SULFIDATION OF IRON - BASED NANOMATERIAL AS CATALYST FOR WATER SPLITTING USING HYDROTHERMAL

SKRIPSI

Diajukan kepada

Universitas Pendidikan Ganesha

Untuk Memenuh<mark>i</mark> Salah Satu Persyaratan dalam Menyelesaikan

Program Sarjana Pendidikan Fisika

Oleh

Ni Luh Ayu Ardi Lestari NIM. 2013021006

DIES

PROGRAM STUDI S1 PENDIDIKAN IPA JURUSAN FISIKA DAN PENGAJARAN IPA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN GANESHA SINGARAJA

SKRIPSI

DIAJUKAN UNTUK MELENGKAPI TUGAS DAN MEMENUHI SYARAT-SYARAT UNTUK MENCAPAI GELAR SARJANA PENDIDIKAN

Menyetujui

Pembimbing I,

Pembimbing II,

I Gede Arjana, S.Pd., M.Sc., RWTH NIP. 19911226 202012 1 009

Jumes

Dr. Idu Bagus Putu Mardana, M. Si. NIP. 19640827 199102 1 001

Skripsi oleh Ni Luh Aryu Ardi Lestari ini Telah dipertahankan di depan dewan penguji Pada tanggal. 15 Februari 2024

Dewan Penguji.

I Gede Arjana, S.Pd., M.Sc., RWTH NIP. 19911226 202012 1 009

Dr. Ida Bacus Putu Mardana, M.Si. NIP. 19640827 199102 1 001

Drs. Putu Yasa, M.Si. NIP. 19611104 198703 1 002

Putu Widiarini S M.Sc. 'd NIP. 19890327 201903 2 020

(Ketua)

(Anggota)

(Anggota)

(Anggota)

Diterima oleh Panitia Ujian Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Ganesha guna memenuhi syarat-syarat untuk mencapai gelar sarjana Pendidikan

Pada:

Hari

: Selasa

Tanggal

: 20 Februari 2024

Mengetahui,

Ketua Ujian,

Dr. 1 Wayan/Puja Astawa, S.Pd., M.Stat.Sci, NIP. 19690116 199403 1 001 Sekertaris Ujian,

Prof. Dr. Ni Ketut Rapi, M.Pd. NIP. 19630830 198803 2 002

Mengesahkan atika dan Ilmu Pengetahuan Alam Dekan DEKAN Dr. 1 Wayan Sukra Warpala, S.Pd., M.Sc. NIP. 19671013 199403 1 001

PERNYATAAN

Dengan ini saya menyatakan bahwa karya tulis yang berjudul "Sulfidation Of Iron - Based Nanomaterial As Catalyst For Water Splitting Using Hydrothermal" beserta seluruh isinya adalah benar-benar karya sendiri dan saya tidak melakukan penjiplakan dan pengutipan dengan cara-cara yang tidak sesuai dengan etika yang berlaku dalam masyarakat keilmuan. Atas pernyataan ini, saya siap menanggung resiko/sanksi yang dijatuhkan kepada saya apabila kemudian hari ditemukan adanya pelangaran atas etika keilmuan dalam karya saya ini atau ada klaim terhadap karya saya ini.

Singaraja, 19 Februari 2024

Yang membuat pernyataan,

Ni Luh Ayu Ardi Lestari

ACKNOWLEDGEMENT

The writer expresses her highest gratitude to the Almighty God for blessing, love, opportunity, health, and mercy so that the writer could finish this bachelor thesis with the title **"Sulfidation of Iron - Based Nanomaterial as Catalyst for Water Splitting Using Hydrothermal"**. In arranging this thesis, a lot of people have provided motivation, advice, support, and even remark that had helped the writer. In this valuable chance, the writer aims to express her gratitude and appreciation to the following people:

- 1. I Gede Arjana, S.Pd, M.Sc. RWTH as the first supervisor and mentor for his willingness to take the time to guide, provide advice, motivation, enthusiasm and facilitate not only in completing the thesis but also while being a student in the physics education study program.
- 2. Dr. Ida Bagus Putu Mardana, M.Si. as supervisor II as well as mentor for his willingness to take the time to guide, provide advice, motivation, enthusiasm and facilitate not only in completing the thesis but also while being a student in the physics education study program.
- 3. Drs. Putu Yasa, M.Si, as Lecturer Examiner I for his willingness to provide guidance, advice and feedback during the examination process until the completion of the thesis.
- 4. Putu Widiarini, S.Pd., M.Pd., M.Sc as Lecturer Examiner II as well as academic advisor for his willingness to provide guidance, advice, motivation not only during the examination process to the completion of the thesis but also in lecture life.
- 5. Professor Chien-Kuo Hsieh as the writer's Advisor at Ming Chi University of Technology for his willingness to provide guidance, input and direction during the thesis writing process as well as facilitating during the experimental process until completion.
- Laboratory Assistant at Ming Chi University of Technology for his willingness to provide guidance and feedback during experimental process until completed.
- 7. Lecturers of Physics Education study program who cannot be mentioned one by one who have provided knowledge and insight.

