Intensitasi gempa di Seririt ($I_s = 6x10^5 W/m^2$)

Jarak seririt ke sumber gempa (SP) =40 km

Jarak seririt ke tejakula (ST) sebesar 30 km

Ditanya: Berapakah intensitas gempa di tejakula?

Merancang dan merencanakan solusi

Untuk mencari jarak antara Tejakula dengan pusat gempa (TP) maka digunakan persamaan phytagoras

$$TP = \sqrt{SP^2 + ST^2}$$

$$I = \frac{P}{A} = \frac{P}{4\pi r^2}$$

Dengan perbandingan intensitas bunyi maka:

4

$$\frac{I_T}{I_S} = \frac{\frac{P}{4\pi T P^2}}{\frac{P}{4\pi S P^2}} = \frac{SP^2}{TP^2}$$

Menyelesaikan rencana pemecahan

$$TP = \sqrt{SP^2 + ST^2}$$

$$TP = \sqrt{40^2 + 30^2} = 50$$

$$I_T = \frac{SP^2}{TP^2} I_S$$

$$I_T = \frac{40^2}{50^2} 6x10^5 = 3.8 \ x \ 10^5 W/m^2$$

Memeriksa Kembali

	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	
	kekeliruan. Simpulan yang dapat diambil adalah intensitas gempa	2
	yang terasadi Tejakula sebesar 3,8 x $10^5 W/m^2$ yang menunjukan	
	lebih kecil daripada intensitas gempa yang terasa di Seririt.	
6	Memahami masalah	
	Diketahui:	
	$d = 0.4 \text{ mm} = 4 \times 10^{-4} m$	
	$\Delta p = 0.304 \ mm = 3.04 \ x \ 10^{-4} m$	2
	l = 25 cm = 0.25 m	
	Perintah: hitunglah panjang gelombang cahaya datang tersebut!	
	Merancang dan merencanakan solusi	
	Lokasi pita terang ke m dapat dicari dengan konsep berikut:	
	$m\lambda = d\frac{p_m}{d}$	
	$m\lambda=drac{p_m}{l}$ $p_m=rac{m\lambda l}{d}$	
	$p_m = \frac{m \lambda l}{l}$	
	Jarak dua pita terang berturut-turut dapat dicari dengan	
	mengambil pita ke m dan pita ke (m+1)	4
	$\Delta p = p_{m+1} - p_m$ $(m+1) \frac{1}{2l} = m \frac{1}{2l}$	
	$\Delta p = \frac{(m+1)\lambda l}{d} - \frac{m\lambda l}{d} = \frac{\lambda l}{d}$ $\lambda = d \frac{\Delta p}{l}$	
	Δp a a	
	$\lambda = d \frac{1}{1}$	
	Menyelesaikan rencana pemecahan	
	$\lambda = d \frac{\Delta p}{l}$	
	$\lambda = \frac{4 \times 10^{-4} \cdot 3,04 \times 10^{-4}}{0,25}$	4
	$\lambda = {0.25}$	
	$\lambda = 4,864 \ x \ x \ 10^{-7} m$	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	_
	kekeliruan. Simpulan yang dapat diambil adalah panjang gelombang	2
	cahaya tersebut sebesar 4,864 $x \times 10^{-7} m$	
7	Memahami masalah	
	Diketahui:	
	n bensin = $1,50$	2
	n kaca = 1,40	
	1,10	

_

	Ditanya: Ketebalan minimum <i>t</i> dari lapisan tipis?	
	Merancang dan merencanakan solusi	
	Syarat cahaya biru mengalami interferensi destruktif pada lapisan	
	tipis adalah	
	$2nt = m\lambda ; m = 0, 1, 2, \dots$	4
	$t = \frac{m\lambda}{2n}$	
	Untuk t minimum dengan $t \neq 0$, diperoleh dengan mengambil	
	bilangan bulat m = 1.	
	Menyelesaikan rencana pemecahan	
	$t = \frac{m\lambda}{2n}$	
	Zit .	4
	$t = \frac{1(468)}{21.5} = 156 nm$	4
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	
	kekelir <mark>uan</mark> . Simpulan yang dapat diambil adalah keteba <mark>lan</mark>	2
	minimum lapisan tipis tersebut sebesar 156 nm	
8	Memahami masalah	
	Diketahui:	
	Panjang gelombang $\lambda = 6 \times 10^{-7} m = 6000 \times 10^{-7} mm$	
	Lebar celah d = 0,1 mm	
	Jarak celah ke layar L = 40 cm = 400 mm	2
	Pita gelap ke-3 berarti n = 3	
	Ditanya: jarak antara pita gelap ke tiga dengan titik tengah terang	
	pusat?	
	Meranca <mark>ng</mark> dan mere <mark>ncanakan solusi</mark>	
	P Pita gelap ke-3	
	Menghitung sudut simpang θ :	
	$d\sin\theta = n\lambda$	4
	Pita terang pusat $\sin \theta = \frac{n\lambda}{d}$	4
	$\sin\theta = \frac{Y}{L}$	
	$\sin \theta = \frac{Y}{L}$	
	$Y = L \sin \theta$	
	Menyelesaikan rencana pemecahan	
	$0.1\sin\theta = 3(6000 \times 10^{-7})$	
	$\sin\theta = \frac{18000 x 10^{-7}}{0,01} = 0,018 mm$	
	$Y = L \sin \theta$	
	. 1 Jiii V	<u> </u>

	Y = 400(0.018) = 7.2 mm	4
		4
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	
	kekeliruan. Simpulan yang dapat diambil adalah jarak pita gelap	2
	ke 3 dengan terang pusat sebsar 7,2 mm	2
9	Memahami masalah	
	Diketahui:	
	$\lambda = 660 \text{ nm}$	
	jarak antara pita = 6 mm	2
	Ditanya: Bila diinginkan jarak antar pita 5 mm, maka panjang	
	gelombang cahaya monokromatis yang diperlukan sebesar?	
	Merancang dan merencanakan solusi	
	Syarat terjadi pit <mark>a te</mark> rang untuk kisis difraksi <mark>ada</mark> lah	
	$d\sin\theta = n\lambda$	
	$d\frac{Y}{L} = n\lambda$ maka $y = n\frac{\lambda L}{d}$	
	Jarak antara pita terang, misalnya pita terang ke-1, y ₁ , dan pita	
	terang ke-2, y ₂ adalah	4
	$\Delta y = y_2 - y_1$	4
	$2\frac{\lambda L}{d} - 1\frac{\lambda L}{d}$	
	$\Delta y = \frac{\lambda L}{d}$	
	Untuk kisi difraksi yang sama, L dan d tetap, sehinggga Δy	
	sebanding dengan λ , maka	
	$\frac{\Delta y^2}{\Delta y^1} = \frac{\lambda^2}{\lambda 1}$	
	Menyelesaikan rencana pemecahan	
	$\frac{\Delta y^2}{\Delta y^1} = \frac{\lambda^2}{\lambda_1}$	
	$\lambda 2 = \lambda 1 \frac{\Delta y^2}{\Delta y^1}$	4
	$\lambda 2 = 600\frac{5}{6}$	
	$\lambda 2 = 550 nm$	
	Memeriksa Kembali	
	Setelah diperiksa baik konsep, dan perhitungan tidak terdapat	2
	kekeliruan. Simpulan yang dapat diambil adalah panjang	
	gelombang cahaya monokromatis yang diperlukan sebesar 550 nm	
10	Memahami masalah	
	Diketahui:	
	Indeks bias kaca = 1,5	2
<u> </u>	1	<u> </u>

Indeks bias kaca = 1,44

sudut datang yang dibentuk adalah 2,08

Ditanya: apakah sinar pantulnya terpolarisasi?

Merancang dan merencanakan solusi

Berdasarkan Hukum Brewster, sudut pantul sinar terpolarisasi adalah

$$\tan i_p = \frac{n_2}{n_1}$$

$$i_p = \tan^{-1} \left(\frac{n_2}{n_1}\right)$$

Menyelesaikan rencana pemecahan

$$i_p = \tan^{-1}\left(\frac{n_2}{n_1}\right)$$

$$i_p = \tan^{-1}\left(\frac{1,5}{1,44}\right)$$

$$i_p = 46,1^o$$
4

2

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cahaya tidak mengalami polarisasi, sudut yang dibentuk harusnya 46,1°

Lampiran 2.1 Daftar Hasil Uji Coba Tes Kemampuan Pemecahan Masalah Siswa

	o Kelas Nama			No butir									
No	Kelas	Nama	1	2	3	4	5	6	7	8	9		
1	XII IPA 3	Dinny Aryanthi	8	3	8	4	6	10	6	5	3		
2	XII IPA 3	Gede Elio Yogiswara	10	4	12	5	12	12	12	5	10		
3	XII IPA 3	Gede Raditya Arya Wiguna	10	5	0	0	0	0	8	4	0		
4	XII IPA 3	Gusti Ayu Made Suciandini	8	8	4	4	6	12	12	4	4		
5	XII IPA 3	I Gede Hendri Candra Utama	0	0	0	8	0	6	8	6	0		
6	XII IPA 3	I Gede Tegar Angkasa Putra	10	6	8	4	10	10	12	4	4		
7	XII IPA 3	I Gusti Ayu Diah Dharmayanti	2	3	4	4	0	2	5	0	0		
8	XII IPA 3	I Komang Gede Widi Widana	4	2	4	4	4	2	2	0	0		
9	XII IPA 3	Kadek Adi Surya Negara	10	6	12	6	10	10	11	0	6		
10	XII IPA 3	Kadek Candra Wijaya	8	4	0	6	6	8	8	4	0		
11	XII IPA 3	Kadek Candrika Wirananda	10	8	8	12	8	10	6	4	4		
12	XII IPA 3	Kadek Kurnia Paramitadewi	6	8	0	4	0	0	4	4	4		
13	XII IPA 3	Kadek Sri Sutami	4	4	4	6	12	8	8	2	2		
14	XII IPA 3	Kadek Sumertayasa	10	10	12	4	10	10	4	0	0		
15	XII IPA 3	Ketut Gede Adi Putra Laksana	10	8	0	10	12	12	12	10	0		
16	XII IPA 3	Ketut Sartikawati	0	0	2	0	4	10	3	4	0		
17	XII IPA 3	Komang Dicky Ari Prayudha	0	2	0	4	4	6	2	0	0		
18	XII IPA 3	Komang Puja Gayatri	2	3	4	4	0	2	5	0	0		
19	XII IPA 3	Komang Yesi Mahayani	8	4	4	4	10	12	10	4	0		
20	XII IPA 3	Made Diva Putera Ananta	6	4	4	12	0	8	0	0	4		
21	XII IPA 3	Made Udiyana Tangkas Sukma	0	4	0	0	0	6	4	6	0		
22	XII IPA 3	Made Wanda Rismayani	8	5	0	5	10	10	12	12	12		
23	XII IPA 3	Michael Tanaya	10	8	4	4	10	4	12	12	0		
24	XII IPA 3	Ngurah Komang Adyodya	0	8	12	0	12	0	0	0	0		
25	XII IPA 3	Ni Luh Putu Intan Cahyani Putri	10	4	0	0	8	11	4	0	4		
26	XII IPA 3	Ni Made Ayu Dewi Wahyuni	12	5	11	0	10	4	12	12	10		
27	XII IPA 3	Ni Made Widya Purnama Santi	12	8	10	12	8	12	12	6	8		
28	XII IPA 3	Ni Putu Risma Maharani	5	0	0	5	6	12	10	4	0		
29	XII IPA 3	Putu Ayu Sri Wahyuningsih	8	8	10	6	10	8	8	4	4		
30	XII IPA 3	Putu Ritika Dewi.A	12	6	8	4	12	12	10	4	4		
31	XII IPA 3	Putu Wisesa Putri	10	6	4	0	8	12	6	4	10		
32	XI IPA 4	Aris Kristian Leri	10	12	10	6	6	0	12	6	6		
33	XI IPA 4	Buana Santi Gotami	8	8	10	0	10	8	10	6	4		
34	XI IPA 4	Desak Made Dhitri Rahayu		6	4	0	0	2	2	2	4		
35	XI IPA 4	Fara Carisa Fernanda Buan		4	2	0	0	4	4	4	0		
36	XI IPA 4	Fenny Wijaya		0	4	5	5	4	4	7	5		
37	XI IPA 4	I Dewa Made Ari Wiguna		2	4	5	5	4	4	5	0		
38	XI IPA 4	I Gede Maha Putra		8	5	0	0	5	6	6	4		
39	XI IPA 4	I Gede Restuyasa		10	12	12	4	10	10	12	0		
40	·			12	12	0	0	12	12	8	4		

41	XI IPA 4	I Komang Metasuta	10	10	12	8	10	12	12	1	7
42	XI IPA 4	Kadek Brahmanta Yudha	8	12	10	8	0	8	0	6	6
43	XI IPA 4	Kadek Budi Indrayana	10	10	8	2	10	12	8	6	8
44	XI IPA 4	Kadek Chintia Ananda Savitri	10	12	12	4	12	12	8	8	8
45	XI IPA 4	Kadek Indira Lokahita	8	12	12	10	8	12	12	10	0
46	XI IPA 4	Ketut Rani Meylandri	10	6	4	8	0	6	8	6	0
47	XI IPA 4	Komang Puji Astuti	10	12	10	4	12	10	12	0	0
48	XI IPA 4	Luh Putu Widia Utami Putri	10	8	10	8	8	0	12	6	12
49	XI IPA 4	Made Adhika Laksamana Gara	4	0	4	4	2	5	4	0	4
50	XI IPA 4	Made Mutiara	6	4	6	4	6	6	6	6	0
51	XI IPA 4	Made Sastra Arta Wiguna	10	12	8	8	0	12	12	0	0
52	XI IPA 4	Made Widi Aryani	10	4	12	10	12	10	12	10	0
53	XI IPA 4	Ni Komang Lina Cahyani	10	8	4	4	6	6	6	4	0
54	XI IPA 4	Ni Luh Ayu Devi Faradilla Eka	10	0	10	9	8	0	8	4	0
55	XI IPA 4	Ni Luh Sri Laksmi Ariyani	8	12	8	10	12	12	12	10	8
56	XI IPA 4	Ni Nyoman Yulia Pusparini	10	12	12	8	12	12	12	12	8
57	XI IPA 4	Nyoman Aditya Winocita	10	6	12	12	0	12	12	10	0
58	XI IPA 4	Nyoman Kalyana Mitta Wibawa	6	6	8	6	2	8	2	4	2
59	XI IPA 4	Paramita Wijaya	0	0	4	2	0	0	0	4	0
60	XI IPA 4	Putu Bagus Hartawan Okatama	10	10	6	10	12	12	10	0	10
61	XI IPA 4	Samuel Kenny Then	4	0	4	4	4	4	2	4	2
62	XI IPA 4	Sherlie Krisdayanti Dermawan	10	12	4	4	10	8	8	6	12
63	XI IPA 5	Ahmad Zufar	8	12	8	2	12	10	12	8	0
64	XI IPA 5	Alif	2	4	10	12	12	10	0	8	0
65	XI IPA 5	Andy Reza Aditya	4	4	12	0	12	6	12	12	0
66	XI IPA 5	Desak Made Apriliani	10	12	12	8	12	8	8	0	0
67	XI IPA 5	Desak Nyoman Utami	10	4	4	0	0	4	0	4	2
68	XI IPA 5	Dewa Gede Kevin Krisna	10	8	12	10	12	8	0	10	2
69	XI IPA 5	Dimas Bagus Prayogi Bintara	8	10	12	12	10	10	8	0	0
70	XI IPA 5	Dinda Pramesti Kartika *)	10	10	4	0	12	8	12	8	12
71	XI IPA 5	Elfanisa Lukitasari	10	10	4	2	2	10	10	4	8
72	XI IPA 5	Fandy Kusumaraditya Datar	8	6	0	0	0	10	0	0	0
73	XI IPA 5	I Gusti Ketut Adi Purnama Yasa	10	6	12	6	10	5	8	8	0
74	XI IPA 5	I Kadek Berli Arya Sujana	6	8	2	0	0	6	6	0	8
75	XI IPA 5	I Putu Yoga Widiantara	10	12	6	8	10 6	10 8	8	6 12	0
76	XI IPA 5	Ida Ayu Agung Widyamanda	10	12	4	8	8	6	0	8	12
77 78	XI IPA 5 XI IPA 5	Kadek Tyas Mutiaraning Suari	10	10		6	6	8	8	0	0
79		Ketut Nanda Maharanthi Khairunnisa Atika Nur Affia	10	10	6 10	4	4	8	10	12	8
80	XI IPA 5 XI IPA 5	Knairunnisa Auka Nur Airia Komang Amanda Ayu Harpita	10	4	0	8	4	8	4	$\frac{12}{0}$	0
81	XI IPA 5	Komang Dian Merta Sari Dewi	10	8	8	6	10	12	6	8	12
82	XI IPA 5	Komang Oca Swari Widiasrini	10	10	6	6	10	4	8	8	6
83	XI IPA 5	Luh Krisna Weda Yanti	10	8	6	6	10	12	12	8	12
84	XI IPA 5	Made Andini Putri Adelia	10	12	10	0	10	8	12	8	12
85	XI IPA 5	Ni Kadek Siva Ayu	6	6	8	6	0	8	0	0	0
86	XI IPA 5	Ni Luh Putu Mila Sasmita	5	6	4	4	8	0	0	0	0
87	XI IPA 5	Nur Azizyah Putri Dewita	10	12	6	8	12	8	8	0	0
,	1		- 0		J			J	J	J	

88	XI IPA 5	Nyoman Candra Pramesti	8	10	10	10	10	8	10	10	12
89	XI IPA 5	Orion Reffa Gde Ari Putra	6	2	10	10	10	4	4	8	0
90	XI IPA 5	Putu Amelia Savitha Diana Putri	8	2	2	2	8	8	0	6	6
91	XI IPA 5	Putu Bagaskara Widy Putra	10	12	8	10	10	12	8	12	0
92	XI IPA 5	Putu Wulan Aprilina Kartini	10	8	8	8	12	8	8	6	10
93	XI IPA 5	Salsabila Oktavira	10	12	12	4	4	10	12	0	8

No No butir Total	
10 11 12 13 14 15 16 71	
1 0 6 0 4 4 2 2 126	
2 12 10 8 8 0 6 0 35	
3 0 0 0 4 4 0 0 74	
4 0 6 6 0 0 0 0 56	
5 10 4 4 6 0 4 0 128	
6 10 10 12 10 8 0 10 39	
7 0 4 0 0 3 4 8 34	IRAN
8 2 0 2 4 0 2 2 119	440
9 10 10 8 10 10 0 80	
10 10 0 8 6 8 0 4 122	
11 10 8 10 12 8 0 4 36	
12 0 2 0 0 0 4 0 78	72
13 10 4 10 0 4 0 0 86	
14 10 4 0 6 6 0 0 146	M
15 12 12 12 12 0 12 12 43	1 V3
16 12 0 4 0 0 4 0 30	
17 2 0 2 4 0 2 2 31	
18 0 4 0 0 3 4 0 79	TO
19 0 2 0 4 10 3 4 52	
20 0 0 4 4 4 0 2 46	-<
21 10 4 2 6 0 4 0 112	
22 0 12 12 10 4 0 0 104	
23 12 12 10 0 0 0 6 70	HA
24 8 10 8 4 0 0 8 102	
25 10 10 12 12 10 5 2 138	-
26 4 12 10 8 10 10 8 140	
27 10 8 12 12 0 0 10 62	
28 0 2 0 4 2 8 4 134	
29 10 10 10 12 12 10 4 116	
30 4 12 12 10 0 0 6 122	
31 10 4 10 10 4 12 12 116	
32 8 12 10 12 0 4 2 97	
33 4 7 5 5 4 4 4 51	
34 5 4 4 7 5 0 0 36	
35 0 8 0 0 0 4 2 75	
36 5 4 4 4 5 6 5 41	
37 4 2 2 0 0 0 0 52	

38	0	0	2	2	2	4	2	137	
39	10	12	12	4	7	12	10	120	
40	12	2	8	12	8	0	8	158	
41	12	10	11	10	8	12	10	86	
42	8	6	6	0	0	4	4	126	
43	10	4	10	10	0	8	10	124	
44	10	4	10	10	0	2	2	147	
45	10	12	12	12	0	12	5	92	
46	10	10	12	0	0	6	6	128	
47	10	8	8	8	10	4	10	139	
48	10	10	11	8	10	8	8	63	
49	5	4	5	5	7	6	4	54_	
50	0	8	2	0	0	0	0	128	
51	12	12	12	12	0	8	10	132	
52	12	10	8	12	0	0	10	54	
53	0	0	4	2	0	0	0	89	
54	10	8	12	0	0	10	0	136	DIKANCALL
55	8	8	10	12	0	4	2	148	THE STATE OF THE S
56	10	12	6	12	0	0	10	112	
57	10	12	12	4	0	0	0	76	h 71
58	4	8	2	10	6	2	0	20	
59	0	8	2	0	0	0	0	124	// 2
60	12	12	4	2	4	8	2	38	
61	0	2	4	2	2	0	0	134	
62	12	10	0	10	12	12	4	122	
63	12	8	4	12	6	8	0	106	
64	10	8	8	12	0	0	10	116	
65	12	12	12	8	10	0	0	122	VVV
66	0	12	10	8	12	0	10	52	
67	8	0	0	6	6	4	0	122	
68	12	12	10	0	0	12	4	128	
69	10	8	10	12	0	8	10	104	A D
70 71	10	16	12	2	6	6	0	112 58	81.
72	10	10	8	0	6	0	0	99	
73	10	10	8	0	6	0	0	70	
74	8	8	8	6	4	0	0	70	
75	0	0	10	0	0	0	10	120	
76	10	0	12	12	0	4	0	80	
77	8	8	6	0	0	0	2	84	
78	4	4	10	10	4	0	0	144	
79	10	10	12	8	12	10	6	50	
80	2	0	0	2	0	4	4	118	
81	8	8	0	0	0	12	10	98	
82	0	8	0	8	8	6	0	108	
83	10	0	2	0	4	4	4	142	
0.5	8	10	12	12	12	6	0	46	

85	4	0	2	0	6	0	0	39
86	0	0	2	0	2	8	0	94
87	0	12	10	8	0	0	0	130
88	6	8	12	8	8	0	0	64
89	0	6	0	4	0	0	0	58
90	0	8	0	8	0	0	0	93
91	2	0	1	4	0	0	4	132
92	12	12	8	12	10	0	0	128
93	10	10	10	12	0	8	6	71

Kelompok Atas (27%)

						N	o but	ir				
No	Nama	1	2	3	4	5	6	7	8	9	10	11
1	Ni Nyoman Yulia Pusparini	10	12	12	8	12	12	12	12	8	10	12
2	I Komang Metasuta	10	0	12	8	10	12	12	4	7	12	10
3	Ketut Gede Adi Putra Laksana	10	8	0	10	12	12	12	10	0	12	12
4	Khairunnis <mark>a</mark> Atika Nur Affia	10	10	10	4	4	8	10	12	8	10	10
5	Made Andini Putri Adelia	10	12	10	0	10	8	12	8	12	8	10
6	Ni Made Widya Purnama Santi	12	8	10	12	8	12	12	6	8	10	8
7	Luh Putu Widia Utami Putri	10	8	10	8	8	0	12	6	12	10	10
8	Ni Ma <mark>d</mark> e Ayu Dewi Wahyuni	12	5	11	0	10	4	12	12	10	4	12
9	Putu Ayu Sri Wahyuningsih	8	8	10	6	10	8	8	4	4	10	10
10	Made Widi Aryani	10	4	12	10	12	10	12	10	0	12	10
11	Putu Wulan Aprilina Kartini	10	8	8	8	12	8	8	6	10	12	12
12	Dimas Bagus Prayogi Bintara	8	10	12	12	10	10	8	0	0	10	8
13	I Gede Re <mark>st</mark> uyasa	0	10	12	12	4	10	10	3	0	10	12
14	Salsabila <mark>O</mark> ktavira	10	12	12	4	4	10	12	0	8	10	10
15	I Gede Te <mark>ga</mark> r Angkasa P <mark>utra</mark>	10	6	8	4	10	10	12	4	4	10	10
16	Ni Luh Sri L <mark>ak</mark> smi Ariyani	8	12	8	10	12	12	12	2	8	8	8
17	Kadek Budi Indrayana	10	10	8	2	10	12	8	6	8	10	4
18	Gede Elio Yogis <mark>w</mark> ara Sumerta	10	4	12	5	12	12	12	5	10	12	10
19	Nyoman Candra Pramesti	8	10	10	10	10	8	10	6	12	6	8
20	Kadek Indira Lokahita	8	0	12	10	8	12	12	0	0	10	12
21	Putu Bagus Hartawan Okatama	10	10	6	10	12	12	10	0	10	12	12
22	Putu Wisesa Putri	10	6	4	0	8	12	6	4	10	10	4
23	Ahmad Zufar	8	12	8	2	12	10	12	8	0	12	8
24	Dewa Gede Kevin Krisna	10	8	12	10	12	8	0	10	2	12	12
25	Sherlie Krisdayanti Dermawan	10	0	4	4	10	8	8	6	12	12	10

No		No butir									
NO	12	13	14	15	16	148					
1	6	12	0	0	10	148					

2	11	10	8	12	10	146
3	12	12	0	12	12	144
4	12	8	12	10	6	142
5	12	12	12	6	0	140
6	12	12	0	0	10	139
7	11	8	10	8	8	138
8	10	8	10	10	8	134
9	10	12	12	10	4	132
10	8	12	0	0	10	132
11	8	12	10	0	0	128
12	10	12	0	8	10	128
13	12	4	7	12	10	128
14	10	12	0	8	6	128
15	12	10	8	0	10	128
16	10	12	0	4	2 🤞	126
17	10	10	0	8	10	126
18	8	8	0	6	0	126
19	12	8	8	0	0	125
20	12	12	0	12	5	124
21	4	2	4	8	2	122
22	10	10	4	12	12	122
23	4	12	6	8	0	122
24	10	0	0	12	4	122
25	0	10	12	12	4	148
						- 11

Kelompok Bawah (27%)

									3			
No	Nama		ATA	W.		N	o but	ir				
NO	Nama	1	2	3	4	5	6	7	8	9	10	11
1	Ni Putu Risma Maharani	0	0	0	8	0	6	8	6	0	10	4
2	Fandy Kusumaraditya Datar	10	8	4	4	6	6	6	4	0	0	0
3	Putu Amelia Savitha Diana	6	4	6	4	6	6	6	6	0	0	8
4	I Gede Hendri Candra Utama	6	4	4	12	0	8	0	0	4	0	0
5	Ni Komang Lina Cahyani	6	8	5	0	0	5	6	6	4	0	0
6	Made Mutiara	10	4	4	0	0	4	0	4	2	8	0
7	Made Diva Putera Ananta	6	6	4	0	0	2	2	2	4	5	4
8	I Gede Maha Putra	10	4	0	8	4	8	4	0	0	2	0
9	Desak Nyoman Utami D	4	10	4	5	5	4	4	5	0	4	2
10	Desak Made Dhitri Rahayu	0	4	0	0	0	6	4	6	0	10	4
11	Komang Amanda Ayu Harpita	6	6	8	6	0	8	0	0	0	4	0
12	I Dewa Made Ari Wiguna	0	0	2	0	4	10	3	4	0	12	0
13	Made Udiyana Tangkas Sukma	2	3	4	4	0	2	5	0	0	0	4
14	Ni Kadek Siva Ayu	5	6	4	4	8	0	0	0	0	0	0
15	Ketut Sartikawati	4	0	4	4	4	4	2	4	2	0	2
16	I Gusti Ayu Diah Dharmayanti	4	4	2	0	0	4	4	4	0	0	8
17	Ni Luh Putu Mila Sasmita	6	8	0	4	0	0	4	4	4	0	2

18	Samuel Kenny Then	10	5	0	0	0	0	8	4	0	0	0
19	Fara Carisa Fernanda Buan	4	2	4	4	4	2	2	0	0	2	0
20	Kadek Kurnia Paramitadewi	2	3	4	4	0	2	5	0	0	0	4
21	Gede Raditya Arya Wiguna	0	2	0	4	4	6	2	0	0	2	0
22	I Komang Gede Widi Widana	0	0	4	2	0	0	0	4	0	0	8
23	Komang Puja Gayatri	0	2	0	4	4	6	2	0	0	2	0
24	Komang Dicky Ari Prayudha	4	2	4	4	4	2	2	0	0	2	0
25	Paramita Wijaya	0	0	4	2	0	0	0	4	0	0	8

No		N	o but	ir		Total
INO	12	13	14	15	16	148
1	4	6	0	4	0	56
2	4	2	0	0	0	54
2	2 4 2 0 4	0	0	0	0	54
5	4	4	4	0	2	52
5	2	2	2	4	2	52
6	0	6	6	4	0	52
7 8	4	7	5	0	0	51
	0		0	4	4	50
9	2 2 2 4	0	0	0	0	49
10	2	6	0	4	0	46
11	2	0	6	0	0	46
12	4	0	0	4	0	43
13	0	0	3	4	8	39
14	4	0	2	8	0	39
15	4	2	2	0	0	38
16	0	0	0	4	2	36
17	0	0	0	4	0	36
18	0	4	4	0	0	35
19	2	4	0	2	0	34
20	0	0	3	2 4 2 0		31 30
21	2	4	0	2	0	30
22	2	0	0	0		20
23	2	4	0	2	2	30
20 21 22 23 24 25	2 0 2 2 2 2 2	4	0	2 0	2 0	34
25	2	0	0	0	0	20

Lampiran 2.2 Hasil Analisis IDB dan IKB dari data Hasil Uji Coba

A. Analisis Indeks Daya Butir (IDB)

					No	Butir I	tem				
	1	2	3	4	5	6	7	8	9	10	11
Jumlah Responden		93									
Kelompok Atas dan Bawah (N)						25					
Jumlah Skor K. Atas (∑H)	232	193	233	169	242	240	254	144	163	254	244
Jumlah Skor K.Bawah (∑L)	105	95	75	87	53	101	79	67	20	63	58
Skor Maksimum	12	12	12	12	12	12	12	12	12	12	12
Skor Minimum	0	0	0	0	0	0	0	0	0	0	0
Skor max-Skor min	12	12	12	12	12	12	12	12	12	12	12
Σ H- Σ L	127	98	158	82	189	139	175	77	143	191	186
N (Skor max- Skor min)	300	300	300	300	300	300	300	300	300	300	300
Indeks Daya Beda (IDB)> 0,20	0.42	0.33	0.53	0.27	0.63	0.46	0.58	0.26	0.48	0.64	0.62

IDB	Valid										
-----	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------

		No :	Butir It	em	
	12	13	14	15	16
Jumlah Responden			93		
Kelompok Atas dan Bawah (N)			25		
Jumlah Skor K. Atas (∑H)	236	240	123	178	153
Jumlah Skor K.Bawah (∑L)	48	57	37	56	26
Skor Maksimum	12	12	12	12	12
Skor Minimum	0	0	0	0	0
Skor max-Skor min	12	12	12	12	12
∑H-∑L	188	183	86	122	127
N (Skor max- Skor min)	300	300	300	300	300
Indeks Daya Beda (IDB)> 0,20	0.63	0.61	0.29	0.41	0.42
IDB	Valid	Valid	Valid	Valid	Valid

B. Analisis Indeks Kesukaran Butir (IKB)

	1	811	T'a	1.8	No	Butir I	tem				
	1	2	3	4	5	6	7	8	9	10	11
Jumlah Responden			PROMI	100	-	93					
Kelompok Atas dan Bawah (N)	25										
Jumlah Skor K. Atas (∑H)	232	193	233	169	242	240	254	144	163	254	244
Jumlah Skor K.Bawah (∑L)	105	95	75	87	53	101	79	67	20	63	58
Skor Maksimum	12	12	12	12	12	12	12	12	12	12	12
Skor Minimum	0	0	0	0	0	0	0	0	0	0	0
2N Skor min	0	0	0	0	0	0	0	0	0	0	0
Skor max-Skor min	12	12	12	12	12	12	12	12	12	12	12
Σ H+ Σ L- 2N Skor min	337	288	308	256	295	341	333	211	183	317	302
2N (Skor max- Skor min)	600	600	600	600	600	600	600	600	600	600	600
Indeks Kesukaran Butir (IKB): 0,30-0,70	0.56	0.48	0.51	0.43	0.49	0.57	0.56	0.35	0.30	0.53	0.50

		No 1	Butir It	em	
	12	13	14	15	16
Jumlah Responden			93		
Kelompok Atas dan Bawah (N)			25		
Jumlah Skor K. Atas (∑H)	236	240	123	178	153
Jumlah Skor K.Bawah (∑L)	48	57	37	56	26
Skor Maksimum	12	12	12	12	12
Skor Minimum	0	0	0	0	0
2N Skor min	0	0	0	0	0
Skor max-Skor min	12	12	12	12	12
∑H+∑L- 2N Skor min	284	297	160	234	179
2N (Skor max- Skor min)	600	600	600	600	600
Indeks Kesukaran Butir (IKB): 0,30-0,70	0.47	0.49	0.27	0.39	0.29
IKB	Valid	Valid	Tidak Valid	Valid	Tidak Valid

Lampiran 2.3 Hasil Analisis Konsistensi Internal Butir dari Data Hasil Uji Coba

1	Corelations		Kategori	
		Jumlah	Kategori	
Soal 1	Pearson Corelations	0,92	Valid	
	N	93	v and	
Soal 2	Pearson Corelations	0,61	Valid	
	N	93	v and	
Soal 3	Pearson Corelations	0,64	Valid	
	N	93	v and	
Soal 4	Pearson Corelations	0,35	Valid	
	N	93	vanu	
Soal 5	Pearson Corelations	0,58	Valid	
	N	93	v and	
Soal 6	Pearson Corelations	0,57	Valid	
	N	93	v and	
Soal 7	Pearson Corelations	0,70	Valid	
	N	93	v allu	

Soal 8	Pearson Corelations	0.41	
Soal 8		041	Valid
	N	93	v arra
Soal 9	Pearson Corelations	0,48	Valid
	N	93	v and
Soal 10	Pearson Corelations	0,64	Valid
	N	93	v and
Soal 11	Pearson Corelations	0,61	Valid
	N	93	v and
Soal 12	Pearson Corelations	0,68	Valid
	N	93	v and
Soal 13	Pearson Corelations	0,64	Valid
	N	93	v and
Soal 14	Pearson Corelations	0,39	Valid
	N	93	v and
Soal 15	Pearson Corelations	0,38	Valid
	N	93	v allu
Soal 16	Pearson Corelations	0,23	Tidak Valid
	N	93	Tidak valid

Lampiran 2.4 Hasil Analisis Reliabilitas Tes Kemampuan Pemecahan Masalah

Case Processing Summary								
N %								
Cases	Valid	93	100.0					
	Excluded ^a	0	0.					
	Total	93	100.0					
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100					

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics						
Cronbach's						
Alpha	N of Items					
.837	10					

Lampiran 2.5 Rekapitulasi Hasil Analisis Uji Coba Tes Kemampuan Pemecahan Masalah

No	Indeks Daya Beda		ks Daya Beda Indeks Kesukaran Butir		Konsi	istensi Internal Butir	Keputusan				
	dhitung	Kriteria	dhitung	Kriteria	r hitung	Kriteria					
1	0.42	Sedang	0.56	Sedang	0,92	Konsisten ()	Digunakan				
2	0.33	Rendah	0.48	Sedang	0,61	Konsisten	Tidak Digunakan				
3	0.53	Sedang	0.51	Sedang	0,64	Konsisten	Digunakan				
4	0.27	Rendah	0.43	Sedang	0,35	Konsisten	Tidak Digunakan				
5	0.63	Tinggi	0.49	Sedang	0,58	Konsisten	Digunakan				
6	0.46	Sedang	0.57	Sedang	0,57	Konsisten	Digunakan				
7	0.58	Sedang	0.56	Sedang	0,70	Konsisten	Digunakan				
8	0.26	Rendah	0.35	Sukar	0,41	Konsisten	Tidak Digunakan				
9	0.48	Sedang	0.30	Sukar	0,48	Konsisten	Tidak Digunakan				
10	0.64	Tinggi	0.53	Sedang	0,64	Konsisten	Digunakan				
11	0.62	Tinggi	0.50	Sedang	0,61	Konsisten	Digunakan				
12	0.62	Tinggi	0.47	Sedang	0,68	Konsisten	Digunakan				
13	0.61	Tinggi	0.49	Sedang	0,64	Konsisten	Digunakan				
14	0.29	Rendah	0.27	Sukar	0,39	Konsisten	Digunakan				
15	0.41	Sedang	0.39	Sukar	0,38	Konsisten	Tidak Digunakan				

16	0.42	Cadana	0.29	Culzon	0,23	Tidak	Tidak Digunakan
10	0.42	Sedang	0.29	Sukar	0,23	Konsisten	

Lampiran 3.1 Contoh RPP Kelas Eksperimen Pertama (PBFC) RENCANA PELAKSANAAN PEMBELAJARAN

(RPP)

KELAS EKSPERIMENT

Satuan Pendidikan : SMA Negeri 8 Denpasar – Bali

Mata Pelaj<mark>ar</mark>an : Fisika

Kelas/Semester : XI IPA/Ganjil

Materi Pokok : Gelombang Bunyi dan Cahaya

Alokasi Waktu : 2 JP (2 x 45 menit) Pertemuan Ke-4

A. KOMPETENSI INTI

KI 1: Menghayati dan mengamalkan ajaran agama yang dianutnya

KI 2 : Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.

KI 3 : Memahami, menerapkan, menganalisis pengetahuan faktual konseptual, prosedural berdasarkan rasa ingintahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.

KI 4 : Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di seklah secara mandiri, dan mampu menggunakan metoda sesuai kaidah keilmuan.

B. KOMPETENSI DASAR

Kompetensi Dasar	Indikator Pencapaian Kompetensi
3.10 Menerapkan konsep dan prinsip	3.10.8 Menganalisis fenomena dispersi
gelomba <mark>n</mark> g bunyi <mark>dan cahaya</mark>	cahaya
dalam teknologi	3.10.9 Memahami konsep interferensi
	gelombang cahaya dalam kehidupan
	sehari-hari
4.10 Melakukan percobaan tentang	4.10.4 Melakukan percobaan interferensi
gelombang bunyi dan/atau	cahaya
cahaya, berik <mark>ut present</mark> asi hasil	
dan makna fisisnya misalnya	
sonometer, dan kisi difraksi	

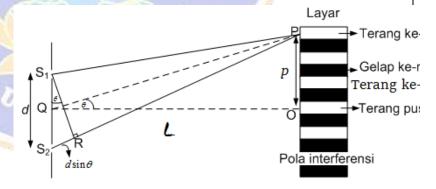
C. TUJUAN PEMBELAJARAN

Melalui pendekatan scientific dan model pembelajaran *Problem Based Flipped Classroom*, siswa dituntut mampu menganalisis fenomena disperse cahaya, konsep interferensi serta penerapannya dalam kehidupan sehari-hari, sehingga siswa mampu menghayati dan mengamalkan ajaran agama yang dianutnya melalui bersyukur,

menunjukan perilaku mandiri, dan mampu berkerjasama, dan dapat mengembangkan budaya literasi, kemampuan berfikir kritis, berkomunikasi berkolaborasi dan berkreasi

D. Materi Pembelajaran

Pengetahuan	Sinar matahari yang masuk dari jendela yang terbuka
faktual	2. Cahaya yang menembus benda bening
	3. Televisi yang mengalami kemajuan dari yang hanya berwarna hitam putih, kini bervariasi
Konseptual	Cahaya memiliki beberapa sifat gelombang antara lain cahaya dapat
	merambat lurus, cahaya dapat menembus benda, cahaya dapat
A	memantul, cahaya dapat membias, dan cahaya dapat diuraikan
	menjadi beberapa warna
Prnsip	Sifat-Sifat Gelombang Cahaya
	1. Dispersi cahaya
	Dispersi adalah peristiwa penguraian cahaya putih (polikromatik)
	menjadi komponen- komponennya <mark>k</mark> arena pembiasan.
	Komponen- komponen warna yang terbentuk yaitu merah, jingga,
14	kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya
	perbedaan deviasi untuk setiap panjang gelombang, yang
	disebabkan oleh perbedaan kelajuan masing-masing gelombang
	pada saat melewati medium pembias. Sudut dispersi adalah sudut
	and the second s
	yang dibentuk oleh sinar merah dan sinar ungu setelah keluar
	prisma. Besar sudut dispersi adalah
	$arphi = \delta_{ungu} - \delta_{merah}$
	Bila sudut pembias prisma kecil, maka :
	$\varphi = (n_{ungu} - n_{merah})\beta$
	2. Interferensi cahaya


Interferensi adalah paduan dua gelombang atau lebih menjadi satu gelombang baru. Interferensi terjadi jika terpenuhi dua syarat berikut ini.

- a. Kedua gelombang cahaya harus koheren, dalam arti bahwa kedua gelombang cahaya harus memiliki beda fase yang selalu tetap, oleh sebab itu keduanya harus memiliki frekuensi yang sama.
- b. Kedua gelombang cahaya harus memiliki amplitudo yang hampir sama.

Gejala yang ditimbulkan pada interferensi cahaya adalah garis terang (terjadi interferensi maksimum) dan garis gelap (terjadi interferensi minimum)

A. Interferensi celah ganda

Untuk menghasilkan interferensi cahaya, Young menggunakan dua celah sempit S_1 dan S_2 berfungsi sebagai sumber cahaya koheren karena berasal dari satu sumber cahaya, yaitu S

Selisih lintasan cahaya sumber S₁ dan S₂ adalah:

$$\Delta S = S_2 P - S_1 P = d \sin \theta$$

Interferensi maksimum akan menghasilkan pola terang pada layar. Pola ini terjadi jika selisih lintasan sama dengan nol atau kelipatan genap dari setengah panjang gelombang, secara matematis ditulis:

$$d \sin\theta = (2n)^{1}/_{2}\lambda$$

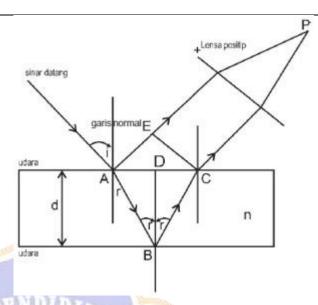
$$\frac{P \times d}{l} = (2n) \frac{1}{2} \lambda$$

Interferensi minimum akan menghasilkan pola gelap pada layar. Pola ini terjadi jika selisih lintasan sama dengan kelipatan ganjil dari setengah panjang gelombang, secara matematis ditulis:

$$d\sin\theta = (2n-1)^{-1}/2\lambda$$

$$\frac{P \times d}{l} = (2n - 1)^{-1}/2 \lambda$$

Jarak antara garis terang dan garis gelap yang berdekatan yaitu


$$\Delta Y = \frac{l\lambda}{2d}$$

Jarak antara dua garis terang dan dua garis gelap yang berdekatan yaitu

$$\Delta X = \frac{l\lambda}{d}$$

B. Interferensi lapisan tipis

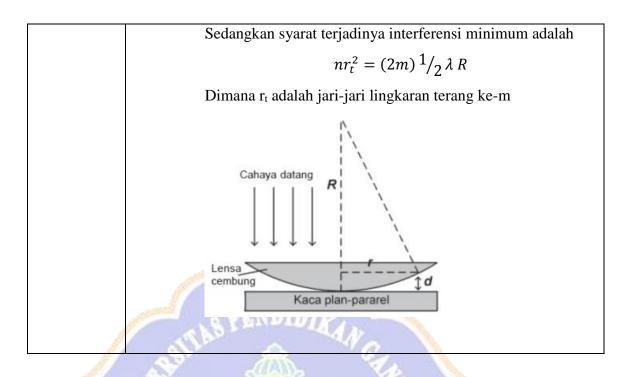
Titik-titik embun di dedaunan atau rerumputan yang dikenai sinar matahari memancarkan warna-warna cahaya tertentu. Timbulnya warna-warna semacam ini juga dapat dijumpai lapisan tipis minyak tanah yang tumpah diatas air atau gelembung yang mendapat sinar matahari.