- 8. Parents (I Putu Sidiasa and Ni Putu Ayu Sartikawati) who have dedicated all their time and energy to the writer. Thank you for all material and nonmaterial support and for being the best parents who has been with the writer throughout the lecture process and the writing of this thesis until completed.
- 9. Laboratory seniors as mentors who always provide insight and support during the experimental process.
- 10. To the writer's best friend and partner (I Gusti Ayu Mutiara Sandhy and Ni Putu Devi Kristina) who has helped me during my struggle as a student in the Department of Physics and Science Teaching and helped a lot in completing this thesis.
- 11. All the writer's friends in Bali and Taiwan for all the support and advice given to the writer.
- 12. Colleagues who cannot be mentioned one by one who have provided help and support in completing this thesis.

The writer realizes that this thesis is not perfect. For that, for the improvement of this thesis, expect all constructive criticism and suggestions from various sides. Hopefully this thesis can be useful for all of us, especially for the development of the world of education.

Writer

AC	KNOWLEDGEMENT	i
AB	STRACT	iii
CO	NTENT	iv
FIC	GURE CONTENTS	vi
TA	BLE CONTENTS	viii
AP	PENDIX CONTENTS	ix
СН	APTER I	1
INT	FRODUCTION	1
1.1	Background	1
1.2	Problem Limitation	8
1.3	Problem Formulation	8
1.4	Hypothesis	9
1.5	Aims of Research	9
1.6	Significance of study	9
СН	IAPTE <mark>R</mark> II	10
LIJ	FERAT <mark>U</mark> RE REVIEW	10
2.1	Water Splitting	10
2.2	Iron Hydroxide	15
2.3	Sulfidation Iron – Based	17
2.4	Chemical Bath Deposition	19
2.5	Hydrothermal	20
2.6	X – Ray Diffaction (XRD)	23
2.7	Field Emission Scanning Electron Microscope (FE SEM)	25
2.8	Electrochemical Measurement	
	2.8.1 LSV	
	2.8.2 EIS	
	2.8.3 ECSA	
CH	APTER III	32
EX	PERIMENTAL METHODS	32
3.1	Types of Research	32
2 2	Time and Place of Research	

CONTENT

3	3.2.1	Re	search Time	32
2	3.2.2	Re	search Place	32
3.3		Ex	perimental Variables	32
3.4		Ex	perimental Process	32
3.5		Ex	perimental Tools	33
3.6		Ex	perimental Procedure	34
	3.5.	1 M	aterials and Reagents	34
	3.5.	2 Sy	ynthesis of Fe(OH) ₂ /NF	34
	3.5.	3 Sy	ynthesis of Fe _x S _y /NF	35
3.7		Saı	mple Characterization	37
3.8		Ele	ectrochemical Measurement	37
3.9		Da	ta Analysis	37
СН	APT	ER	IV.	38
RE	SUL	TS /	AND DISCUSSION	38
4.1		Re	sult of Research	38
	4.1.	1	Synthesis Result of Nanomaterial Iron Sulfide	38
	4.1.	2	Characterization Result Iron Sulfide Using XRD	39
	4.1.	3	Characterization Result Iron Sulfide Using FE SEM	40
	4.1.	4	Electrocatalytic Activity Result Using Electrochemical	
	Mea	asur	em <mark>ent</mark>	42
4.2		Dis	scussion	48
	4.2.	1	Synthesis Result of Nanomaterial Iron Sulfide	48
	4.2.	2	Characterization Result Iron Sulfide Using XRD	49
	4.2.	3	Characterization Result Iron Sulfide Using FE SEM	50
	4.2.	4	Electrocatalytic Activity Result Using Electrochemical	
	Mea	asur	ement	52
СН	APT	'ER	V	55
CO	NCL	LUS	ION	55
	5.1 Summary			
	5.2	2Sug	ggestion	56
RE	FER	EN	СЕ	57
AP	PEN	DIX	Κ	64