Syarat terjadinya interferensi maksimum (terang) adalah:

$$2n d \cos r = (2m-1)^{1/2} \lambda$$

$$m = 1,2,3,...$$

Syarat terjadinya interferensi minimum (gelap) adalah:


$$2n d \cos r = (2m)^{1}/_{2} \lambda$$

$$m = 1,2,3,...$$

C. Cincin newton

Cincin newton merupaan pola interferensi berbentuk lingkaran-lingkaran gelap dan terang secara berurutan. Sebuah system optic yang terdiri dari lensa cembung-datar yang diletakkan degan bagian cembungnya menyinggu kaca plan parallel. System optic ini disinari dari atas dengan arah tegak lurus oleh cahaya yang Panjang gelombangnya λ. Jika R adalah jari-jari kelengkungan lensa dan r adalah jari-jari lingkaran gelap dan terang hasil interferensi, maka syarat terjadinya interferensi maksimum adalah

$$nr_t^2 = (2m-1)^{1/2} \lambda R$$

E. Metode Pembelajaran

Pendekatan : Scientific

Model : Problem Based Flipped Classroom (PBFC)

Metode : Diskusi kelompok

F. Media dan Sumber Belajar

Media : Powerpoint

Sumber belajar : Tim Penyusun Buku Pintar Belajar Fisika kelas XII-A.

VDIKSH D

Sagufindo

Kinarya

Langkah-Langkah Pembelajaran

Kegiatan	Sintaks Model PBFC		Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
		a.	Siswa mengunduh media	Karakter:	
			pembelajaran berupa video	Rasa ingin tahu	
D	. Class		yang telah diberikan oleh		
Pro	e-Class		guru	Pendekatan:	
		b.	Siswa mempelajari video	Mengumpulkan	
			yang telah di unduh, dan	informasi	

Kegiatan	Sintaks Model PBFC	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
Pendahuluan	In Cla	merangkum video tersebut dalam buku catatan c. Siswa megerjakan kuis yang telah diupload oleh guru secara mandiri ass (Tatap Muka Dalam Jaringa	Mengamati	15 menit
1 Chuanuiuali	AND STATE	mengucapkan salam. Guru melakukan absensi. Guru menyampaikan tujuan pembelajaran yang ingin dicapai serta materi yang akan diajarkan. Guru menanyakan apakah siswa telah menonton dan memahami video tentang karakteristik gelombang bunyi serta efek dopler serta merangkum materi yang diperoleh dari video tersebut Guru memberi kesempatan kepada siswa untuk menyampaikan materi yang telah mereka pelajari	Karakter: Rasa ingin tahu Tanggungjawab Kritis Karakter: Rasa ingin tahu Tanggungjawab Kritis	13 memt
Kegiatan Inti	Menemukan masalah	1. Siswa diminta mencermati sebuah cerita pada LKS 04 yang diberikan oleh guru untuk menemukan masalah dari cerita tersebut	Rasa ingin tahu Pendekatan: Mengumpulkan informasi Mengamati	70 menit
	Mendefinisikan masalah	Siswa merumuskan masalah yang ditemukan	Karakter: Rasa ingin tahu Tanggungjawab Kritis	

Kegiatan	Sintaks Model PBFC	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
	Mengumpulkan fakta-fakta	Siswa bersama kelompoknya mengumpulkan fakta-fakta melalui sumber belajar (buku, internet, dan portal belajar lainnya) sesuai dengan panduan LKS 04	Karakter: Rasa ingin tahu, kritis, bekerjasama, jujur	
	Menyusun dugaan sementara	Siswa mengajukan dugaan sementara (hipotesis) terkait dengan masalah cepat rambat bunyi pada berbagai medium	Karakter: Kritis, tanggungjawab, bekerjasama Pendekatan: Mengasosiasi, menalar, mengkomunikasika n	
	Menyelidiki	Siswa bersama kelompoknya melakukan penyelidikan terhadap fakta-fakta yang telah mereka kumpulkan dari berbagai sumber belajar untuk memecahkan masalah sesuai dengan tuntutan LKS 04 Guru memfasilitasi siswa dalam melakukan penyelidikan	Karakter: Kritis, tanggungjawab, bekerjasama, rasa ingin tahu Pendekatan: Mengasosiasi, mengkomunikasika n, menanya	
	Menyempurnak an permasalahan yang telah didefinisikan	1. Siswa bersama kelompoknya menyempurnakan kembali permasalahan yang telah dipecahkan dan disesuaikan dengan penyelidikan dan fakta- fakta yang telah diperoleh.	Karakter: Kritis, tanggungjawab, bekerjasama Pendekatan: Mengasosiasi,	
	Menyimpulkan alternatif-	Siswa bersama anggota kelompoknya	Karakter:	

Kegiatan	Sintaks Model PBFC	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
	alternatif pemecahan secara kolaboratif	mendiskusikan data yang telah diperoleh dengan menyimpulkan alternatif- alternatif pemecahan permasalahan sebanyak mungkin	Kritis, tanggungjawab, bekerjasama Pendekatan: Mengasosiasi	
	Menguji solusi permasalahan	 Salah satu kelompok ditunjuk secara acak untuk mempresentasikan hasil yang telah diperoleh dan kelompok lainnya menanggapinya Guru memfasilitasi jalannya diskusi antar kelompok. 	Karakter: Rasa ingin tahu Tanggungjawab Kritis	
Penutup	TAINIA (Guru menyampaikan rencana pembelajaran selanjutnya. Guru dan siswa mengucapkan salam penutup. 		5 menit

G. Penilaian Hasil Pemb<mark>elajaran</mark>

> Pengetahuan

a. Teknik Penilaianb. Bentuk Instrumen: Tes tertulis: Soal uraian

c. Jenis : LKS

No.	Indikator	Butir
1	Menganalisis intensitas gelombang bunyii. Menganalisis taraf intensitas gelombang bunyi	1-2

Instrumen: lampiran 3

> Keterampilan

a. Teknik Penilaian: Observasi

b. Bentuk Instrumen: Lembar observasi

c. Aspek penilaian keterampilan pada saat diskusi

No.	Indikator	Butir Instrumen
1.	Pelaksanaan diskusi	1
2.	Menyimpulkan hasil diskusi	2
3.	Mempresentasikan hasil diskusi	3
4.	Menyerahkan hasil diskusi sesuai dengan waktu yang telah ditentukan	4

Instrumen: Lampiran 4

LAMPIRAN 1

ANGKET PENILAIAN DIRI KELAS XII MIA SMA NEGERI 8 DENPASAR TAHUN PELAJARAN 2019/2020

Petunjuk!

- 1. Pernyataan-pernyataan berikut merupakan tanggapan atau pendapat anda terhadap proses pembelajaran pada materi rangkaian arus searah.
- 2. Tugas anda adalah memberi tanggapan atau pendapat terhadap pernyataan yang diajukan dengan memberi tanda (√) pada salah satu pilihan yang sesuai dengan penilaian anda tentang kebenaran pernyataan tersebut. Pilihan-pilihan tersebut adalah:

SS SF		JS	TP
-------	--	----	----

Keterangan

SS = Sangat Sering, S = Sering, KK = Kadang-kadang, JS = Jarang sekali, TP = Tidak pernah

- 3. Pilihan-pilihan dalam pernyataan-pernyataan tersebut tidak ada satupun yang merupakan pilihan benar.
- 4. Pilihan yang benar adalah pilihan yang sesuai dengan pendapat anda sendiri, bukan atas pendapat teman anda yang lain.
- 5. Jawaban anda tidak akan mempengaruhi prestasi belajar anda di sekolah. Oleh sebab itu, anda dimohon membaca setiap pernyataan dengan seksama dan mengisi pilihan dengan sejujur-jujurnya.

Nama :	
NIS:	

DAFTAR PERNYATAAN PENILAIAN DIRI PADA PEMBELAJARAN FISIKA

No.	Daftar Pernyataan			Respo	n	
110.	Danar Pernyataan	SS	SR	KK	JS	TP
1.	Saya kagum kepada Tuhan atas penciptaan manusia yang mampu menemukan kuat arus listrik, hambatan, beda potensial, dan rangkaian arus tertutup.					
2.	Saya mengejakan tugas individu dengan baik			le.		
3.	Saya tidak berani mengambil resiko atas tindakan yang sudah dilakukan	6				
4.	Saya mengembalikan barang yang dipinjam		6		Waste	
5.	Saya meminta maaf atas kesalahan yang dilakukan		3			
No	Doftor Dornvotoon					
No	Daftar Pernyataan			Respo	1	
No.	Daftar Pernyataan	SS	SR	Respo	JS	TP
No. 1.	Daftar Pernyataan Saya menyontek dalam mengerjakan ujian/ulangan/tugas	SS	SR		1	TP
	Saya menyontek dalam mengerjakan	SS	SR		1	TP
1.	Saya menyontek dalam mengerjakan ujian/ulangan/tugas Saya tidak pernah melakukan plagiat dalam	SS	SR			TP
1.	Saya menyontek dalam mengerjakan ujian/ulangan/tugas Saya tidak pernah melakukan plagiat dalam mengerjakan setiap tugas Saya melaporkan data hasil percobaan atau	SS	SR			TP
1. 2. 3.	Saya menyontek dalam mengerjakan ujian/ulangan/tugas Saya tidak pernah melakukan plagiat dalam mengerjakan setiap tugas Saya melaporkan data hasil percobaan atau informasi apa adanya Saya enggan mengakui kesalahan atau	SS	SR			TP

Kritik dan Saran

Tulislah kritik dan saran anda tentang pembelajaran fisika yang dilakukan oleh guru anda untuk lebih meningkatkan kualitas pembelajaran fisika selanjutnya.

Kritik

• • • • • • • • •	 •	••••			
Saran					

RUBRIK PENILAIAN

Rubrik Penilaian Pernyataan Positif

	Respons	Skor
	Sangat Sering (SS)	5
	Sering (SR)	4
Š	Kadang-Kadang (KK)	3
9	Jarang Sekali (JS)	2
Ĭ	Tidak Pernah (TP)	1

Rubrik Penilaian Pernyataan Negatif

Respons	Skor
Sangat Sering (SS)	1/
Sering (SR)	2
Kadang-Kadang (KK)	3
Jarang Sekali (JS)	4
Tidak Pernah (TP)	5

LAMPIRAN 2

Pedoman Observasi Penilaian Sikap

No.	Agnolz	Vnitonio		Kriteria Rentang Sl					
110.	Aspek	Kriteria	1	2	3	4	5		
1.	Rasa Ingin	Mampu bertanya dan mengeksplorasi							
	Tahu	informasi dari berbagai sumber							
2.	Kerja sama	Mampu bekerja sama dengan teman							

No	Agnaly	Aspek Kriteria		Rentang Skor				
No.	Aspek			2	3	4	5	
		dalam kelompok						
3.	Tanggung	Mampu bertanggungjawab atas tugas						
	jawab	yang diberikan						
4.	4. Mampu kritis dalam							
	Kritis mengasosiasi/menganalisis data dan							
		menanggapi						
5 = sangat baik/sangat sering								
	4 = baik/sering							
	3 = cukup							
	2 = kurang/jarang							
	1 = sangat kura	ng/sangat jarang						

Keterangan:

1. Skor Maksimal : $4 \times 5 = 20$

2.
$$Nilai = \frac{Jumlah\ Skor}{Skor\ Maksimal} \times 100$$

3. Nilai sikap dikualifikasi menjadi predikat sebagai berikut:

$$SB = Sangat Baik = 80 - 100$$

$$C = Cukup = 60 - 69$$

$$B = Baik = 70 - 79$$

$$K = Kurang = <60$$

LAMPIRAN 3

Rubrik Penilaian Keterampilan Proses Sains:

Aspek Penilaian	3	2	1
Merumuskan	Rumusan masalah	Rumusan masalah	Rumusan masalah
masalah	sesuai konsep dan	sesuai konsep	tidak sesuai
	inovatif		konsep

Merumuskan	Rumusan	Rumusan	Rumusan
hipotesis	pertanyaan sesuai	pertanyaan sesuai	pertanyaan tidak
	konsep dan	konsep	sesuai konsep
	mengarah pada		
	tahapan aktivitas		
	mencoba		
Merancang dan	Melakukan	Melakukan	Melakukan
melakukan	percobaan sesuai	percobaan sesuai	percobaan tidak
percobaan	langkah kerja, data	langkah kerja,	sesuai langkah
	yang diperoleh	analisis data	kerja
	dianalisis dengan	belum optimal	
	baik <u>/</u>		
Mengumpulkan dan	Data yang	Data yang	Data yang
mengolah data	diperoleh sesuai,	diperoleh sesuai,	diperoleh tidak
	pengolahan data	namun pengolahan	sesuai, dan
	sistematis	data k <mark>urang</mark>	pengolahan data
	4721-	sistematis	tidak sistematis
Menginterpretasi	Pembahasan tepat	Pembahasan	Pembahasan tidak
hasil analisis data	dan efektif	kurang tepat dan	tepat dan tidak
dan pemb <mark>ah</mark> asan		kurang efektif	efektif
Menarik kesimpulan	Simpulan sesuai	Simpulan kurang	Simpul <mark>a</mark> n tidak
	tujuan percobaan	sesuai tujuan	sesuai tujuan
	NE ALL	percobaan	percob <mark>a</mark> an

Keterangan:

a. Skor Maksimal : $3 \times 5 = 15$

b.
$$Nilai = \frac{Jumlah\ Skor}{Skor\ Maksimal} \times 100$$

c. Nilai sikap dikualifikasi menjadi predikat sebagai berikut:

$$SB = Sangat \ Baik = 80 - 100$$
 $C = Cukup = 60 - 69$ $B = Baik = 70 - 79$ $K = Kurang = <60$

Lampiran 4

Lembar Kerja Siswa (LKS) 04

Materi Pokok : Gelombang Bunyi dan Cahaya

Kelas/Semester : XI MIPA/II

Alokasi Waktu : 40 menit

Anggota (Nama & No Absen)

1.	
2.	
3.	
4	

Indikator Pencapaian Kompetensi

- 3.10.8 Menganalisis fenomena dispersi cahaya
- 3.10.9 Memahami konsep interferensi gelombang cahaya dalam kehidupan sehari-hari
- 4.10.4 Melakukan percobaan interferensi cahaya

A. Permasalahan

Pada pagi hari matahari terbit dan sinarnya mulai masuk ke kamar dinda. Dinda memperhatikan cahaya bergaris di dinding kamarnya. Garis tersebut merupakan pola yang dihasilkan oleh cahaya yang masuk melalui celah di ventilasi kamar dinda. Bagaimana proses terbentuknya pola terang gelap tersebut? Sifat cahaya apakah yang terdapat pada proses ini?

B. Identifikasi Masalah

Definisikan permasalahan dengan membuat daftar pertanyaan terkait permasalahan yang disajikan!

No	Permasalahan				
1					
2					
3					
4					

C. Mengumpulkan fakta-fakta

1	Yang diketahui dari masalah:
2	Yang ingin diketahui dari masalah:
3	Yang harus dicari dari masalah:

D. Merumuskan H	Tiboresis			
		PENDIDIA	10	
	180	â.	C	

E. Penyelidikan

Percobaan 1 (Pratikum Virtual)

Tujuan Percobaan

Untuk menganalisis interferensi cahaya pada celah ganda.

Alat dan Bahan

- 1. Siapkan koneksi internet, akses link berikut melalui Hp atau Laptop
- 2. https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_en.html

Langkah-langkah percobaan

- 1. Klik link pratikum virtual.
- 2. Susunlah percobaan seperti gambar berikut:

- 3. Posisikan celah berada 1 m dari layar.
- 4. Nyalakan laser dan amati pola terang yang terjadi.
- 5. Pada gambar, catat panjang gelombang yang diketahui sebesar 500nm
- 6. Atur lebar celah sebesar 550 nm, dan jarak antar celah 1550 nm
- 7. Hitunglah jarak antara dua pola terang menggunakan persam<mark>a</mark>an

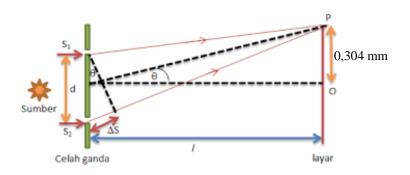
$$d\frac{p}{l} = m\lambda$$

8. Ulangi langkah 3-6 dengan mengubah jarak celah dengan layar menjadi 1,5 m dan 2 m.

Data hasil percobaan

No	L (m)	d (m)	Δ <i>y</i> (m)	λ (m)
1	1,0			
2	1,5			
3	2,0			

F. Menyempurnakan permasalahan


ni penyelidikan yang telah dilakukan dan perbaiki pernyataan rumusan ah menggunakan kata yang lebih tepat!
impulkan alternatif-alternatif pemecahan secara kolaboratif
ikan Bersama kelompok masing-masing terkait hasil pemecahan masalah nsep yang digunakan untuk memecahkan masalah!
nsep yang digunakan untuk memecahkan masalah!

H. Menguji solusi permasalahan

Salah satu kelompok mempresentasikan hasil diskusinya, kemudian siswa yang lain menanggapi hasil tersebut.

I. Pertanyaan

1. Devi melakukan percobaan interferensi Young dengan menggunakan seberkas sinar *monokromatik* (sinar satu warna) yang mengenai dua celah sempit yang terpisah pada jarak 0,4 mm. Suatu pola interferensi terjadi pada layar yang berjarak 25 cm dari kedua celah. Pada pola-pola tersebut, terlihat garis gelap dan terang (terlihat pada gambar 9). Setelah dihitung, jarak 2 garis terang yang berurutan adalah sebesar 0,304 mm. Bantulah Devi untuk menghitung panjang gelombang cahaya yang digunakan dalam percobaan tersebut!

Gambar 9. Interferensi Young

2. Kevin melihat suatu lapisan tipis bensin (n=1,50) mengapung di atas permukaan kaca (n=1,40). Sinar matahari jatuh hampir tegak lurus pada lapisan tipis tersebut dan kemudian memantul ke arah mata Kevin. Saat diamati oleh Kevin lapisan tipis tersebut tampak berwarna kuning. Ini karena interferensi destruktif pada lapisan menghilangkan warna biru (λ biru di udara = 468 nm) dari cahaya yang dipantulkan ke mata Kevin. Berdasarkan fenomena ini, tentukanlah ketebalan minimum t dari lapisan tipis tersebut!

Kunci Jawaban LKS 04

1 Memahami masalah

Diketahui:

 $d = 0.4 \text{ mm} = 4 \times 10^{-4} m$

 $\Delta p = 0.304 \ mm = 3.04 \ x \ 10^{-4} m$

l = 25 cm = 0.25 m

Perintah: hitunglah panjang gelombang cahaya datang tersebut!

Merancang dan merencanakan solusi

Lokasi pita terang ke m dapat dicari dengan konsep berikut:

$$m\lambda = d\frac{p_m}{l}$$
$$p_m = \frac{m\lambda l}{d}$$

Jarak dua pita terang berturut-turut dapat dicari dengan mengambil pita ke m dan pita ke (m+1)

$$\Delta p = p_{m+1} - p_m$$

$$\Delta p = \frac{(m+1)\lambda l}{d} - \frac{m\lambda l}{d} = \frac{\lambda l}{d}$$

$$\lambda = d \frac{\Delta p}{l}$$

Menyelesaikan rencana pemecahan

$$\lambda = d \frac{\Delta p}{l}$$

$$\lambda = \frac{4 \times 10^{-4} \cdot 3,04 \times 10^{-4}}{0,25}$$

$$\lambda = 4,864 \times 10^{-7} m$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah panjang gelombang cahaya tersebut sebesar 4,864 x x 10⁻⁷ m

2 Memahami masalah

Diketahui:

n bensin = 1,40

n kaca = 1.50

 λ biru = 468 nm

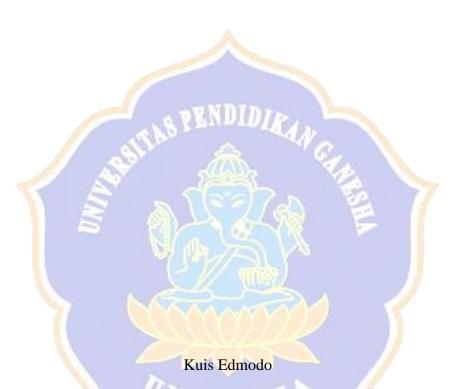
Ditanya: Ketebalan minimum t dari lapisan tipis?

Merancang dan merencanakan solusi

Syarat cahaya biru mengalami interferensi destruktif pada lapisan tipis adalah

$$2nt = m\lambda$$
; m = 0, 1, 2, ...

$$t = \frac{m\lambda}{2n}$$


Untuk t minimum dengan t $\neq 0$, diperoleh dengan mengambil bilangan bulat m = 1.

Menyelesaikan rencana pemecahan

$$t = \frac{m\lambda}{2n}$$
$$t = \frac{1(468)}{21.5} = 156 \text{ nm}$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah ketebalan minimum lapisan tipis tersebut sebesar 156 nm

- 1. Pada percobaan interferensi Young digunakan dua celah sempit yang berjarak 0,3 mm satu dengan lainnya. Jika jarak layar dengan celah 1m dan jarak garis terang pertama dari terang pusat 1,5 mm, maka panjang gelombang cahaya yang digunakan sebesar?
- 2. Selaput tipis air sabun disinari dengan arah tegak lurus dengan menggunakan cahaya natrium (λ =589,3 nm). Jika indeks bias ari sabun (n=1,33), maka hitunglah tebal minimum selaput yang tampak terang!
- 3. Kevin melihat suatu lapisan tipis bensin (n=1,50) mengapung di atas permukaan kaca (n=1,40). Sinar matahari jatuh hampir tegak lurus pada lapisan tipis tersebut dan kemudian memantul ke arah mata Kevin. Saat diamati oleh Kevin lapisan tipis tersebut tampak berwarna kuning. Ini karena interferensi destruktif pada lapisan menghilangkan warna biru (λ biru di udara = 468 nm) dari cahaya yang

dipantulkan ke mata Kevin. Berdasarkan fenomena ini, tentukanlah ketebalan minimum t dari lapisan tipis tersebut!

1 Memahami masalah

Diketahui:

$$d = 0.4 \text{ mm} = 3 \times 10^{-4} m$$

$$\Delta p = 1.5 \ mm = 1.5 \ x \ 10^{-3} m$$

$$l = 1 m$$

Perintah: hitunglah panjang gelombang cahaya datang tersebut!

Merancang dan merencanakan solusi

Lokasi pita terang ke m dapat dicari dengan konsep berikut:

$$m\lambda = drac{p_m}{l}$$
 $p_m = rac{m\lambda l}{d}$

Jarak dua pita terang berturut-turut dapat dicari dengan mengambil pita ke m dan pita ke (m+1)

$$\Delta p = p_{m+1} - p_m$$

$$\Delta p = \frac{(m+1)\lambda l}{d} - \frac{m\lambda l}{d} = \frac{\lambda l}{d}$$

$$\lambda = d \frac{\Delta p}{l}$$

Menyelesaikan rencana pemecahan

$$\lambda = d \frac{\Delta p}{l}$$

$$\lambda = \frac{3 \times 10^{-4} \cdot 1.5 \times 10^{-3}}{1}$$

$$\lambda = 4.864 \times 10^{-7} m$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah panjang gelombang cahaya tersebut sebesar $4,864 \times 10^{-7} m$

2 Memahami masalah

Diketahui:

n bensin = 1,40

n kaca = 1,50

 λ biru = 468 nm

Ditanya: Ketebalan minimum t dari lapisan tipis?

Merancang dan merencanakan solusi

Syarat cahaya biru mengalami interferensi destruktif pada lapisan tipis adalah

$$2nt = m\lambda$$
; m = 0, 1, 2, ...

$$t = \frac{m\lambda}{2n}$$

Untuk t minimum dengan $t \neq 0$, diperoleh dengan mengambil bilangan bulat m = 1.

Menyelesaikan rencana pemecahan

$$t = \frac{m\lambda}{2n}$$

$$t = \frac{1(468)}{21.5} = 156 \text{ nm}$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah ketebalan minimum lapisan tipis tersebut sebesar 156 nm

Lampiran 3.2 Contoh RPP Kelas Eksperimen Kedua (TFC)

RENCANA PELAKSANAAN PEMBELAJARAN

Satuan Pendidikan : SMA Negeri 8 Denpasar- Bali

Mata Pelajaran : Fisika

Kelas/Semester : XI IPA/Ganjil

Materi Pokok : Gelombang Bunyi dan Cahaya

Alokasi Waktu : 2 JP (2 x 45 menit) Pertemuan Ke-4

E. KOMPETENSI INTI

KI 1 : Menghayati dan mengamalkan ajaran agama yang dianutnya

- KI 2 : Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
- KI 3 : Memahami, menerapkan, menganalisis pengetahuan faktual konseptual, prosedural berdasarkan rasa ingintahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- KI 4 : Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di seklah secara mandiri, dan mampu menggunakan metoda sesuai kaidah keilmuan.

F. KOMPETENSI DASAR

Kompetensi Dasar	Indikator Pencapaian Kompetensi
3.10 Menerapkan konsep dan prinsip	3.10.10 Menganalisis fenomena dispersi
gelombang <mark>bu</mark> nyi dan cahaya	cahaya
dalam teknologi	3.10.11 Memahami konsep interferensi
	gelombang cahaya dalam kehidupan
	sehari-hari
4.10 Melakukan percobaan tentang	4.10.5 Melakukan percobaan interferensi
gelombang bunyi dan/atau	cahaya
cahaya, berikut presentasi hasil	
dan makna fisisnya misalnya	
sonometer, dan kisi difraksi	

G. TUJUAN PEMBELAJARAN

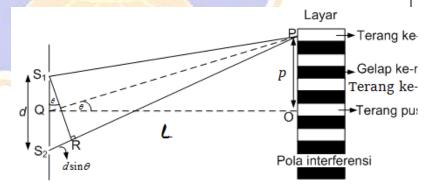
Melalui pendekatan scientific dan model pembelajaran *Traditional Flipped Classroom*, siswa dituntut mampu menganalisis fenomena disperse cahaya, konsep interferensi serta penerapannya dalam kehidupan sehari-hari, sehingga siswa mampu menghayati dan mengamalkan ajaran agama yang dianutnya melalui bersyukur, menunjukan perilaku mandiri, dan mampu berkerjasama, dan dapat mengembangkan budaya literasi, kemampuan berfikir kritis, berkomunikasi berkolaborasi dan berkreasi

H. Materi Pembelajaran

merambat lurus, cahaya dapat menembus benda, cahaya dapat memantul, cahaya dapat membias, dan cahaya dapat diuraikar menjadi beberapa warna Prnsip Sifat-Sifat Gelombang Cahaya 3. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang								
6. Televisi yang mengalami kemajuan dari yang hanya berwarna hitam putih, kini bervariasi Cahaya memiliki beberapa sifat gelombang antara lain cahaya dapa merambat lurus, cahaya dapat menembus benda, cahaya dapat memantul, cahaya dapat membias, dan cahaya dapat diuraikar menjadi beberapa warna Prnsip Sifat-Sifat Gelombang Cahaya 3. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang	O	4. Sinar matahari yang masuk dari jendela yang terbuka						
Konseptual Cahaya memiliki beberapa sifat gelombang antara lain cahaya dapat merambat lurus, cahaya dapat menembus benda, cahaya dapat memantul, cahaya dapat membias, dan cahaya dapat diuraikar menjadi beberapa warna Prnsip Sifat-Sifat Gelombang Cahaya 3. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen-komponennya karena pembiasan Komponen-komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang	faktual	5. Cahaya yang menembus benda bening						
Konseptual Cahaya memiliki beberapa sifat gelombang antara lain cahaya dapat merambat lurus, cahaya dapat menembus benda, cahaya dapat memantul, cahaya dapat membias, dan cahaya dapat diuraikar menjadi beberapa warna Prnsip Sifat-Sifat Gelombang Cahaya 3. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang		6. Televisi yang mengalami kemajuan dari yang hanya berwarna						
merambat lurus, cahaya dapat menembus benda, cahaya dapat memantul, cahaya dapat membias, dan cahaya dapat diuraikar menjadi beberapa warna Prnsip Sifat-Sifat Gelombang Cahaya 3. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang		hitam putih, kini bervariasi						
memantul, cahaya dapat membias, dan cahaya dapat diuraikar menjadi beberapa warna Prnsip Sifat-Sifat Gelombang Cahaya 3. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang	Konseptual	Cahaya memiliki beberapa sifat gelombang antara lain cahaya dapat						
Prnsip Sifat-Sifat Gelombang Cahaya 3. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang		merambat lurus, cahaya dapat menembus benda, cahaya dapat						
Prnsip Sifat-Sifat Gelombang Cahaya 3. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang	1	memantul, cahaya dapat membias, dan cahaya dapat diuraikan						
Prnsip Sifat-Sifat Gelombang Cahaya 3. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang								
3. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang	Prnsip	The state of the s						
Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang	1 Table							
menjadi komponen- komponennya karena pembiasan Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang								
Komponen- komponen warna yang terbentuk yaitu merah, jingga kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang								
kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang		menjadi komponen- komponennya karena pembiasan.						
perbedaan deviasi untuk setiap panjang gelombang, yang		Komponen-komponen warna yang terbentuk yaitu merah, jingga,						
		kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya						
		perbedaan deviasi untuk setiap panjang gelombang, yang						
disebabkan oleh perbedaan kelajuan masing-masing gelombang		disebabkan oleh perbedaan kelajuan masing-masing gelombang						
pada saat melewati medium pembias. Sudut dispersi adalah sudu		pada saat melewati medium pembias. Sudut dispersi adalah sudut						
yang dibentuk oleh sinar merah dan sinar ungu setelah keluar		yang dibentuk oleh sinar merah dan sinar ungu setelah keluar						
prisma. Besar sudut dispersi adalah		prisma. Besar sudut dispersi adalah						
$arphi = \delta_{ungu} - \delta_{merah}$		$arphi = \delta_{ungu} - \delta_{merah}$						
Bila sudut pembias prisma kecil, maka :		Bila sudut pembias prisma kecil, maka:						

$$\varphi = (n_{ungu} - n_{merah})\beta$$

4. Interferensi cahaya


Interferensi adalah paduan dua gelombang atau lebih menjadi satu gelombang baru. Interferensi terjadi jika terpenuhi dua syarat berikut ini.

- c. Kedua gelombang cahaya harus koheren, dalam arti bahwa kedua gelombang cahaya harus memiliki beda fase yang selalu tetap, oleh sebab itu keduanya harus memiliki frekuensi yang sama.
- d. Kedua gelombang cahaya harus memiliki amplitudo yang hampir sama.

Gejala yang ditimbulkan pada interferensi cahaya adalah garis terang (terjadi interferensi maksimum) dan garis gelap (terjadi interferensi minimum)

D. Interferensi celah ganda

Untuk menghasilkan interferensi cahaya, Young menggunakan dua celah sempit S₁ dan S₂ berfungsi sebagai sumber cahaya koheren karena berasal dari satu sumber cahaya, yaitu S

Selisih lintasan cahaya sumber S₁ dan S₂ adalah:

$$\Delta S = S_2 P - S_1 P = d \sin \theta$$

Interferensi maksimum akan menghasilkan pola terang pada layar. Pola ini terjadi jika selisih lintasan sama dengan nol atau kelipatan genap dari setengah panjang gelombang, secara matematis ditulis:

$$d\sin\theta = (2n) \frac{1}{2}\lambda$$

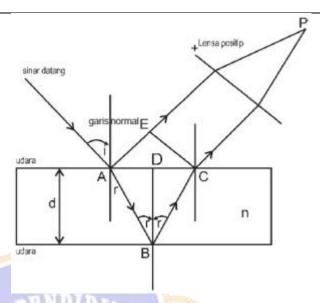
$$\frac{P \times d}{l} = (2n) \frac{1}{2} \lambda$$

Interferensi minimum akan menghasilkan pola gelap pada layar. Pola ini terjadi jika selisih lintasan sama dengan kelipatan ganjil dari setengah panjang gelombang, secara matematis ditulis:

$$d\sin\theta = (2n-1)^{-1}/2\lambda$$

$$\frac{P \times d}{l} = (2n-1)^{-1}/2 \lambda$$

Jarak antara garis terang dan garis gelap yang berdekatan yaitu


$$\Delta Y = \frac{l\lambda}{2d}$$

Jarak antara dua garis terang dan dua garis gelap yang berdekatan yaitu

$$\Delta X = \frac{l\lambda}{d}$$

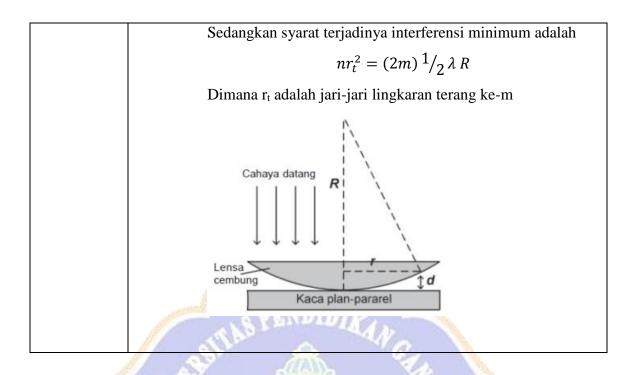
E. Interferensi lapisan tipis

Titik-titik embun di dedaunan atau rerumputan yang dikenai sinar matahari memancarkan warna-warna cahaya tertentu. Timbulnya warna-warna semacam ini juga dapat dijumpai lapisan tipis minyak tanah yang tumpah diatas air atau gelembung yang mendapat sinar matahari.

Syarat terjadinya interferensi maksimum (terang) adalah:

$$2n d \cos r = (2m-1)^{1/2} \lambda$$

$$m = 1,2,3,...$$


Syarat terjadinya interferensi minimum (gelap) adalah:

$$2n d \cos r = (2m)^{1}/_{2} \lambda$$

 $m = 1,2,3,...$

F. Cincin newton

Cincin newton merupaan pola interferensi berbentuk lingkaran-lingkaran gelap dan terang secara berurutan. Sebuah system optic yang terdiri dari lensa cembung-datar yang diletakkan degan bagian cembungnya menyinggu kaca plan parallel. System optic ini disinari dari atas dengan arah tegak lurus oleh cahaya yang Panjang gelombangnya λ . Jika R adalah jari-jari kelengkungan lensa dan r adalah jari-jari lingkaran gelap dan terang hasil interferensi, maka syarat terjadinya interferensi maksimum adalah

$$nr_t^2 = (2m-1)^{1/2} \lambda R$$

H. Metode Pembelajaran

Pendekatan : Scientific

Model : Traditional Flipped Classroom (TFC)

Metode : Diskusi kelompok

I. Media dan Sumber Belajar

Media : Powerpoint

Sumber belajar : Tim Penyusun Buku Pintar Belajar Fisika kelas XII-A.

NDIKSH P

Sagufindo

Kinarya

Langkah-Langkah Pembelajaran

Kegiatan Sintaks Model DI		Deskripsi Kegiatan		Kompetensi yang dikembangkan	Alokasi Waktu
		d.	Siswa mengunduh media	Karakter:	
			pembelajaran berupa video	Rasa ingin tahu	
Pre-Class e.			yang telah diberikan oleh		
			guru	Pendekatan:	
		e.	Siswa mempelajari video	Mengumpulkan	
			yang telah di unduh, dan	informasi	

Kegiatan Sintaks Model		Deskripsi Kegiatan	Kompetensi yang	Alokasi	
Acgiatan	DI	Deskripsi Kegiatan	dikembangkan	Waktu	
		merangkum video tersebut	Mengamati		
		dalam buku catatan			
		Siswa megerjakan kuis yang			
		telah diupload oleh guru			
		secara mandiri			
	In Cla	ss (Tatap Muka Dalam Jaringa	in)	•	
Pendahuluan	Menyampaikan	6. Guru membangkit-kan dan	Karakter:	15 menit	
	tujuan dan	memotivasi minat belajar	Rasa ingin tahu		
	mempersiapankan	siswa	Tanggungjawab		
	siswa	7. Guru memberikan sugesti yang positif	Kritis		
		8. Guru mengemukakan tujuan			
		pembela-jaran			
		9. Guru mengajukan			
	ALL DE	pertanyaan-pertanya-an	Karakter:		
	(1000)	untuk menggali pengetahuan awal siswa	Rasa ingin tahu		
		awai siswa	W. 100		
	S 8	169/20 2	Tanggungjawab		
T7 . 4 T .:	34	1 0	Kritis	70 :	
Kegiatan Inti	Mempresentasika	1. Guru menyampaikan dan	Karakter:	70 menit	
	n pengetahuan atau kete-	menjelaskan materi	Rasa ingin tahu		
	rampilan	pelajaran sesuai dengan			
	Tamphan	pokok-pokok materi	Pendekatan:		
		pelajaran terkait	<mark>M</mark> engumpulkan		
		karakteristik gelombang	<mark>in</mark> formasi		
		bunyi seperti yang	Mengamati		
	0)	terkandung dalam			
		indikator hasil belajar.			
	The state of the s	2. Siswa menyimak dan			
		mendengarkan dengan			
		seksama penjelasan dari			
		guru.			
		3. Guru dan siswa			
		melakukan kegiatan tanya			
		jawab.			
		4. Guru memotivasi siswa			
		untuk terlibat langsung			
		dalam proses			
		pembelajaran dengan			

Kegiatan	Sintaks Model DI	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
Kegiatan		menyampaikan beberapa pertanyaan 2. Guru memberikan LKS terkait dengan materi yang telah dijelaskan dan didemonstrasikan secara bertahap. 3. Siswa mencari data untuk menjawab pertanyaan pada LKS dengan membaca berbagai sumber/literatur yang tersedia secara mandiri. 4. Siswa bertanya kepada guru apabila terdapat halhal yang belum dipahami. 5. Guru menjelaskan kembali hal-hal yang dianggap sulit dan belum dipahami siswa.	Karakter: Rasa ingin tahu Tanggungjawab Kritis	
	Mengecek pemahaman dan memberi umpan balik		Karakter: Rasa ingin tahu, kritis, bekerjasama, jujur	

Kegiatan	Sintaks Model DI		Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
	Memberi kesempatan untuk pelatihan untuk pelatihan lanjutan dan penerapan	3.	Guru mempersiapkan kesempatan melakukan pelatihan lanjutan dengan perhatian khusus pada penerapan kepada situasi lebih kompleks dalam kehidupan sehari-hari. Siswa melakukan pelatihan lanjutan, yang berhubungan dengan penerapan materi pelajaran pada situasi yang lebih kompleks.	Karakter: Kritis, tanggungjawab, bekerjasama Pendekatan: Mengasosiasi, menalar, mengkomunikasika n	
		1		<u> </u>	
Penutup		3.4.	Guru menyampaikan rencana pembelajaran selanjutnya. Guru dan siswa mengucapkan salam penutup.		5 menit

J. Penilaian <mark>H</mark>asil Pembela<mark>jaran</mark>

> Pengetahuan

d. Teknik Penilaiane. Bentuk Instrumen: Tes tertulis: Soal uraian

f. Jenis : LKS

No.	Indikator	Butir
1	Menganalisis intensitas gelombang bunyii. Menganalisis taraf intensitas gelombang bunyi	1-2

Instrumen: lampiran 3

> Keterampilan

d. Teknik Penilaian: Observasi

e. Bentuk Instrumen: Lembar observasi

f. Aspek penilaian keterampilan pada saat diskusi

No.	Indikator	Butir Instrumen
1.	Pelaksanaan diskusi	1
2.	Menyimpulkan hasil diskusi	2
3.	Mempresentasikan hasil diskusi	3
4.	Menyerahkan hasil diskusi sesuai dengan waktu yang telah ditentukan	4

Instrumen: Lampiran 4

LAMPIRAN 1

ANGKET PENILAIAN DIRI KELAS XII MIA SMA NEGERI 8 DENPASAR TAHUN PELAJARAN 2019/2020

Petunjuk!

- 6. Pernyataan-pernyataan berikut merupakan tanggapan atau pendapat anda terhadap proses pembelajaran pada materi rangkaian arus searah.
- 7. Tugas anda adalah memberi tanggapan atau pendapat terhadap pernyataan yang diajukan dengan memberi tanda ($\sqrt{}$) pada salah satu pilihan yang sesuai dengan penilaian anda tentang kebenaran pernyataan tersebut. Pilihan-pilihan tersebut adalah:

SS SR KK JS T

Keterangan

SS = Sangat Sering, S = Sering, KK = Kadang-kadang, JS = Jarang sekali, TP = Tidak pernah

- 8. Pilihan-pilihan dalam pernyataan-pernyataan tersebut tidak ada satupun yang merupakan pilihan benar.
- 9. Pilihan yang benar adalah pilihan yang sesuai dengan pendapat anda sendiri, bukan atas pendapat teman anda yang lain.
- 10. Jawaban anda tidak akan mempengaruhi prestasi belajar anda di sekolah. Oleh sebab itu, anda dimohon membaca setiap pernyataan dengan seksama dan mengisi pilihan dengan sejujur-jujurnya.

IS:

DAFTAR PERNYATAAN PENILAIAN DIRI PADA PEMBELAJARAN FISIKA

No.	Dofton Donnyatoon	Respon	n			
110.	No. Daftar Pernyataan		SR	KK	JS	TP
1.	Saya kagum kepada Tuhan atas penciptaan manusia yang mampu menemukan kuat arus listrik, hambatan, beda potensial, dan rangkaian arus tertutup.	a guita				
2.	Saya mengejakan tugas individu dengan baik					
3.	Saya tidak berani mengambil resiko atas tindakan yang sudah dilakukan					
4.	Saya mengembalikan barang yang dipinjam					
5.	Saya meminta maaf atas kesalahan yang dilakukan					
No.	Daftar Pernyataan		Respon			

		SS	SR	KK	JS	TP
1	Saya menyontek dalam mengerjakan					
1.	ujian/ulangan/tugas					
2.	Saya tidak pernah melakukan plagiat dalam					
۷.	mengerjakan setiap tugas					
3.	Saya melaporkan data hasil percobaan atau					
5.	informasi apa adanya					
1	Saya enggan mengakui kesalahan atau					
4.	kekurangan yang dimiliki					
5	Saya merapikan semua alat praktikum yang					
J.	sudah digunakan					
6.	Saya tidak pernah mengotori lingkungan					

RUBRIK PENILAIAN

RENDIDIE

Rubrik Penilaian Pernyataan Positif

Respons	Skor
Sangat Sering (SS)	5
Sering (SR)	4
Kadang-Kadang (KK)	3
Jarang Sekali (JS)	2
Tidak Pernah (TP)	1

Rubrik Penilaian Pernyataan Negatif

Respons	Skor
Sangat Sering (SS)	1
Sering (SR)	2
Kadang-Kadang (KK)	3
Jarang Sekali (JS)	4
Tidak Pernah (TP)	5

LAMPIRAN 2

Pedoman Observasi Penilaian Sikap

1 custian Observasi 1 cimaran Sinap							
No.	Agnola	Kriteria	Rentang Skor				
110.	Aspek	Kriteria	1	2	3	4	5
1.	Rasa Ingin	Mampu bertanya dan mengeksplorasi					
	Tahu	informasi dari berbagai sumber					
2.	Kerja sama	Mampu bekerja sama dengan teman					
	Kerja sama	dalam kelompok					
3.	Tanggung	Mampu bertanggungjawab atas tugas					
	jawab	yang diberikan					
4.		Mampu kritis dalam					
	Kritis	mengasosiasi/menganalisis data d <mark>an</mark>					
		menanggapi ————————————————————————————————————	So				
	5 = sangat baik	/sangat sering					
	4 = baik/sering			à.			
	3 = cukup	AN CAN		No.			
	2 = kurang/jara	ng	7		No.		
	1 = sangat kura	ng/sangat jarang	6		180		

Keterangan:

- 4. Skor Maksimal : $4 \times 5 = 20$
- 5. $Nilai = \frac{Jumlah\ Skor}{Skor\ Maksimal} \times 100$
- 6. Nilai sikap dikualifikasi menjadi predikat sebagai berikut:

$$SB = Sangat Baik = 80 - 100$$

$$C = Cukup = 60 - 69$$

$$B = Baik = 70 - 79$$

LAMPIRAN 3

Rubrik Penilaian Keterampilan Proses Sains:

Aspek Penilaian	3	2	1
Merumuskan	Rumusan masalah	Rumusan masalah	Rumusan masalah
masalah	sesuai konsep dan	sesuai konsep	tidak sesuai
	inovatif		konsep
Merumuskan	Rumusan	Rumusan	Rumusan
hipotesis	pertanyaan sesuai	pertanyaan sesuai	pertanyaan tidak
	konsep dan	konsep	sesuai konsep
1//	mengarah pada		
	tahapan aktivitas		
	mencoba		
Merancang dan		Melakukan	Melaku <mark>k</mark> an
melakukan	percobaan sesuai	percobaan sesuai	-
percobaan	langkah kerja, data	langkah kerja,	sesuai langkah
	yang diperoleh	analisis data	kerja
	dianalisis dengan	belum optimal	7/ 8
	baik		
Mengumpulkan dan	Data yang	Data yang	Data yang
mengolah data	diperoleh sesuai,	diperoleh sesuai,	dip <mark>e</mark> roleh tidak
	pengolahan data	namun pengolahan	ses <mark>u</mark> ai, dan
	sistematis	data kurang	pengolahan data
	0	sistematis	tidak sistematis
Menginterpretasi	Pembahasan tepat	Pembahasan	Pembahasan tidak
hasil analisis data	dan efektif	kurang tepat dan	tepat dan tidak
dan pembahasan		kurang efektif	efektif
Menarik kesimpulan		Simpulan kurang	Simpulan tidak
	tujuan percobaan	sesuai tujuan	sesuai tujuan
		percobaan	percobaan

Keterangan:

d. Skor Maksimal : $3 \times 5 = 15$

e.
$$Nilai = \frac{Jumlah\ Skor}{Skor\ Maksimal} \times 100$$

f. Nilai sikap dikualifikasi menjadi predikat sebagai berikut:

$$SB = Sangat Baik = 80 - 100$$

$$C = Cukup = 60 - 69$$

$$B = Baik = 70 - 79$$

$$K = Kurang = <60$$

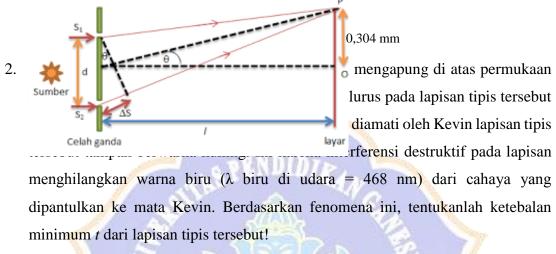
Lampiran 4

Lembar Kerja Siswa (LKS) 04

Materi Pokok : Gelombang Bunyi dan Cahaya

Kelas/Semester : XI MIPA/II

Alokasi Waktu : 40 menit


Anggota (Nama & No Absen)

- 5.
- 6.
- 7.
- 8.