FIGURE CONTENTS

Figure 1. Classification of global energy1
Figure 2. Electrochemical setup and the corresponding I-V polarization curve for
(a) Oxygen Evolution Reaction, (b) Hydrogen Evolution Reaction, and (c)
Corresponding full cell4
Figure 3. Desired characteristics of a good HER electrocatalyst12
Figure 4. Molecular structures of ferrous hydroxide16
Figure 5. Molecular structures of ferric hydroxide17
Figure 6. Typical colors andrange of suitable temperature to form iron sulfide
scale
Figure 7. Schematic diagram of a typical chemical bath deposition (CBD) setup 20
Figure 8. Illustration of a cylindrical-chamber autoclave
Figure 9. Schematic of typical hydrothermal method equipment23
Figure 10. Schematic of the experimental principle for X-ray diffraction25
Figure 11. Bragg reflection on a set of N atomic planes
Figure 12. Principle of Operation of FESEM
Figure 13. Schematic Diagram of FESEM
Figure 14. I-V curve for the full water splitting reaction
Figure 15. Electrochemical Impedance Spectroscopy
Figure 16. ECSA
Figure 17. The flow chart of FexSy /NF experimental prosess
Figure 18. Schematic diagram synthesis of the Fe(OH) ₂ /NF
Figure 19. Schematic diagram synthesis of Fe _x S _y /NF
Figure 20. Schematic diagram electrochemical measurements
Figure 21. Synthesis result of iron hydroxide
Figure 22. Synthesis result of iron sulfide
Figure 23. XRD patterns of iron sulfide and iron hydroxide40
Figure 24. The morphological structure of iron hydroxide using SEM with different
magnifications, (a) 10000x. (b) 25000x. (c) 50000x
Figure 25. The morphological structure of iron sulfide (0.0125M sodium sulfide
nonahydrate) using SEM with different magnifications, (a) 10000x. (b) 25000x. (c)
50000x

Figure 26. The morphological structure of iron sulfide (0.025M sodium sulfide
nonahydrate) using SEM with different magnifications, (a) 10000x. (b) 25000x. (c)
50000x42
Figure 27. The morphological structure of iron sulfide (0.05M sodium sulfide
nonahydrate) using SEM with different magnifications, (a) 10000x. (b) 25000x. (c)
50000x42
Figure 28. The morphological structure of iron sulfide (0.1M sodium sulfide
nonahydrate) using SEM with different magnifications, (a) 10000x. (b) 25000x. (c)
50000x
Figure 29.(a) LSV for OER with IR compensation. (b) Tafel slope for OER. (c)
OER performance comparison between tafel slope (mV/dec) and overpotential
(mV)44
Figure 30 .(a) LSV for HER with IR compensation. (b) Tafel slope for HER. (c)
HER performance comparison between tafel slope (mV/dec) and overpotential
(mV)45
Figure 31. Electrochemical impedance spectra measured at overpotential of 100
mV, (a) for OER. (b) for HER
Figure 32. Electrochemical Active Surface Area in five scan rate (10,30,50,70 and
90) mV/s, (a) for OER. (b) for HER47
Figure 33. Cyclic voltammograms iron hydroxide
Figure 34. Cyclic voltammograms sampel 1
Figure 35. Cyclic voltammograms sampel 2
Figure 36. Cyclic voltammograms sample 3
Figure 37. Cyclic voltammograms sample 4
Figure 38. Cyclic voltammograms iron hydroxide67
Figure 39. Cyclic voltammograms sample 167
Figure 40. Cyclic voltammograms sampel 267
Figure 41. Cyclic voltammograms sample 367
Figure 42. Cyclic voltammograms sample 467

TABLE CONTENTS

Table 1. Overall and half cell reaction of water electrolysis	10
Table 2. Most Common Iron Sulfide Scales in an Oilfield	18
Table 3. Experimental tools	33
Table 4. Analysis teqhnique of Fe _x S _y /Fe(OH)2 @NF	37
Table 5.Comparison table of electrochemical measurements for OER	47
Table 6. Comparison table of electrochemical measurements for HER	48
Table 7. Fitting curve of cyclic voltammograms for HER	68
Table 8. Fitting curve of cyclic voltammograms for OER	69
Table 9. Fitting curve of EIS for HER	70
Table 10. Fitting curve of EIS for OER	71

APPENDIX CONTENTS

Appendix 1. Weight of material and reagents	65
Appendix 2. Cyclic voltammograms curve for OER	66
Appendix 3. Cyclic voltammograms curve for HER	67
Appendix 4. Table fitting curve of cyclic voltammograms	68
Appendix 5. Fitting curve for Impedance	70