J. Pertanyaan

1. Devi melakukan percobaan interferensi Young dengan menggunakan seberkas sinar *monokromatik* (sinar satu warna) yang mengenai dua celah sempit yang terpisah pada jarak 0,4 mm. Suatu pola interferensi terjadi pada layar yang berjarak 25 cm dari kedua celah. Pada pola-pola tersebut, terlihat garis gelap dan terang

(terlihat pada gambar 9). Setelah dihitung, jarak 2 garis terang yang berurutan adalah sebesar 0,304 mm. Bantulah Devi untuk menghitung panjang gelombang cahaya yang digunakan dalam percobaan tersebut!

- 3. Pada percobaan interferensi Young digunakan dua celah sempit yang berjarak 0,3 mm satu dengan lainnya. Jika jarak layar dengan celah 1m dan jarak garis terang pertama dari terang pusat 1,5 mm, maka panjang gelombang cahaya yang digunakan sebesar?
- 4. Selaput tipis air sabun disinari dengan arah tegak lurus dengan menggunakan cahaya natrium (λ=589,3 nm). Jika indeks bias ari sabun (n=1,33), maka hitunglah tebal minimum selaput yang tampak terang!

Kunci Jawaban LKS 04

1 | Memahami masalah

Diketahui:

$$d = 0.4 \text{ mm} = 3 \times 10^{-4} m$$

$$\Delta p = 1.5 \ mm = 1.5 \ x \ 10^{-3} m$$

l = 1 m

Perintah: hitunglah panjang gelombang cahaya datang tersebut!

Merancang dan merencanakan solusi

Lokasi pita terang ke m dapat dicari dengan konsep berikut:

$$m\lambda = d\frac{p_m}{l}$$
 $p_m = \frac{m\lambda l}{d}$

Jarak dua pita terang berturut-turut dapat dicari dengan mengambil pita ke m dan pita ke (m+1)

$$\Delta p = p_{m+1} - p_m$$

$$\Delta p = \frac{(m+1)\lambda l}{d} - \frac{m\lambda l}{d} = \frac{\lambda l}{d}$$

$$\lambda = d \frac{\Delta p}{l}$$

Menyelesaikan ren<mark>c</mark>ana pemecahan

$$\lambda = d \frac{\Delta p}{l}$$

$$\lambda = \frac{3 \times 10^{-4} \cdot 1.5 \times 10^{-3}}{1}$$

$$\lambda = 4.864 \times 10^{-7} m$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah panjang gelombang cahaya tersebut sebesar $4,864 \times 10^{-7} m$

2 Memahami masalah

Diketahui:

n bensin = 1,40

n kaca = 1.50

 λ biru = 468 nm

Ditanya: Ketebalan minimum t dari lapisan tipis?

Merancang da<mark>n merenc</mark>anakan solusi

Syarat cahaya biru mengalami interferensi destruktif pada lapisan tipis adalah

$$2nt = m\lambda$$
; m = 0, 1, 2, ...

$$t = \frac{m\lambda}{2n}$$

Untuk t minimum dengan t $\neq 0$, diperoleh dengan mengambil bilangan bulat m = 1.

Menyelesaikan rencana pemecahan

$$t = \frac{m\lambda}{2n}$$

$$t = \frac{1(468)}{21.5} = 156 \, nm$$

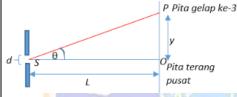
Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah ketebalan minimum lapisan tipis tersebut sebesar 156 nm

Memahami masalah

Diketahui:

Panjang gelombang $\lambda = 6 \times 10^{-7} m = 6000 \times 10^{-7} mm$


Lebar celah d = 0,1 mm

Jarak celah ke layar L = 40 cm = 400 mm

Pita gelap ke-3 berarti n = 3

Ditanya: jarak antara pita gelap ke tiga dengan titik tengah terang pusat?

Merancang dan merencanakan solusi

Menghitung sudut simpang θ :

$$d\sin\theta = n\lambda$$

$$\sin\theta = \frac{n\lambda}{m}$$

$$\sin \theta = \frac{Y}{L}$$

$$\sin \theta = \frac{Y}{L}$$

$$Y = L \sin \theta$$

Menyelesaikan rencana pemecahan

$$0.1\sin\theta = 3(6000 \times 10^{-7})$$

$$\sin \theta = \frac{18000 \times 10^{-7}}{0.01} = 0.018 \ mm$$

$$Y = L \sin \theta$$

$$Y = L \sin \theta$$

$$Y = 400(0,018) = 7,2 mm$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah jarak pita gelap ke 3 dengan terang pusat sebsar 7,2 mm

4 Memahami masalah

Diketahui:

Indeks bias kaca = 1.5

Indeks bias kaca = 1,44

sudut datang yang dibentuk adalah 2,08

Ditanya: apakah sinar pantulnya terpolarisasi?

Merancang dan merencanakan solusi

Berdasarkan Hukum Brewster, sudut pantul sinar terpolarisasi adalah

$$\tan i_p = \frac{n_2}{n_1}$$

$$i_p = \tan^{-1} \left(\frac{n_2}{n_1}\right)$$

Menyelesaikan rencana pemecahan

$$i_p = \tan^{-1}\left(\frac{n_2}{n_1}\right)$$
$$i_p = \tan^{-1}\left(\frac{1,5}{1,44}\right)$$
$$i_p = 46,1^o$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cahaya tidak mengalami polarisasi, sudut yang dibentuk harusnya 46,1°

Lampiran 3.3 Contoh RPP Kelas Kontrol RENCANA PELAKSANAAN PEMBELAJARAN

Satuan Pendidikan : SMA Negeri 8 Denpasar – Bali

Mata Pelajaran : Fisika

Kelas/Semester : XI IPA/Ganjil

Materi Pokok : Gelombang Bunyi dan Cahaya

Alokasi Waktu : 2 JP (2 x 45 menit) Pertemuan Ke-4

I. KOMPETENSI INTI

KI 1 : Menghayati dan mengamalkan ajaran agama yang dianutnya

KI 2 : Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.

KI 3 : Memahami, menerapkan, menganalisis pengetahuan faktual konseptual, prosedural berdasarkan rasa ingintahunya tentang ilmu

pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.

KI 4 : Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di seklah secara mandiri, dan mampu menggunakan metoda sesuai kaidah keilmuan.

J. KOMPETENSI DASAR

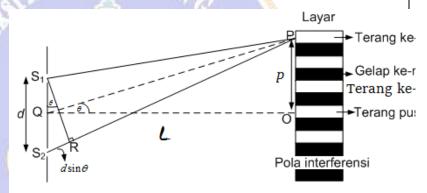
Kompetensi Dasar	Indikator Pencapaian Kompetensi
3.10 Menerapkan konsep dan prinsip	3.10.12 Menganalisis fenomena dispersi
gelombang bunyi dan cahaya	cahaya
dalam teknologi	3.10.13 Memahami konsep interferensi
	gelombang cahaya dala <mark>m</mark> kehidupan
	se <mark>ha</mark> ri-hari
4.10 Melakukan percobaan tentang	4.10.6 Melakukan percobaan interferensi
gelombang bunyi dan/atau	cahaya
cahaya, berikut presentasi hasil	Milay
dan <mark>ma</mark> kna fisi <mark>snya mi</mark> salnya	
sonom <mark>e</mark> ter, dan kisi <mark>difraksi</mark>	

K. TUJUAN PEMBELAJARAN

Melalui pendekatan scientific dan model pembelajaran *Direct Instruction*, siswa dituntut mampu menganalisis fenomena disperse cahaya, konsep interferensi serta penerapannya dalam kehidupan sehari-hari, sehingga siswa mampu menghayati dan mengamalkan ajaran agama yang dianutnya melalui bersyukur, menunjukan perilaku mandiri, dan mampu berkerjasama, dan dapat mengembangkan budaya literasi, kemampuan berfikir kritis, berkomunikasi berkolaborasi dan berkreasi

L. Materi Pembelajaran

Pengetahuan Sinar matahari yang masuk dari jendela yang terbuka faktual Cahaya yang menembus benda bening 3. Televisi yang mengalami kemajuan dari yang hanya berwarna hitam putih, kini bervariasi Konseptual Cahaya memiliki beberapa sifat gelombang antara lain cahaya dapat merambat lurus, cahaya dapat menembus benda, cahaya dapat memantul, cahaya dapat membias, dan cahaya dapat diuraikan menjadi beberapa warna Sifat-Sifat Gelombang Cahaya **Prnsip** 5. Dispersi cahaya Dispersi adalah peristiwa penguraian cahaya putih (polikromatik) menjadi komponenkomponennya karena pembiasan. Komponen-komponen warna yang terbentuk yaitu merah, jingga, kuning, hijau, biru, nila, dan ungu. Dispersi terjadi akibat adanya perbedaan deviasi untuk setiap panjang gelombang, yang disebabkan oleh perbedaan kelajuan masing-masing gelombang pada saat melewati medium pembias. Sudut dispersi adalah sudut yang dibentuk oleh sinar merah dan sinar ungu setelah keluar prisma. Besar sudut dispersi adalah $\varphi = \delta_{ungu} - \delta_{merah}$ Bila sudut pembias prisma kecil, maka: $\varphi = (n_{unau} - n_{merah})\beta$ 6. Interferensi cahaya Interferensi adalah paduan dua gelombang atau lebih menjadi satu gelombang baru. Interferensi terjadi jika terpenuhi dua syarat berikut ini. e. Kedua gelombang cahaya harus koheren, dalam arti bahwa kedua gelombang cahaya harus memiliki beda fase yang


selalu tetap, oleh sebab itu keduanya harus memiliki frekuensi yang sama.

f. Kedua gelombang cahaya harus memiliki amplitudo yang hampir sama.

Gejala yang ditimbulkan pada interferensi cahaya adalah garis terang (terjadi interferensi maksimum) dan garis gelap (terjadi interferensi minimum)

G. Interferensi celah ganda

Untuk menghasilkan interferensi cahaya, Young menggunakan dua celah sempit S_1 dan S_2 berfungsi sebagai sumber cahaya koheren karena berasal dari satu sumber cahaya, yaitu S

Selisih lintasan cahaya sumber S₁ dan S₂ adalah:

$$\Delta S = S_2 P - S_1 P = d \sin \theta$$

Interferensi maksimum akan menghasilkan pola terang pada layar. Pola ini terjadi jika selisih lintasan sama dengan nol atau kelipatan genap dari setengah panjang gelombang, secara matematis ditulis:

$$d \sin\theta = (2n)^{1/2} \lambda$$

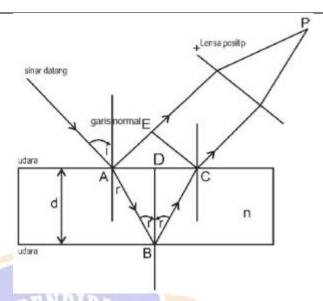
$$\frac{P \times d}{l} = (2n) \frac{1}{2} \lambda$$

Interferensi minimum akan menghasilkan pola gelap pada layar. Pola ini terjadi jika selisih lintasan sama dengan kelipatan ganjil dari setengah panjang gelombang, secara matematis ditulis:

$$d\sin\theta = (2n-1)^{1}/_{2}\lambda$$

$$\frac{P \times d}{l} = (2n - 1)^{-1}/2 \lambda$$

Jarak antara garis terang dan garis gelap yang berdekatan yaitu


$$\Delta Y = \frac{l\lambda}{2d}$$

Jarak antara dua garis terang dan dua garis gelap yang berdekatan yaitu

$$\Delta X = \frac{l\lambda}{d}$$

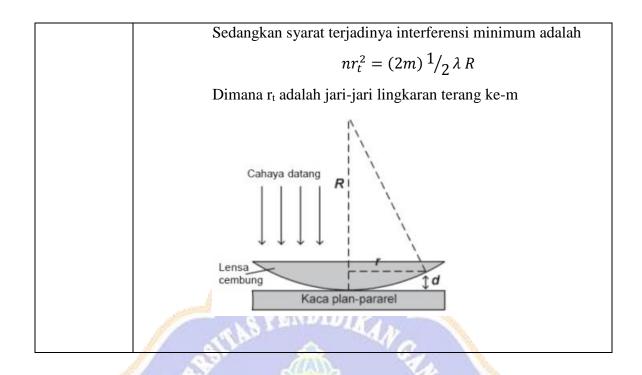
H. Interferensi lapisan tipis

Titik-titik embun di dedaunan atau rerumputan yang dikenai sinar matahari memancarkan warna-warna cahaya tertentu. Timbulnya warna-warna semacam ini juga dapat dijumpai lapisan tipis minyak tanah yang tumpah diatas air atau gelembung yang mendapat sinar matahari.

Syarat terjadinya interferensi maksimum (terang) adalah:

$$2n d \cos r = (2m-1)^{1/2} \lambda$$

$$m = 1,2,3,...$$


Syarat terjadinya interferensi minimum (gelap) adalah:

$$2n d \cos r = (2m)^{1}/_{2} \lambda$$

 $m = 1,2,3,...$

I. Cincin newton

Cincin newton merupaan pola interferensi berbentuk lingkaran-lingkaran gelap dan terang secara berurutan. Sebuah system optic yang terdiri dari lensa cembung-datar yang diletakkan degan bagian cembungnya menyinggu kaca plan parallel. System optic ini disinari dari atas dengan arah tegak lurus oleh cahaya yang Panjang gelombangnya λ . Jika R adalah jari-jari kelengkungan lensa dan r adalah jari-jari lingkaran gelap dan terang hasil interferensi, maka syarat terjadinya interferensi maksimum adalah

$$nr_t^2 = (2m-1)^{1/2} \lambda R$$

K. Metode Pembelajaran

Pendekatan : Scientific

Model : Direct Instruction (DI)

Metode : Diskusi kelompok

L. Media dan Sumber Belajar

Media : Powerpoint

Sumber belajar : Tim Penyusun Buku Pintar Belajar Fisika kelas XII-A.

Sagufindo Kinarya

Langkah-Langkah Pembelajaran

Kegiatan	Sintaks Model DI	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
Pendahuluan	Menyampaikan tujuan dan mempersiapankan siswa	10. Guru membangkit-kan dan memotivasi minat belajar siswa11. Guru memberikan sugesti yang positif12. Guru mengemukakan tujuan pembela-jaran	Karakter: Rasa ingin tahu Tanggungjawab Kritis	15 menit

Kegiatan	Sintaks Model DI	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
		13. Guru mengajukan pertanyaan-pertanya-an untuk menggali pengetahuan awal siswa	Karakter: Rasa ingin tahu Tanggungjawab Kritis	
Kegiatan Inti	Mempresentasi- kan pengetahuan atau kete- rampilan	 Guru menyampaikan dan menjelaskan materi pelajaran sesuai dengan pokok-pokok materi pelajaran terkait karakteristik gelombang bunyi seperti yang terkandung dalam indikator hasil belajar. Siswa menyimak dan mendengarkan dengan seksama penjelasan dari guru. Guru dan siswa melakukan kegiatan tanya jawab. Guru memotivasi siswa untuk terlibat langsung dalam proses pembelajaran dengan menyampaikan beberapa 	Karakter: Rasa ingin tahu Pendekatan: Mengumpulkan informasi Mengamati	70 menit
	Membimbing pelatihan	6. Guru memberikan LKS terkait dengan materi yang telah dijelaskan dan didemonstrasikan secara bertahap. 7. Siswa mencari data untuk menjawab pertanyaan pada LKS dengan membaca berbagai	Karakter: Rasa ingin tahu Tanggungjawab Kritis	

Kegiatan Sintaks Model DI	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
Mengecek pemahaman dan memberi umpan balik	Kebelilasilali siswa dalalii	Karakter: Rasa ingin tahu, kritis, bekerjasama, jujur	waktu

NDIKSHA

Kegiatan	Sintaks Model DI		Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
	Memberi kesempatan untuk pelatihan untuk pelatihan lanjutan dan penerapan	5.	kesempatan melakukan pelatihan lanjutan dengan perhatian khusus pada penerapan kepada situasi lebih kompleks dalam kehidupan sehari-hari.	Karakter: Kritis, tanggungjawab, bekerjasama Pendekatan: Mengasosiasi, menalar, mengkomunikasika n	
Penutup	ia	5.6.	Guru menyampaikan rencana pembelajaran selanjutnya. Guru dan siswa mengucapkan salam penutup.		5 menit

M. Penilaian Hasil Pembelajaran

> Pengetahuan

Teknik Penilaian : Tes tertulis Bentuk Instrumen : Soal uraian

Jenis : LKS

No.	Indikator	Butir
1	Menganalisis intensitas gelombang bunyii. Menganalisis taraf intensitas gelombang bunyi	1-2

Instrumen: lampiran 3

> Keterampilan

Teknik Penilaian: Observasi

Bentuk Instrumen: Lembar observasi

Aspek penilaian keterampilan pada saat diskusi

No.	Indikator	Butir Instrumen
1.	Pelaksanaan diskusi	1
2.	Menyimpulkan hasil diskusi	2
3.	Mempresentasikan hasil diskusi	3
4.	Menyerahkan hasil diskusi sesuai dengan waktu yang telah ditentukan	4

Instrumen: Lampiran 4

ANGKET PENILAIAN DIRI KELAS XII MIA SMA NEGERI 8 DENPASAR TAHUN PELAJARAN 2019/2020

Petunjuk!

- 11. Pernyataan-pernyataan berikut merupakan tanggapan atau pendapat anda terhadap proses pembelajaran pada materi rangkaian arus searah.
- 12. Tugas anda adalah memberi tanggapan atau pendapat terhadap pernyataan yang diajukan dengan memberi tanda ($\sqrt{}$) pada salah satu pilihan

yang sesuai dengan penilaian anda tentang kebenaran pernyataan tersebut. Pilihan-pilihan tersebut adalah:

SS	SR	KK	JS	TP
55			• •	

Keterangan

SS = Sangat Sering, S = Sering, KK = Kadang-kadang, JS = Jarang sekali, TP = Tidak pernah

- 13. Pilihan-pilihan dalam pernyataan-pernyataan tersebut tidak ada satupun yang merupakan pilihan benar.
- 14. Pilihan yang benar adalah pilihan yang sesuai dengan pendapat anda sendiri, bukan atas pendapat teman anda yang lain.
- 15. Jawaban anda tidak akan mempengaruhi prestasi belajar anda di sekolah. Oleh sebab itu, anda dimohon membaca setiap pernyataan dengan seksama dan mengisi pilihan dengan sejujur-jujurnya.

Nama :		
NIS:	2 Th	1

DAFTAR PERNYATAAN PENILAIAN DIRI PADA PEMBELAJARAN FISIKA

NT.	D. G. D. L. A.	Respon												
No.	Daftar Pernyataan	SS	SR	KK	JS	TP								
	Saya kagum kepada Tuhan atas penciptaan			78										
1.	manusia <mark>yang mampu menemukan kuat</mark>		- 7											
1.	arus listrik, hambatan, beda potensial, dan	3	1//	8										
	rangkaian arus tertutup.													
2.	Saya mengejakan tugas individu dengan													
۷.	baik		-											
3.	Saya tidak berani mengambil resiko atas													
5.	tindakan yang sudah dilakukan													
4.	Saya mengembalikan barang yang dipinjam													
5.	Saya meminta maaf atas kesalahan yang													
٥.	dilakukan													
No.	Dofton Domerotoon			Respon	n									
INO.	Daftar Pernyataan	SS	SR	KK	JS	TP								
1.	Saya menyontek dalam mengerjakan													
1.	ujian/ulangan/tugas													

2	Saya tidak pernah melakukan plagiat dalam			
۷.	mengerjakan setiap tugas			
2	Saya melaporkan data hasil percobaan atau			
٥.	informasi apa adanya			
4	Saya enggan mengakui kesalahan atau			
4.	kekurangan yang dimiliki			
5	Saya merapikan semua alat praktikum yang			
٥.	sudah digunakan			
6.	Saya tidak pernah mengotori lingkungan			

RUBRIK PENILAIAN

Rubrik Penilaian Pernyataan Positif

Respons	Skor
Sangat Sering (SS)	5
Sering (SR)	4
Kadang-Kadang (KK)	3
Jarang Sekali (JS)	2
Tidak Pernah (TP)	1

Rubrik Penilaian Pernyataan Negatif

Respons	Skor
Sangat Sering (SS)	1
Sering (SR)	2
Kadang-Kadang (KK)	3
Jarang Sekali (JS)	4
Tidak Pernah (TP)	5

LAMPIRAN 2

Pedoman Observasi Penilaian Sikap

No.	Agnolz	Kriteria		Rentang Skor									
110.	Aspek	Kriteria	1	2	3	4	5						
1.	Rasa Ingin	Mampu bertanya dan mengeksplorasi											
	Tahu	informasi dari berbagai sumber											
2.	Kerja sama	Mampu bekerja sama dengan teman											
	Kerja sama	dalam kelompok											
3.	Tanggung	Mampu bertanggungjawab atas tugas											
	jawab	yang diberikan											

No.	Agnolz	Kriteria		Rent	ang	ang Skor					
110.	Aspek	Kriteria	1	2	3	4	5				
4.		Mampu kritis dalam									
	Kritis	mengasosiasi/menganalisis data dan									
		menanggapi									
	5 = sangat baik	/sangat sering									
	4 = baik/sering										
	3 = cukup										
	2 = kurang/jara										
	1 = sangat kura										

Keterangan:

7. Skor Maksimal :
$$4 \times 5 = 20$$

8.
$$Nilai = \frac{Jumlah\ Skor}{Skor\ Maksimal} \times 100$$

9. Nilai sikap dikualifikasi menjadi predikat sebagai berikut:

$$SB = Sangat Baik = 80 - 100$$

$$C = Cukup = 60 - 69$$

$$B = Baik = 70 - 79$$

$$K = Kurang = <60$$

LAMPIRAN 3

Rubrik Penilaian Keterampilan Proses Sains:

Aspek Penilaian	3	2	1
Merumuskan	Rumusan masalah	Rumusan masalah	Rumusan masalah
masalah	sesuai konsep dan	sesuai konsep	tidak sesuai
	inovatif		konsep
Merumuskan	Rumusan	Rumusan	Rumusan
hipotesis	pertanyaan sesuai	pertanyaan sesuai	pertanyaan tidak
	konsep dan	konsep	sesuai konsep
	mengarah pada		
	tahapan aktivitas		
	mencoba		
Merancang dan	Melakukan	Melakukan	Melakukan
melakukan	percobaan sesuai	percobaan sesuai	percobaan tidak
percobaan	langkah kerja, data	langkah kerja,	

	yang diperoleh	analisis data	sesuai langkah
	dianalisis dengan	belum optimal	kerja
	baik		
Mengumpulkan dan	Data yang	Data yang	Data yang
mengolah data	diperoleh sesuai,	diperoleh sesuai,	diperoleh tidak
	pengolahan data	namun pengolahan	sesuai, dan
	sistematis	data kurang	pengolahan data
		sistematis	tidak sistematis
Menginterpretasi	Pembahasan tepat	Pembahasan	Pembahasan tidak
hasil analisis data	dan efektif	kurang tepat dan	tepat dan tidak
dan pembahasan		kurang efektif	efektif
Menarik kesimpulan	Simpulan sesuai	Simpulan kurang	Simpulan tidak
	tujuan percobaan	sesuai tujuan	sesuai tujuan
		percobaan	percobaan

Keterangan:

g. Skor Maksimal : $3 \times 5 = 15$

h.
$$Nilai = \frac{Jumlah\ Skor}{Skor\ Maksimal} \times 100$$

i. Nilai s<mark>ik</mark>ap dikualifikasi menjadi predikat sebagai berikut:

$$SB = Sangat Baik = 80 - 100$$

C = Cukup = 60 - 69

$$B = Baik = 70 - 79$$

K = Kurang = <60

Lampiran 4

Lembar Kerja Siswa (LKS) 04

Materi Pokok : Gelombang Bunyi dan Cahaya

Kelas/Semester : XI MIPA/II


Alokasi Waktu : 40 menit

An	ıg	g	0	t	a	. ((]	•	١	8	l	n	n	l	a	l	•	ð	Ż	,	1	•	١	()	F	١	١.	b);	S	•	9	r	1)														
		•				-								•							•		•	•				•							•		•			•							-		•	

.....

K. Pertanyaan

1. Devi melakukan percobaan interferensi Young dengan menggunakan seberkas sinar *monokromatik* (sinar satu warna) yang mengenai dua celah sempit yang terpisah pada jarak 0,4 mm. Suatu pola interferensi terjadi pada layar yang berjarak 25 cm dari kedua celah. Pada pola-pola tersebut, terlihat garis gelap dan terang (terlihat pada gambar 9). Setelah dihitung, jarak 2 garis terang yang berurutan adalah sebesar 0,304 mm. Bantulah Devi untuk menghitung panjang gelombang cahaya yang digunakan dalam percobaan tersebut!

menghilangkan warna biru (λ biru di udara = 468 nm) dari cahaya yang dipantulkan ke mata Kevin. Berdasarkan fenomena ini, tentukanlah ketebalan minimum t dari lapisan tipis tersebut!

- 3. Pada percobaan interferensi Young digunakan dua celah sempit yang berjarak 0,3 mm satu dengan lainnya. Jika jarak layar dengan celah 1m dan jarak garis terang pertama dari terang pusat 1,5 mm, maka panjang gelombang cahaya yang digunakan sebesar?
- 4. Selaput tipis air sabun disinari dengan arah tegak lurus dengan menggunakan cahaya natrium (λ =589,3 nm). Jika indeks bias ari sabun (n=1,33), maka hitunglah tebal minimum selaput yang tampak terang!

Kunci Jawaban LKS 04

1 Memahami masalah

Diketahui:

$$d = 0.4 \text{ mm} = 3 \times 10^{-4} m$$

$$\Delta p = 1.5 \ mm = 1.5 \ x \ 10^{-3} m$$

$$l = 1 m$$

Perintah: hitunglah panjang gelombang cahaya datang tersebut!

Merancang dan merencanakan solusi

Lokasi pita terang ke m dapat dicari dengan konsep berikut:

$$m\lambda = d\frac{p_m}{l}$$
$$p_m = \frac{m\lambda l}{d}$$

Jarak dua pita terang berturut-turut dapat dicari dengan mengambil pita ke m dan pita ke (m+1)

$$\Delta p = \frac{p_{m+1} - p_m}{d}$$

$$\Delta p = \frac{(m+1)\lambda l}{d} - \frac{m\lambda l}{d} = \frac{\lambda l}{d}$$

$$\lambda = d\frac{\Delta p}{l}$$

Menyelesaikan rencana pemecahan

$$\lambda = d \frac{\Delta p}{l}$$

$$\lambda = \frac{3 \times 10^{-4} \cdot 1.5 \times 10^{-3}}{1}$$

$$\lambda = 4.864 \times 10^{-7} m$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah panjang gelombang cahaya tersebut sebesar $4,864 \times x \times 10^{-7} m$

2 Memahami masalah

Diketahui:

$$n bensin = 1,40$$

$$n kaca = 1.50$$

$$\lambda$$
 biru = 468 nm

Ditanya: Ketebalan minimum t dari lapisan tipis?

Merancang dan merencanakan solusi

Syarat cahaya biru mengalami interferensi destruktif pada lapisan tipis adalah

$$2nt = m\lambda$$
; m = 0, 1, 2, . . .

$$t = \frac{m\lambda}{2n}$$

Untuk t minimum dengan t $\neq 0$, diperoleh dengan mengambil bilangan bulat m = 1.

Menyelesaikan rencana pemecahan

$$t = \frac{m\lambda}{2n}$$
$$t = \frac{1(468)}{21.5} = 156 \text{ nm}$$

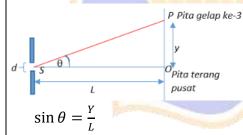
Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah ketebalan minimum lapisan tipis tersebut sebesar 156 nm

3 Memahami masalah

Diketahui:

Panjang gelombang $\lambda = 6 \times 10^{-7} m = 6000 \times 10^{-7} mm$


Lebar celah d = 0.1 mm

Jarak celah ke layar L = 40 cm = 400 mm

Pita gelap ke-3 berarti n = 3

Ditanya: jarak antara pita gelap ke tiga dengan titik tengah terang pusat?

Merancang dan merencanakan solusi

Menghitung sudut simpang θ :

$$d\sin\theta=n\lambda$$

$$\sin\theta = \frac{n\lambda}{d}$$

Menyelesaikan rencana pemecahan

$$0.1\sin\theta = 3(6000 x 10^{-7})$$

$$\sin\theta = \frac{18000 \, x \, 10^{-7}}{0.01} = 0.018 \, mm$$

$$Y = L \sin \theta$$

 $\sin\theta = \frac{Y}{I}$

 $Y = L \sin \theta$

$$Y = 400(0,018) = 7,2 mm$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah jarak pita gelap ke 3 dengan terang pusat sebsar 7,2 mm

4 Memahami masalah

Diketahui:

Indeks bias kaca = 1,5

Indeks bias kaca = 1.44

sudut datang yang dibentuk adalah 2,08

Ditanya: apakah sinar pantulnya terpolarisasi?

Merancang dan merencanakan solusi

Berdasarkan Hukum Brewster, sudut pantul sinar terpolarisasi adalah

$$\tan i_p = \frac{n_2}{n_1}$$

$$i_p = \tan^{-1} \left(\frac{n_2}{n_1}\right)$$

Menyelesaikan rencana pemecahan

$$i_p = \tan^{-1}\left(\frac{n_2}{n_1}\right)$$

$$i_p = \tan^{-1}\left(\frac{1,5}{1,44}\right)$$

$$i_p = 46,1^o$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cahaya tidak mengalami polarisasi, sudut yang dibentuk harusnya 46,1°

Lampiran 4.1 Rekapitulasi Data Hasil Pretest Siswa

A. Kelompok Model PBFC

NT.	NI	2.17	111	1111		No S	Soal					T1	NI:1 - :
No	Nama	1	2	3	4	5	6	7	8	9	10	Jml	Nilai
1	Andika Yusuf As <mark>ha</mark> ri	10	6	4	2	6	2	2	6	0	4	42	35
2	Dian Putri Maharani	8	2	10	6	0	6	6	4	0	2	44	36.67
3	Dieswita Ayu Candradewi	10	4	2	2	0	2	6	6	0	4	36	30
4	I Gusti Agung Wismaya Bayuwindra	10	6	6	6	0	2	2	4	2	2	40	33.33
5	I Gusti Ngurah Bayu Agung Dumadi	6	4	4	2	0	0	6	4	4	2	32	26.67
6	I Kadek And <mark>i</mark> ka Aditya Putra	10	0	0	6	4	4	0	4	2	2	32	26.67
7	I Komang A <mark>d</mark> itya Jaya Santanu	6	6	6	4	4	0	6	4	0	2	38	31.67
8	I Made Adi <mark>Pr</mark> amana Putra	10	6	6	6	0	8	2	6	0	6	50	41.67
9	I Nyoman Tr <mark>ia</mark> na Eka Putra	10	6	6	0	6	6	6	2	2	2	46	38.33
10	I Nyoman Tris <mark>na</mark> Pratama	2	4	8	0	4	6	4	6	2	2	38	31.67
11	I Putu Aditya O <mark>ka</mark> Dananjaya	8	2	4	0	3	4	0	6	4	2	33	27.5
12	I Putu Ditya As <mark>w</mark> inata Yasa	6	4	6	2	2	8	4	4	0	0	36	30
13	I Putu Ray Christian Dinata	6	0	4	6	2	4	4	2	2	2	32	26.67
14	Ida Ayu Diah Para <mark>mi</mark> tha	10	6	8	6	6	6	4	0	0	2	48	40
15	Jody Fauzi Manshurin	6	0	3	4	8	6	2	0	6	6	41	34.17
16	Ketut Aditya Pramuda <mark>na</mark>	4	8	6	4	8	0	6	2	0	2	40	33.33
17	Luh Nyoman Sri Ary S <mark>etyaningsih</mark>	10	2	6	2	0	0	4	2	2	2	30	25
18	Made Akika Brillianta Wikananda	10	8	2	6	8	4	6	6	0	6	56	46.67
19	Made Arya Putra Dharma	10	2	6	4	6	4	4	0	4	0	40	33.33
20	Made Gede Dwipala Wirananda	6	6	6	4	2	6	2	6	2	2	42	35
21	Maria Feronika Gregoria Monteiro	8	6	4	2	4	0	4	0	4	0	32	26.67
22	Ngakan Made Dwika Suta Dewa	8	6	0	4	4	0	4	2	0	0	28	23.33
23	Ni Ketut Ayunda Dewi Mahalini	10	2	0	4	2	4	0	4	2	2	30	25
24	Ni Luh Putu Maharani Diana Putri	8	6	4	4	8	2	4	0	4	4	44	36.67
25	Ni Luh Putu Nanda Fitri Yamamori	10	2	8	6	0	6	6	2	4	6	50	41.67
26	Ni Luh Putu Putri Wijayanti	4	4	10	2	0	5	4	5	4	0	38	31.67
27	Ni Nyoman Ayu Tri Handayani Putri	10	4	6	2	0	2	4	0	0	2	30	25
28	Ni Nyoman Tari Maryati Ayu Swari	6	8	10	4	6	0	4	6	4	2	50	41.67
29	Ni Nyoman Tirtha Santyani	10	6	6	0	0	4	4	2	0	0	32	26.67

30	Ni Putu Melya Regita Andari	10	6	4	6	2	4	0	0	4	0	36	30
31	Ni Putu Nadya Pramudita	6	6	2	6	6	4	4	0	4	0	38	31.67
32	Ni Putu Novita Purnama Dewi	8	3	6	0	0	4	2	4	2	0	29	24.17
33	Ni Putu Reina Diva Febrianti	8	6	8	6	4	2	6	8	0	4	52	43.33
34	Ni Putu Sintya Ardianti Putri	6	2	0	8	10	2	2	2	0	0	32	26.67
35	Putu Ayu Diah Paramita	8	6	0	4	6	6	6	4	6	2	48	40
36	Ram Nanda Suputra	6	2	4	6	2	4	6	2	6	6	44	36.67

B. Kelompok Model TFC

N T	> T		100	No.		No S	Soal						N 701 •
No	Nama	1	2	3	4	5	6	7	8	9	10	Jml	Nilai
1	Adelia Putri Mas	12	4	2	8	0	0	6	8	2	8	50	41.67
2	Amanda Putri Saniyyah	12	2	2	9	10	8	4	6	2	4	59	49.17
3	Anak Agung Ary Jagat Pranatha	10	8	4	8	4	6	4	0	6	6	56	46.67
4	Anak Agung Ayu Widya Shanti	6	6	6	8	4	2	2	6	4	2	46	38.33
5	David Christian Hanjaya	8	0	6	4	4	2	2	2	0	4	32	26.67
6	Desak Made Echa Herawati	12	2	6	6	0	12	4	2	0	2	46	38.33
7	Desak Nyoman Wulan Maharani	12	2	0	6	2	4	4	0	2	4	36	30
8	Faraizha Im <mark>an</mark> nia	4	2	6	4	0	4	4	2	2	0	28	23.33
9	Gede Weka Nanda Kusalawa	12	0	0	4	8	8	2	2	2	2	40	33.33
10	I Dewa Made Bagus Suwiwekanjana	12	0	2	8	4	4	0	2	4	6	42	35
11	I Gusti Agung Mas Natasya	10	2	6	6	2	8	4	4	6	2	50	41.67
12	I Made Bhanu Santana Jagaddhita	12	2	2	4	2	4	4	0	6	2	38	31.67
13	I Made Gde A <mark>dis</mark> atya Ardika <mark>bawa</mark>	2	2	6	6	0	8	0	2	0	2	28	23.33
14	I Made Gede Yogi Febrian Sisco	12	4	0	4	2	2	2	4	6	2	38	31.67
15	I Wayan Wahyu <mark>Pramana Putra</mark>	2	10	2	2	1	2	4	6	2	2	33	27.5
16	Ida Ayu Agung Resita Krisna D.	8	12	2	6	0	0	2	2	4	4	40	33.33
17	Ida Ayu Shinta Pradnyani	8	6	8	6	4	6	4	0	6	4	52	43.33
18	Luh Putu Naraichanaiya Putri Sukarta	8	2	6	6	4	2	2	4	0	2	36	30
19	Made Gede Ary Sutha	12	6	2	2	6	2	4	0	2	4	40	33.33
20	Made Genta Putra Seda <mark>na</mark>	2	6	8	10	0	0	8	4	4	0	42	35
21	Made Indira Pramesti	10	8	4	2	6	4	6	8	2	0	50	41.67
22	Mohammad Bintang Wirayudha	8	2	2	2	6	2	4	0	2	2	30	25
23	Muhammad Syauqi Rohman	8	0	6	6	2	2	6	2	2	4	38	31.67
24	Ni Anom Putri Suandewi	10	8	2	2	6	6	4	6	0	4	48	40
25	Ni Kadek Arisya Putri	8	4	6	6	2	2	6	10	4	4	52	43.33
26	Ni Luh Arik Arthaviani	6	0	6	6	0	2	2	4	4	0	30	25
27	Ni Made Vone Astiti Putri	12	2	8	6	4	4	0	2	2	2	42	35
28	Ni Putu Ari Yuliani Putri	10	2	6	0	0	2	2	4	0	2	28	23.33
29	Ni Putu Cessya Arivira Malica	8	4	6	4	0	8	2	6	4	6	48	40
30	Ni Putu Dinda Novita Dewi	8	6	7	7	2	4	2	4	2	2	44	36.67
31	Pande Made Bagus Maha Putra	8	2	4	0	4	2	4	2	4	2	32	26.67
32	Putu Eka Aprilliano Putra Yasa	12	6	0	6	6	0	0	4	8	6	48	40

33	Putu Khrisna Aditya Loka	10	2	2	0	6	2	2	4	0	2	30	25
34	Putu Ghauria Melati S	6	2	8	2	4	2	4	2	0	2	32	26.67
35	Putu Ristyana Putri	6	2	2	2	2	2	6	6	2	2	32	26.67

C. Kelompok Model DI

	N					No	Soal						N701 •
No	Nama	1	2	3	4	5	6	7	8	9	10	Jml	Nilai
1	A.A. Bagus Damar Putra	6	2	0	4	4	6	6	0	2	4	34	28.33
2	Dewa Ayu Nyoman Nandita D	8	5	6	5	5	5	2	4	4	4	48	40
3	Gede Arjuna Sai Wedanta	6	2	2	4	2	0	3	4	3	3	29	24.17
4	Gede Aswina Budi Winaya	8	3	4	0	4	6	3	0	4	2	34	28.33
5	I Gede Angga Artha Pratama	10	4	5	4	4	4	2	4	4	4	45	37.5
6	I Gusti Agung Ratih Maharani	8	6	6	0	6	6	6	4	6	2	50	41.67
7	I Kadek Novad <mark>a P</mark> urnama Putra	6	0	8	2	5	3	0	6	4	4	38	31.67
8	I Made Ary Widiantara Putra	10	4	4	2	6	4	3	4	0	2	39	32.5
9	I Made Da <mark>rm</mark> a Suar Wijaya	4	2	6	4	2	6	2	6	0	4	36	30
10	I Made Dha <mark>rm</mark> a Artha Yasa	6	8	6	5	4	2	2	4	4	4	45	37.5
11	I Made Krisna Saputra	6	4	6	2	4	3	4	4	4	4	41	34.17
12	I Made Surya Narendra	6	8	6	0	6	4	0	6	8	6	50	41.67
13	I Nyoman Surya Pramaputra	5	4	5	4	2	2	4	0	4	2	32	26.67
14	I Putu Egga <mark>Pu</mark> tra Adnyana	8	8	8	2	2	5	4	4	2	2	45	37.5
15	I Putu Febri Ardiana Putra Wibawa	6	2	4	4	4	4	2	6	4	0	36	30
16	I Putu Virgayana Parawangsa	4	4	2	2	8	2	2	6	4	4	38	31.67
17	I Wayan Dedy Surya Diva	4	4	4	0	2	4	2	0	4	4	28	23.33
18	Kadek Ferri Suparma	6	2	2	4	2	2	6	3	4	2	33	27.5
19	Kadek Galih Maharani Arya Putri	6	4	4	2	3	2	2	2	0	2	27	22.5
20	Kadek Rio Saputra	2	4	6	4	6	4	6	4	2	3	41	34.17
21	Kadek Sri Widiastini	8	6	4	6	2	6	6	4	4	6	52	43.33
22	Komang Swadarma Sasana	6	3	4	3	6	3	2	2	4	3	36	30
23	Made Cahya Purnama	8	4	6	0	6	6	3	4	0	2	39	32.5
24	Ni Kadek Ariati	10	6	6	4	4	4	6	8	2	0	50	41.67
25	Ni Kadek Dea Ranisa	4	2	4	0	8	5	5	7	2	3	40	33.33
26	Ni Kadek Dias Puspayanti	2	8	4	8	5	8	4	6	9	4	58	48.33
27	Ni Kadek Satya Dewi Lestari	8	2	5	6	7	6	8	0	5	4	51	42.5
28	Ni Ketut Yonika Dirmaputri	11	0	5	3	5	8	2	6	8	0	48	40
29	Ni Luh Gede Wahyu Satyaningrum	2	4	8	2	6	2	6	2	2	3	37	30.83
30	Ni Luh Putu Rika Andani	6	4	2	4	7	7	2	2	7	7	48	40
31	Ni Made Sunia Aura Dini	6	10	9	4	3	4	5	8	9	4	62	51.67
32	Ni Made Widya Wahyuni	6	3	2	5	4	0	5	8	0	5	38	31.67
33	Sang Ayu Made Agung Prasetiawati D	4	4	2	4	8	5	8	6	4	4	49	40.83
34	Yustikarini Tri Utami Dewi	4	2	6	6	8	4	2	6	9	4	51	42.5

35	I Made Krisna Dwipayana	8	2	0	3	6	4	3	4	0	2	32	26.67
36	Ni Made Sri Emi Daniswari	10	6	4	6	4	0	6	6	4	2	48	40

Lampiran 4.2 Rekapitulasi Data Hasil Posttest Siswa

A. Kelompok Model PBFC

N.T.	N		A			No S	Soal					Jml	Nilai
No	Nama	_1	2	3	4	5	6	7	8	9	10		
1	Andika Yusuf Ashari	12	10	10	8	10	10	10	12	10	8	100	83.33
2	Dian Putri Maharani	12	10	10	12	10	10	10	10	10	8	102	85
3	Dieswita Ayu Candradewi	12	8	8	10	10	8	10	8	10	10	94	78.33
4	I Gusti Agung Wismaya B	12	10	10	10	10	10	8	12	10	8	100	83.33
5	I Gusti Ngurah Bayu Agung Dumadi	12	6	10	10	8	10	10	10	8	8	92	76.67
6	I Kadek Andika Aditya Putra	12	10	9	8	10	6	8	10	8	8	89	74.17
7	I Komang Aditya Jaya Santanu	12	10	8	10	10	8	12	10	8	10	98	81.67
8	I Made Adi Pramana Putra	12	12	12	10	10	10	10	10	10	10	106	88.33
9	I Nyoman T <mark>ri</mark> ana Eka Putra	10	10	8	10	10	10	12	10	10	12	102	85
10	I Nyoman T <mark>ri</mark> sna Pratama	12	12	10	8	8	10	10	10	8	10	98	81.67
11	I Putu Adity <mark>a</mark> Oka Dananjaya	10	8	10	10	10	8	8	8	10	10	92	76.67
12	I Putu Ditya Aswinata Yasa	10	10	12	10	10	8	10	8	8	8	94	78.33
13	I Putu Ray Christian Dinata	10	12	8	10	12	8	6	8	6	8	88	73.33
14	Ida Ayu Diah <mark>Par</mark> amitha	12	10	10	12	10	10	10	10	10	10	104	86.67
15	Jody Fauzi Man <mark>sh</mark> urin	10	12	10	10	12	10	10	8	10	8	100	83.33
16	Ketut Aditya Pr <mark>am</mark> udana	12	10	8	10	10	10	12	10	10	8	100	83.33
17	Luh Nyoman Sri Ary Setyaningsih	10	10	10	10	8	0	10	8	8	8	82	68.33
18	Made Akika Brilli <mark>ant</mark> a Wikananda	12	12	12	12	10	12	10	10	10	12	112	93.33
19	Made Arya Putra Dh <mark>ar</mark> ma	12	10	10	8	10	8	12	10	10	8	98	81.67
20	Made Gede Dwipala Wirananda	12	10	10	8	12	10	10	8	10	10	100	83.33
21	Maria Feronika Gregoria Monteiro	10	10	10	8	10	8	10	8	8	6	88	73.33
22	Ngakan Made Dwika Suta Dewa	10	8	6	8	6	6	8	8	8	8	76	63.33
23	Ni Ketut Ayunda Dewi Mahalini	10	12	2	10	8	6	6	8	8	10	80	66.67
24	Ni Luh Putu Maharani Diana Putri	12	12	10	10	10	10	10	8	10	10	102	85
25	Ni Luh Putu Nanda Fitri Yamamori	10	12	12	10	10	10	12	10	10	10	106	88.33
26	Ni Luh Putu Putri Wijayanti	12	10	10	8	8	10	8	10	10	8	94	78.33
27	Ni Nyoman Ayu Tri Handayani P	10	10	8	6	6	8	8	8	6	8	78	65
28	Ni Nyoman Tari Maryati Ayu Swari	12	12	10	10	10	10	10	10	10	10	104	86.67
29	Ni Nyoman Tirtha Santyani	10	6	6	10	10	8	10	10	8	8	86	71.67
30	Ni Putu Melya Regita Andari	12	10	8	8	10	10	8	10	10	8	94	78.33
31	Ni Putu Nadya Pramudita	12	10	10	8	8	10	8	10	10	8	94	78.33
32	Ni Putu Novita Purnama Dewi	10	6	8	8	8	10	8	6	6	6	76	63.33
33	Ni Putu Reina Diva Febrianti	12	10	12	10	12	10	12	10	12	10	110	91.67

34	Ni Putu Sintya Ardianti Putri	12	8	8	6	10	8	8	10	10	6	86	71.67
35	Putu Ayu Diah Paramita	10	10	12	12	10	8	10	10	10	10	102	85
36	Ram Nanda Suputra	10	10	10	12	10	12	10	10	10	8	102	85

B. Kelompok Model TFC

NI.	N					No S	Soal					Jml	Nilai
No	Nama	1	2	3	4	5	6	7	8	9	10		
1	Adelia Putri Mas	12	10	10	8	10	12	10	12	10	8	102	85
2	Amanda Putri Saniyyah	12	12	10	8	10	11	12	10	10	12	107	89.17
3	Anak Agung Ary Jagat Pranatha	12	12	12	10	10	10	10	12	9	8	105	87.5
4	Anak Agung Ayu Widya Shanti	12	10	10	10	8	10	8	9	10	10	97	80.83
5	David Christian Hanjaya	10	8	8	8	12	8	8	8	8	8	86	71.67
6	Desak Made Echa Herawati	12	12	8	8	8	-10	12	8	10	8	96	80
7	Desak Nyoman Wulan Maharani	12	10	8	8	10	8	8	8	8	8	88	73.33
8	Faraizha Imannia	10	10	3	12	8	10	6	8	8	0	75	62.5
9	Gede Weka Nanda Kusalawa	12	10	10	8	10	10	8	8	10	8	94	78.33
10	I Dewa Made Bagus Suwiwekanjana	12	12	9	10	10	8	10	10	8	6	95	79.17
11	I Gusti Ag <mark>un</mark> g Mas Natasya	12	10	12	8	10	8	8	8	12	12	100	83.33
12	I Made Bhanu Santana Jagaddhita	12	8	8	10	8	10	10	8	8	9	91	75.83
13	I Made Gde Adisatya Ardikabawa	10	8	8	8	10	8	6	6	8	0	72	60
14	I Made Gede Yogi Febrian Sisco	12	10	8	10	8	8	8	10	8	9	91	75.83
15	I Wayan Wa <mark>h</mark> yu Pramana Putra	10	12	10	8	7	8	6	8	8	9	86	71.67
16	Ida Ayu Agung Resita Krisna D.	8	12	10	10	8	8	10	8	10	10	94	78.33
17	Ida Ayu Shinta Pradnyani	12	10	8	12	12	9	10	10	12	8	103	85.83
18	Luh Putu Naraic <mark>h</mark> anaiya Putri <mark>Sukarta</mark>	12	8	12	8	7	10	6	8	8	7	86	71.67
19	Made Gede Ary Sutha	12	10	8	8	8	10	8	8	10	9	91	75.83
20	Made Genta Putra Sedana	10	10	12	12	8	8	10	8	8	9	95	79.17
21	Made Indira Pramesti	12	8	10	8	12	10	8	12	10	10	100	83.33
22	Mohammad Bintang Wirayudha	10	8	10	10	8	6	8	6	6	6	78	65
23	Muhammad Syauqi Rohman	10	8	8	10	10	8	8	10	8	8	88	73.33
24	Ni Anom Putri Suandewi	12	10	10	8	12	10	12	8	10	8	100	83.33
25	Ni Kadek Arisya Putri	12	10	12	10	8	12	8	10	8	12	102	85
26	Ni Luh Arik Arthaviani	8	8	10	8	8	6	8	10	10	0	76	63.33
27	Ni Made Vone Astiti Putri	10	12	8	8	12	8	8	8	10	10	94	78.33
28	Ni Putu Ari Yuliani Putri	10	6	8	8	6	8	6	6	8	6	72	60
29	Ni Putu Cessya Arivira Malica	12	12	10	8	10	10	8	10	8	10	98	81.67
30	Ni Putu Dinda Novita Dewi	10	12	10	10	8	10	8	8	10	9	95	79.17
31	Pande Made Bagus Maha Putra	10	10	8	8	6	10	8	8	6	8	82	68.33
32	Putu Eka Aprilliano Putra Yasa	12	10	8	12	10	10	8	8	12	8	98	81.67
33	Putu Khrisna Aditya Loka	12	8	6	6	8	0	10	8	8	9	75	62.5
34	Putu Ghauria Melati S	10	8	10	8	6	10	8	8	6	8	82	68.33
35	Putu Ristyana Putri	8	10	8	8	6	6	8	10	8	8	80	66.67

C. Kelompok Model DI

						No S	Soal					Jml	Nilai
No	Nama	1	2	3	4	5	6	7	8	9	10		
1	A.A. Bagus Damar Putra	6	2	0	4	4	6	6	0	2	4	74	61.67
2	Dewa Ayu Nyoman Nandita D	8	5	6	5	5	5	2	4	4	4	90	75
3	Gede Arjuna Sai Wedanta	6	2	2	4	2	0	3	4	3	3	70	58.33
4	Gede Aswina Budi Winaya	8	3	4	0	4	6	3	0	4	2	72	60
5	I Gede Angga Artha Pratama	10	4	5	4	4	4	2	4	4	4	86	71.67
6	I Gusti Agung Ratih Maharani	8	6	6	0	6	6	6	4	6	2	94	78.33
7	I Kadek Novada Purnama Putra	6	0	8	2	5	3	0	6	4	4	80	66.67
8	I Made Ary Widiantara Putra	10	4	4	2	6	4	3	4	0	2	80	66.67
9	I Made Darma Su <mark>ar</mark> Wijaya	4	2	6	4	2	6	2	6	0	4	76	63.33
10	I Made Dharma Artha Yasa	6	8	6	5	4	2	2	4	4	4	86	71.67
11	I Made Krisna Saputra	6	4	6	2	4	3	4	4	4	4	82	68.33
12	I Made Surya Narendra	6	8	6	0	6	4	0	6	8	6	92	76.67
13	I Nyoman S <mark>u</mark> rya Pramaputra	5	4	5	4	2	2	4	0	4	2	70	58.33
14	I Putu Egga <mark>P</mark> utra Adnyana	8	8	8	2	2	5	4	4	2	2	82	68.33
15	I Putu Febri Ardiana Putra Wibawa	6	2	4	4	4	4	2	6	4	0	76	63.33
16	I Putu Virga <mark>y</mark> ana Parawangsa	4	4	2	2	8	2	2	6	4	4	76	63.33
17	I Wayan Dedy Surya Diva	4	4	4	0	2	4	2	0	4	4	68	56.67
18	Kadek Ferri Suparma	6	2	2	4	2	2	6	3	4	2	72	60
19	Kadek Galih Ma <mark>h</mark> arani Arya Putri	6	4	4	2	3	2	2	2	0	2	68	56.67
20	Kadek Rio Saputra	2	4	6	4	6	4	6	4	2	3	82	68.33
21	Kadek Sri Widiastini	8	6	4	6	2	6	6	4	4	6	98	81.67
22	Komang Swadarma Sasana	6	3	4	3	6	3	2	2	4	3	74	61.67
23	Made Cahya Purnama	8	4	6	0	6	6	3	4	0	2	80	66.67
24	Ni Kadek Ariati	10	6	6	4	4	4	6	8	2	0	92	76.67
25	Ni Kadek Dea Ranisa	4	2	4	0	8	5	5	7	2	3	82	68.33
26	Ni Kadek Dias Puspayanti	2	8	4	8	5	8	4	6	9	4	100	83.33
27	Ni Kadek Satya Dewi Lestari	8	2	5	6	7	6	8	0	5	4	98	81.67
28	Ni Ketut Yonika Dirmaputri	11	0	5	3	5	8	2	6	8	0	88	73.33
29	Ni Luh Gede Wahyu Satyaningrum	2	4	8	2	6	2	6	2	2	3	76	63.33
30	Ni Luh Putu Rika Andani	6	4	2	4	7	7	2	2	7	7	88	73.33
31	Ni Made Sunia Aura Dini	6	10	9	4	3	4	5	8	9	4	103	85.83
32	Ni Made Widya Wahyuni	6	3	2	5	4	0	5	8	0	5	76	63.33
33	Sang Ayu Made Agung Prasetiawati D	4	4	2	4	8	5	8	6	4	4	90	75
34	Yustikarini Tri Utami Dewi	4	2	6	6	8	4	2	6	9	4	94	78.33
35	I Made Krisna Dwipayana	8	2	0	3	6	4	3	4	0	2	70	58.33
36	Ni Made Sri Emi Daniswari	10	6	4	6	4	0	6	6	4	2	88	73.33

Lampiran 4.3 Integrator Dua Prediktor Skor Total dan Skor Perbutir

A. Hasil Koreksi *Posttest* Masing-Masing Kelompok oleh Korektor 1

1. Kelompok PBFC

N. T	NT					No S	Soal					Jml	Nilai
No	Nama	1	2	3	4	5	6	7	8	9	10		
1	Andika Yusuf Ashari	12	10	10	8	10	10	10	12	10	8	100	83.33
2	Dian Putri Maharani	12	10	10	12	10	10	10	10	10	8	102	85
3	Dieswita Ayu Candradewi	12	8	8	10	10	8	10	8	10	10	94	78.33
4	I Gusti Agung Wismaya B	12	10	10	10	10	10	8	12	10	8	100	83.33
5	I Gusti Ngurah Bayu Agung Dumadi	12	6	10	10	8	10	10	10	8	8	92	76.67
6	I Kadek Andika Aditya Putra	12	10	9	8	10	6	8	10	8	8	89	74.17
7	I Komang Aditya Jaya Santanu	12	10	8	10	10	8	12	10	8	10	98	81.67
8	I Made Adi Pramana Putra	12	12	12	10	10	10	10	10	10	10	106	88.33
9	I Nyoman Triana <mark>E</mark> ka Putra	10	10	8	10	10	10	12	10	10	12	102	85
10	I Nyoman Tris <mark>na</mark> Pratama	12	12	10	8	8	10	10	10	8	10	98	81.67
11	I Putu Aditya Oka Dananjaya	10	8	10	10	10	8	8	8	10	10	92	76.67
12	I Putu Dity <mark>a A</mark> swinata Yasa	10	10	12	10	10	8	10	8	8	8	94	78.33
13	I Putu Ray Christian Dinata	10	12	8	10	12	8	6	8	6	8	88	73.33
14	Ida Ayu Dia <mark>h</mark> Paramitha	12	10	10	12	10	10	10	10	10	10	104	86.67
15	Jody Fauzi Manshurin	10	12	10	10	12	10	10	8	10	8	100	83.33
16	Ketut Aditya Pramudana	12	10	8	10	10	10	12	10	10	8	100	83.33
17	Luh Nyoman Sri Ary Setyaningsih	10	10	10	10	8	0	10	8	8	8	82	68.33
18	Made Akika Brillianta Wikananda	12	12	12	12	10	12	10	10	10	12	112	93.33
19	Made Arya Putra Dharma	12	10	10	8	10	8	12	10	10	8	98	81.67
20	Made Gede Dwipala Wirananda	12	10	10	8	12	10	10	8	10	10	100	83.33
21	Maria Feronika Gregoria Monteiro	10	10	10	8	10	8	10	8	8	6	88	73.33
22	Ngakan Made Dwika Suta Dewa	10	8	6	8	6	6	8	8	8	8	76	63.33
23	Ni Ketut Ayunda Dewi Mahalini	10	12	2	10	8	6	6	8	8	10	80	66.67
24	Ni Luh Putu Maharani <mark>D</mark> iana Putri	12	12	10	10	10	10	10	8	10	10	102	85
25	Ni Luh Putu Nanda Fitr <mark>i Yamamori</mark>	10	12	12	10	10	10	12	10	10	10	106	88.33
26	Ni Luh Putu Putri Wijayanti	12	10	10	8	8	10	8	10	10	8	94	78.33
27	Ni Nyoman Ayu Tri Handayani P	10	10	8	6	6	8	8	8	6	8	78	65
28	Ni Nyoman Tari Maryati Ayu Swari	12	12	10	10	10	10	10	10	10	10	104	86.67
29	Ni Nyoman Tirtha Santyani	10	6	6	10	10	8	10	10	8	8	86	71.67
30	Ni Putu Melya Regita Andari	12	10	8	8	10	10	8	10	10	8	94	78.33
31	Ni Putu Nadya Pramudita	12	10	10	8	8	10	8	10	10	8	94	78.33
32	Ni Putu Novita Purnama Dewi	10	6	8	8	8	10	8	6	6	6	76	63.33
33	Ni Putu Reina Diva Febrianti	12	10	12	10	12	10	12	10	12	10	110	91.67
34	Ni Putu Sintya Ardianti Putri	12	8	8	6	10	8	8	10	10	6	86	71.67
35	Putu Ayu Diah Paramita	10	10	12	12	10	8	10	10	10	10	102	85
36	Ram Nanda Suputra	10	10	10	12	10	12	10	10	10	8	102	85

2. Kelompok Model TFC

N.T.	N					No S	Soal					Jml	Nilai
No	Nama	1	2	3	4	5	6	7	8	9	10		
1	Adelia Putri Mas	12	10	10	8	10	12	10	12	10	8	102	85
2	Amanda Putri Saniyyah	12	12	10	8	10	11	12	10	10	12	107	89.17
3	Anak Agung Ary Jagat Pranatha	12	12	12	10	10	10	10	12	9	8	105	87.5
4	Anak Agung Ayu Widya Shanti	12	10	10	10	8	10	8	9	10	10	97	80.83
5	David Christian Hanjaya	10	8	8	8	12	8	8	8	8	8	86	71.67
6	Desak Made Echa Herawati	12	12	8	8	8	10	12	8	10	8	96	80
7	Desak Nyoman Wulan Maharani	12	10	8	8	10	8	8	8	8	8	88	73.33
8	Faraizha Imannia	10	10	3	12	8	10	6	8	8	0	75	62.5
9	Gede Weka Nanda Kusalawa	12	10	10	8	10	10	8	8	10	8	94	78.33
10	I Dewa Made Bagus Suwiwekanjana	12	12	9	10	10	8	10	10	8	6	95	79.17
11	I Gusti Agung Mas Natasya	12	10	12	8	10	8	8	8	12	12	100	83.33
12	I Made Bhanu Santana Jagaddhita	12	8	8	10	8	10	10	8	8	9	91	75.83
13	I Made Gde Adisatya A <mark>rdika</mark> bawa	10	8	8	8	10	8	6	6	8	0	72	60
14	I Made Gede Yogi Febrian Sisco	12	10	8	10	8	8	8	10	8	9	91	75.83
15	I Wayan Wahyu P <mark>ra</mark> mana Putra	10	12	10	8	7	8	6	8	8	9	86	71.67
16	Ida Ayu Agung <mark>R</mark> esita Krisna D.	8	12	10	10	8	8	10	8	10	10	94	78.33
17	Ida Ayu Shinta Pradnyani	12	10	8	12	12	9	10	10	12	8	103	85.83
18	Luh Putu Naraichanaiya Putri Sukarta	12	8	12	8	7	10	6	8	8	7	86	71.67
19	Made Gede Ary Sutha	12	10	8	8	8	10	8	8	10	9	91	75.83
20	Made Genta Putra Sedana	10	10	12	12	8	8	10	8	8	9	95	79.17
21	Made Indira Pramesti	12	8	10	8	12	10	8	12	10	10	100	83.33
22	Mohammad Bintang Wirayudha	10	8	10	10	8	6	8	6	6	6	78	65
23	Muhammad Syauqi Rohman	10	8	8	10	10	8	8	10	8	8	88	73.33
24	Ni Anom Putri Suandewi	12	10	10	8	12	10	12	8	10	8	100	83.33
25	Ni Kadek Arisya Putri	12	10	12	10	8	12	8	10	8	12	102	85
26	Ni Luh Arik Art <mark>h</mark> aviani	8	8	10	8	8	6	8	10	10	0	76	63.33
27	Ni Made Vone Astiti Putri	10	12	8	8	12	8	8	8	10	10	94	78.33
28	Ni Putu Ari Yuliani Putri	10	6	8	8	6	8	6	6	8	6	72	60
29	Ni Putu Cessya Arivira Malica	12	12	10	8	10	10	8	10	8	10	98	81.67
30	Ni Putu Dinda Novita Dewi	10	12	10	10	8	10	8	8	10	9	95	79.17
31	Pande Made Bagus Ma <mark>ha Putra</mark>	10	10	8	8	6	10	8	8	6	8	82	68.33
32	Putu Eka Aprilliano Putra Yasa	12	10	8	12	10	10	8	8	12	8	98	81.67
33	Putu Khrisna Aditya Loka	12	8	6	6	8	0	10	8	8	9	75	62.5
34	Putu Ghauria Melati S	10	8	10	8	6	10	8	8	6	8	82	68.33
35	Putu Ristyana Putri	8	10	8	8	6	6	8	10	8	8	80	66.67

3. Kelompok Model DI

NI.	N					No S	Soal					Jml	Nilai
No	Nama	1	2	3	4	5	6	7	8	9	10		
1	A.A. Bagus Damar Putra	6	2	0	4	4	6	6	0	2	4	74	61.67
2	Dewa Ayu Nyoman Nandita D	8	5	6	5	5	5	2	4	4	4	90	75
3	Gede Arjuna Sai Wedanta	6	2	2	4	2	0	3	4	3	3	70	58.33
4	Gede Aswina Budi Winaya	8	3	4	0	4	6	3	0	4	2	72	60
5	I Gede Angga Artha Pratama	10	4	5	4	4	4	2	4	4	4	86	71.67
6	I Gusti Agung Ratih Maharani	8	6	6	0	6	6	6	4	6	2	94	78.33
7	I Kadek Novada Purnama Putra	6	0	8	2	5	3	0	6	4	4	80	66.67
8	I Made Ary Widiantara Putra	10	4	4	2	6	4	3	4	0	2	80	66.67
9	I Made Darma Suar Wijaya	4	2	6	4	2	6	2	6	0	4	76	63.33
10	I Made Dharma Artha Yasa	6	8	6	5	4	2	2	4	4	4	86	71.67
11	I Made Krisna Saputra	6	4	6	2	4	3	4	4	4	4	82	68.33
12	I Made Surya Narendra	6	8	6	0	6	4	0	6	8	6	92	76.67
13	I Nyoman Surya Pramaputra	5	4	5	4	2	2	4	0	4	2	70	58.33
14	I Putu Egga Putra Adnyana	8	8	8	2	2	5	4	4	2	2	82	68.33
15	I Putu Febri Ardiana Putra Wibawa	6	2	4	4	4	4	2	6	4	0	76	63.33
16	I Putu Virgayana Parawangsa	4	4	2	2	8	2	2	6	4	4	76	63.33
17	I Wayan Dedy Surya Diva	4	4	4	0	2	4	2	0	4	4	68	56.67
18	Kadek Ferri Suparma	6	2	2	4	2	2	6	3	4	2	72	60
19	Kadek Galih Maharani Arya Putri	6	4	4	2	3	2	2	2	0	2	68	56.67
20	Kadek Rio Saputra	2	4	6	4	6	4	6	4	2	3	82	68.33
21	Kadek Sri Widiastini	8	6	4	6	2	6	6	4	4	6	98	81.67
22	Komang Swadarma Sasana	6	3	4	3	6	3	2	2	4	3	74	61.67
23	Made Cahya Purnama	8	4	6	0	6	6	3	4	0	2	80	66.67
24	Ni Kadek Ariati	10	6	6	4	4	4	6	8	2	0	92	76.67
25	Ni Kadek Dea R <mark>a</mark> nisa	4	2	4	0	8	5	5	7	2	3	82	68.33
26	Ni Kadek Dias Puspayanti	2	8	4	8	5	8	4	6	9	4	100	83.33
27	Ni Kadek Satya Dewi Lestari	8	2	5	6	7	6	8	0	5	4	98	81.67
28	Ni Ketut Yonika Dirmaputri	11	0	5	3	5	8	2	6	8	0	88	73.33
29	Ni Luh Gede Wahyu Satyaningrum	2	4	8	2	6	2	6	2	2	3	76	63.33
30	Ni Luh Putu Rika Andani	6	4	2	4	7	7	2	2	7	7	88	73.33
31	Ni Made Sunia Aura Dini	6	10	9	4	3	4	5	8	9	4	103	85.83
32	Ni Made Widya Wahyuni	6	3	2	5	4	0	5	8	0	5	76	63.33
33	Sang Ayu Made Agung Prasetiawati D	4	4	2	4	8	5	8	6	4	4	90	75
34	Yustikarini Tri Utami Dewi	4	2	6	6	8	4	2	6	9	4	94	78.33
35	I Made Krisna Dwipayana	8	2	0	3	6	4	3	4	0	2	70	58.33
36	Ni Made Sri Emi Daniswari	10	6	4	6	4	0	6	6	4	2	88	73.33

B. Hasil Koreksi *Posttest* Masing-Masing Kelompok oleh Korektor 2

1. Kelompok PBFC

						No S	Soal					Jml	Nilai
No	Nama	1	2	3	4	5	6	7	8	9	10		- (
1	Andika Yusuf Ashari	12	10	10	8	10	10	10	10	10	8	98	81.67
2	Dian Putri Maharani	12	10	10	12	10	10	10	10	10	8	102	85
3	Dieswita Ayu Candradewi		8	8	10	10	8	10	8	10	10	94	78.33
4	I Gusti Agung Wismaya B		10	10	10	12	10	8	12	10	8	102	85
5	I Gusti Ngurah Bayu Agung Dumadi	12	6	10	10	8	10	10	10	8	8	92	76.67
6	I Kadek Andika Aditya Putra	12	10	9	8	10	6	8	10	8	8	89	74.17
7	I Komang Aditya Jaya Santanu	12	10	8	10	10	8	10	10	8	10	96	80
8	I Made Adi Pramana Putra	12	12	12	10	10	10	10	10	10	10	106	88.33
9	I Nyoman Triana Eka Putra	10	10	8	10	10	10	10	10	10	12	100	83.33
10	I Nyoman Trisna Pratama	12	10	10	8	8	10	10	10	8	10	96	80
11	I Putu Aditya Oka Dananjaya	10	8	10	10	10	8	8	8	12	10	94	78.33
12	I Putu Ditya Aswinata Yasa	10	10	12	10	10	8	10	8	8	8	94	78.33
13	I Putu Ray Christian Dinata	10	12	8	10	12	8	6	8	6	8	88	73.33
14	Ida Ayu Diah Par <mark>am</mark> itha	12	10	10	12	10	10	10	10	10	10	104	86.67
15	Jody Fauzi Manshurin	10	12	10	10	12	10	12	8	10	8	102	85
16	Ketut Aditya Pramudana	12	10	8	10	10	10	12	10	10	8	100	83.33
17	Luh Nyoman Sri Ary Setyaningsih	10	10	10	10	8	0	10	8	8	8	82	68.33
18	Made Akika Brillianta Wikananda	12	12	12	12	10	12	10	10	10	12	112	93.33
19	Made Arya Putra Dharma	12	10	10	8	12	8	12	10	10	8	100	83.33
20	Made Gede Dwipala Wirananda	12	10	10	8	12	10	10	8	10	10	100	83.33
21	Maria Feronika Gregoria Monteiro	12	10	10	8	10	8	10	8	10	6	92	76.67
22	Ngakan Mad <mark>e</mark> Dwika Suta Dewa	10	10	6	8	6	6	8	8	8	8	78	65
23	Ni Ketut Ayunda Dewi Mahalini	10	12	2	8	8	6	6	8	8	10	78	65
24	Ni Luh Putu Ma <mark>h</mark> arani Diana <mark>Putri</mark>	12	10	10	10	12	10	10	8	10	10	102	85
25	Ni Luh Putu Na <mark>nd</mark> a Fitri Yamam <mark>ori</mark>	10	12	12	10	10	8	12	10	10	10	104	86.67
26	Ni Luh Putu Putr <mark>i W</mark> ijayanti	12	10	10	8	8	10	10	10	10	8	96	80
27	Ni Nyoman Ayu T <mark>ri</mark> Handayani P	10	10	8	6	6	8	8	10	6	8	80	66.67
28	Ni Nyoman Tari Maryati Ayu Swari	12	12	10	10	10	10	10	10	10	10	104	86.67
29	Ni Nyoman Tirtha Santyani	10	6	6	10	10	8	10	10	8	8	86	71.67
30	Ni Putu Melya Regita A <mark>ndari</mark>	12	10	8	8	10	10	8	10	10	10	96	80
31	Ni Putu Nadya Pramudita	12	10	10	8	8	10	8	10	10	8	94	78.33
32	Ni Putu Novita Purnama Dewi	10	6	8	8	8	10	8	6	6	6	76	63.33
33	Ni Putu Reina Diva Febrianti	12	10	12	10	12	10	12	10	12	10	110	91.67
34	Ni Putu Sintya Ardianti Putri	12	8	8	6	10	8	8	10	10	6	86	71.67
35	Putu Ayu Diah Paramita	10	10	12	12	10	8	10	10	10	10	102	85
36	Ram Nanda Suputra	10	10	10	12	10	12	10	10	10	8	102	85

2. Kelompok Model TFC

	N T					No S	Soal					Jml	Nilai
No	Nama	1	2	3	4	5	6	7	8	9	10		
1	Adelia Putri Mas	12	10	10	8	10	12	10	12	10	8	102	85
2	Amanda Putri Saniyyah	10	12	10	8	10	11	12	10	10	12	105	87.5
3	Anak Agung Ary Jagat Pranatha	12	12	12	10	10	10	10	12	9	8	105	87.5
4	Anak Agung Ayu Widya Shanti	12	10	10	10	8	10	8	9	10	10	97	80.83
5	David Christian Hanjaya	10	8	8	8	12	8	8	8	8	8	86	71.67
6	Desak Made Echa Herawati	12	10	8	8	8	10	12	8	10	8	94	78.33
7	Desak Nyoman Wulan Maharani	12	10	8	8	10	8	8	8	8	8	88	73.33
8	Faraizha Imannia	10	10	4	12	8	10	6	8	8	0	76	63.33
9	Gede Weka Nanda Kusalawa	12	10	10	8	10	10	8	8	10	8	94	78.33
10	I Dewa Made Bagus Suwiwekanjana	12	12	9	10	10	8	10	10	8	6	95	79.17
11	I Gusti Agung Mas Natasya	12	10	12	10	10	8	8	8	12	12	102	85
12	I Made Bhanu Santana Jagaddhita	12	8	8	10	8	10	10	8	8	9	91	75.83
13	I Made Gde Adisatya Ardikabawa	10	8	8	8	8	8	6	6	8	0	70	58.33
14	I Made Gede Yogi Febrian Sisco	12	10	8	10	8	8	8	10	8	9	91	75.83
15	I Wayan Wahyu Pramana Putra	10	12	10	8	7	8	6	8	8	9	86	71.67
16	Ida Ayu Agung Resita Krisna D.	8	12	10	10	8	8	10	8	10	10	94	78.33
17	Ida Ayu Shinta Pradnyani	12	10	8	12	12	10	10	10	12	8	104	86.67
18	Luh Putu Naraichanaiya Putri Sukarta	12	8	12	8	7	10	8	8	8	7	88	73.33
19	Made Gede Ary Sutha	12	10	8	8	8	10	8	8	10	9	91	75.83
20	Made Genta Putra Sedana	10	10	12	12	8	8	10	8	8	9	95	79.17
21	Made Indira Pramesti	12	8	10	8	12	10	8	10	10	10	98	81.67
22	Mohammad Bintang Wirayudha	10	8	10	10	8	6	8	6	8	6	80	66.67
23	Muhammad Syauqi Rohman	10	8	8	10	10	8	8	10	8	8	88	73.33
24	Ni Anom Putri Suandewi	12	10	10	8	12	10	12	8	10	6	98	81.67
25	Ni Kadek Arisya Putri	12	10	12	10	8	12	8	10	8	12	102	85
26	Ni Luh Arik Arthaviani	8	8	10	8	8	6	8	10	10	0	76	63.33
27	Ni Made Vone Astiti Putri	10	12	8	8	12	8	8	8	10	8	92	76.67
28	Ni Putu Ari Yul <mark>ia</mark> ni Putri	10	6	8	8	6	8	8	6	8	6	74	61.67
29	Ni Putu Cessya Arivira Malica	12	12	10	8	10	10	8	10	8	10	98	81.67
30	Ni Putu Dinda Novita Dewi	10	12	10	10	8	10	8	8	10	9	95	79.17
31	Pande Made Bagus Maha Putra	10	10	8	8	6	10	8	10	6	8	84	70
32	Putu Eka Aprilliano Putra Yasa	12	10	8	12	10	10	8	10	12	8	100	83.33
33	Putu Khrisna Aditya Lo <mark>ka</mark>	12	8	6	6	8	0	10	8	8	9	75	62.5
34	Putu Ghauria Melati S	10	8	10	8	8	10	8	8	6	8	84	70
35	Putu Ristyana Putri	8	10	8	8	8	6	8	10	8	8	82	68.33

3. Kelompok Model DI

No	No. Nomo			No Soal									Nilai
110	Nama	1	2	3	4	5	6	7	8	9	10		
1	A.A. Bagus Damar Putra	8	6	6	8	8	6	8	8	8	6	72	60
2	Dewa Ayu Nyoman Nandita D	10	10	8	8	10	10	10	8	8	8	90	75

3	Gede Arjuna Sai Wedanta	6	10	8	8	6	6	6	8	8	6	72	60
4	Gede Aswina Budi Winaya	8	6	8	8	8	8	8	8	6	6	74	61.67
5	I Gede Angga Artha Pratama	10	10	8	12	8	8	8	8	6	10	88	73.33
6	I Gusti Agung Ratih Maharani	10	8	8	10	10	10	10	10	8	10	94	78.33
7	I Kadek Novada Purnama Putra	10	10	8	8	6	8	8	8	8	6	80	66.67
8	I Made Ary Widiantara Putra	10	8	8	8	10	8	8	8	6	8	82	68.33
9	I Made Darma Suar Wijaya	10	8	8	6	6	8	8	8	6	8	76	63.33
10	I Made Dharma Artha Yasa	10	8	8	8	10	6	8	10	10	8	86	71.67
11	I Made Krisna Saputra	10	6	8	8	8	10	8	6	8	10	82	68.33
12	I Made Surya Narendra	10	10	8	10	10	10	10	10	8	8	94	78.33
13	I Nyoman Surya Pramaputra	8	8	6	6	6	8	6	6	8	8	70	58.33
14	I Putu Egga Putra Adnyana	10	8	8	6	10	8	8	8	8	8	82	68.33
15	I Putu Febri Ardiana Putra Wibawa	8	6	6	6	8	10	8	8	8	8	76	63.33
16	I Putu Virgayana Parawangsa	8	10	8	8	6	6	4	10	8	6	74	61.67
17	I Wayan Dedy Surya Diva	6	8	8	6	6	8	8	6	6	6	68	56.67
18	Kadek Ferri Suparma	6	6	8	6	6	8	8	8	8	8	72	60
19	Kadek Galih Maharani Arya Putri	8	6	6	8	6	6	6	8	8	6	68	56.67
20	Kadek Rio Saputra	10	8	10	10	8	10	6	8	6	6	82	68.33
21	Kadek Sri Widiastini	10	12	8	10	10	8	10	12	10	10	100	83.33
22	Komang Swadarma Sasana	6	8	8	6	6	8	8	8	8	8	74	61.67
23	Made Cahya Purnama	10	10	8	8	10	6	8	6	8	6	80	66.67
24	Ni Kadek A <mark>ri</mark> ati	12	6	10	10	8	10	10	8	8	8	90	75
25	Ni Kadek D <mark>ea</mark> Ranisa	10	10	8	10	8	8	8	8	6	6	82	68.33
26	Ni Kadek Dias Puspayanti	10	12	10	8	10	10	10	10	10	10	100	83.33
27	Ni Kadek Satya Dewi Lestari	12	10	10	8	10	10	10	8	10	8	96	80
28	Ni Ketut Yo <mark>ni</mark> ka Dirmaputri	10	10	8	6	8	10	10	8	10	8	88	73.33
29	Ni Luh Gede Wahyu Satyaningrum	10	8	6	8	8	6	8	6	8	8	76	63.33
30	Ni Luh Putu Rika Andani	10	8	10	10	8	8	8	8	10	10	90	75
31	Ni Made Sunia Aura Dini	12	10	11	10	10	10	10	10	10	10	103	85.83
32	Ni Made Widya Wahyuni	10	6	6	8	8	8	6	8	8	8	76	63.33
33	Sang Ayu Made Agung Prasetiawati D	10	8	8	10	8	8	10	10	8	10	90	75
34	Yustikarini Tri Utami Dewi	10	10	8	10	8	10	10	10	8	10	94	78.33
35	I Made Krisna Dwipayana	8	-6	8	8	6	6	8	8	6	6	70	58.33
36	Ni Made Sri Emi Daniswari	8	8	8	8	8	8	10	10	10	8	86	71.67

C. Hasil Analisis Korelasi 2 Korektor

Korelasi Total

		TotalA	TotalB
Total A	Pearson Correlation	1	0,993**

	Sig. (2-tailed)		0,000
	N	107	107
Total B	Pearson Correlation	0,993**	1
	Sig. (2-tailed)	0,000	
	N	107	107

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Korelasi Butir 1

		Butir 1A	Butir 1B
Butir 1A	Pearson Correlation		0,969**
	Sig. (2-tailed)		0,000
	N	107	107
Butir 1B	Pearson Correlation	0,969**	$R_{1,1}$
	Sig. (2-tailed)	0,000	
	N	107	107

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Korelasi Butir 2

		The second secon	
		Butir 2A	Butir 2B
Butir 2A	Pearson Correlation	-1	0,966**
	Sig. (2-tailed)		0,000
	N	107	107
Butir 2B	Pearson Correlation	0,966**	1
	Sig. (2-tailed)	0,000	T.
	N	107	107

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Korelasi Butir 3

		Butir 3A	
Butir 3A	Pearson Correlation	1	.993**
	Sig. (2-tailed)		.000
	N	107	107
Butir 3B	Pearson Correlation	.993**	1

Sig. (2-tailed)	.000	
N	107	107

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Korelasi Butir 4

		Butir 4A	Butir 4B
Butir 4A	Pearson Correlation	1	0,978**
	Sig. (2-tailed)		0,000
	N	107	107
Butir 4B	Pearson Correlation	0,978**	1
	Sig. (2-tailed)	0,000	
	N	107	107

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Korelasi Butir 5

	1 2 W	Butir 5A	Butir 5B
Butir 5A	Pearson Correlation	1	0,957**
	Sig. (2-tailed)		0,000
	N	107	107
Butir 5B	Pearson Correlation	0,957**	1
	Sig. (2-tailed)	0,000	YII
	N	107	107

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Korelasi Butir 6

		Butir 6A	Butir 6B
Butir 6A	Pearson Correlation	1	0,989**
	Sig. (2-tailed)		0,000
	N	107	107
Butir 6B	Pearson Correlation	0,989**	1
	Sig. (2-tailed)	0,000	
	N	107	107

**. Correlation is significant at the 0.01 level (2-tailed).

Korelasi Butir 7

		Butir 7A	Butir 7B		
Butir 7A	Pearson Correlation	1	0,949**		
	Sig. (2-tailed)		0,000		
	N	107	107		
Butir 7B	Pearson Correlation	0,949**	1		
	Sig. (2-tailed)	0,000			
	N	107	107		

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Korelasi Butir 8

	W 3 W	Butir8A	Butir8B
Butir 8A	Pearson Correlation	1	0,943**
	Sig. (2-tailed)	MAR	0,000
	N	107	107
Butir 8B	Pearson Correlation	0,943**	
	Sig. (2-tailed)	0,000	
	N	107	107

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Korelasi Butir 9

		Butir 9A	Butir 9B
Butir 9A	Pearson Correlation	1	0,967**
	Sig. (2-tailed)		0,000
	N	107	107
Butir 9B	Pearson Correlation	0,967**	1
	Sig. (2-tailed)	0,000	
	N	107	107

**. Correlation is significant at the 0.01 level (2-tailed).

Korelasi Butir 10

		Butir 10A	Butir 10B
Butir 10A	Pearson Correlation	1	0,974**
	Sig. (2-tailed)		0,000
	N	107	107
Butir 10B	Pearson Correlation	0,974**	1
	Sig. (2-tailed)	0,000	
	N	107	107

**. Correlation is significant at the 0.01 level (2-tailed).

Test of Normality

N. 1.1		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
Model		Statistik	df	Sig.	Statistik	df	Sig.
Skor	PBFC	0,138	36	0,091	0,944	36	0,076
Pretest	TFC	0,111	35	$0,200^{*}$	0,968	35	0,383
	DI	0,120	36	0,200*	0,952	36	0,131
Skor	PBFC	0,137	36	0,092	0,956	36	0,178
Posttest	TFC	0,142	35	0,072	0,952	35	0,130

DI	0,146	36	0.058	0,950	36	0,116
D1	0,110	50	0,050	0,750	50	0,110

Lampiran 4.5 Analisis Homogenitas Data

Test of Homogenity of Variances

	Source		df1	df2	Sig.
	Based on Mean	0,710	2	104	0,494
Skor	Based on Median	0,635	2	104	0,532
Pretest	Based on Median and with adjusted df	0,635	2	103.316	0,532
	Based on trimmed mean	0,684	2	104	0,507
	Based on Mean	0,185	2	104	0,831

Skor	Based on Median	0,156	2	104	0,856
Posttest	Based on Median and with adjusted df	0,156	2	101.444	0,856
	Based on trimmed mean	0,166	2	104	0,847

Lampiran 4.6 Analisis Linieritas

ANOVA Table

Source		Sum of Squares	df	Mean Square	F	Sig.	
PostTest	Between	(Combined)	7403,984	25	296,159	5,551	0,000
* PreTest	Groups	Linearity	5511,514	1	5511.514	103,310	0,000
		Deviation from Linearity	1892,469	24	78,853	1,478	0,114
	Within G	roups	3094,254	82	53,349		
	Total		10498,238	107			

Univariate Analysisc of Variance

Between-Subjects Factors						
	Value					
	Label	N				
Kelompok	PBFC	36				
	DI	36				
	TFC	35				

Test of Between-Subject Effects

Source Type III Squa	J at	Mean Square	F*	Sig.
----------------------	------	----------------	----	------

Corrected Model	11974.366ª	3	3991.455	583.660	.000
Intercept	7924.021	1	7924.021	1158.710	.000
Pretest	9012.661	1	9012.661	1317.899	.001
Model	4472.450	2	2236.225	326.998	.001
Error	704.382	103	6.839		
Total	869686.000	107			
Corrected Total	12678.748	106			

Squared = 0.944 (Adjusted R Squared = .943)

a. R

Lampiran 4.8 Analisis LSD (*Least Significant Difference*)

Estimates

Dependent Variable: Postest

Dependent variable. Tostest							
			95% Confidence Interval				
		Std.	Lower	Upper			
Kelas	Mean	Error	Bound	Bound			
PBFC	96.783 ^a	.438	95.914	97.651			
DI	81.009 ^a	.438	80.140	81.878			
TFC	90.729 ^a	.442	89.852	91.606			

a. Covariates appearing in the model are evaluated at the following values: Pretest = 40.4953.

Pairwise Comparisons

Dependent Variable: Postest

		Mean			95% Confidence Interval for Difference ^b	
(I) Kelas	(J) Kelas	Differenc e (I-J)	Std. Error	Sig.b	Lower Bound	Upper Bound
PBFC	DI	15.774*	.622	.000	14.539	17.008
	TFC	6.054*	.622	.000	4.820	7.288
DI	PBFC	-15.774*	.622	.000	-17.008	-14.539
	TFC	-9.720*	.622	.000	-10.954	-8.486
TFC	PBFC	-6.054*	.622	.000	-7.288	-4.820
	DI	9.720^{*}	.622	.000	8.486	10.954

Based on estimated marginal means

- *. The mean difference is significant at the .05 level.
- b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: Postest

	Sum of		Mean		
	Squares	df	Square	F	Sig.
Contrast	4472.450	2	2236.225	326.998	.000
Error	704.382	103	6.839		

The F tests the effect of Kelas. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

Nilai LSD dapat diperoleh menggunakan persamaan berikut:

$$LSD = t_{\frac{\alpha}{2}, N-a} \sqrt{MS_E \frac{1}{n_i} + \frac{1}{n_i}}$$

Keterangan:

 α : Taraf signifikansi = 0,05

N: Jumlah sample total = 107

a: Jumlah kelompok = 3

 MS_E : Mean Square Error = 6,839

n_i,n_j : Jumlah sample kelompok

Nilai $t_{tabel} = t_{(0,025, 104)} = 1,98304$. Berdasarkan analisis kovarian satu jalur, diperoleh nilai $MS_E = 6,839$, sehinggi nilai LSD diperoleh sebagai berikut

$$LSD = t_{\frac{\alpha}{2}, N-a} \sqrt{MS_E \frac{1}{n_i} + \frac{1}{n_i}}$$

$$LSD = 1,98304 \sqrt{6,839(\frac{1}{36} + \frac{1}{35} + \frac{1}{36})}$$

$$LSD = 1,98304\sqrt{0,5753444}$$

$$LSD = 1,98304 \times 0,7585$$

$$LSD = 1,5042$$

