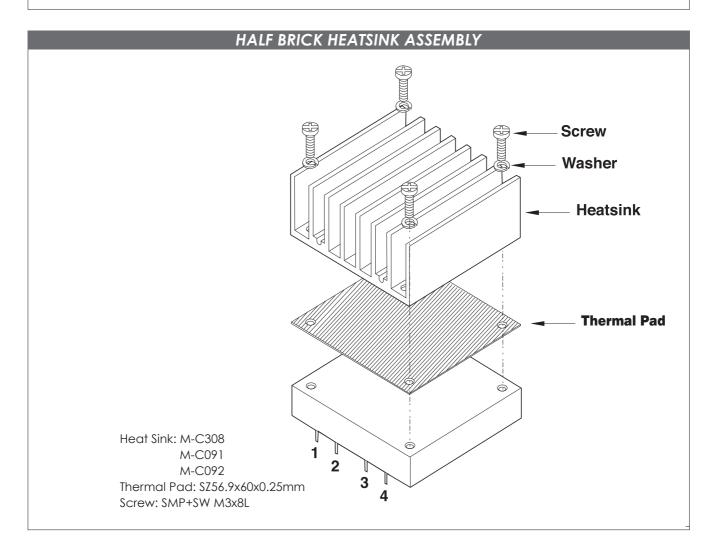

HEAT SINKS



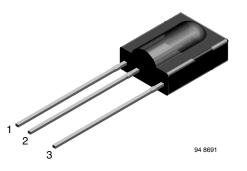
HALF BRICK CASE HEATSINK

FULL BRICK HEATSINK

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:


Cincon: <u>M-B012</u> <u>M-C421</u> <u>M-C448</u>

TSMP1138

www.vishay.com

Vishay Semiconductors

IR Sensor Module for Remote Control Systems

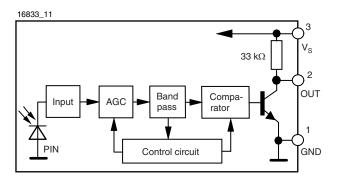
ADDITIONAL RESOURCES

MECHANICAL DATA

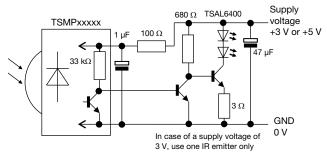
Pinning: 1 = GND, 2 = Carrier OUT, 3 = V_S

FEATURES

- Photo detector and preamplifier in one package
- AC coupled response from 30 kHz to 60 kHz, all data formats
- If the IR signal strength is more then 500 mW/m² (distance less than 0.5 m with a typical IR remote control), the frequency range is limited to 55 kHz
- Improved shielding against electrical field disturbance
- AGC to suppress ambient noise
- · High sensitivity, long receiving range
- Supply voltage: 2.5 V to 5.5 V
- · Carrier out signal for IR repeater applications
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>


DESCRIPTION

The TSMP1138 is a miniaturized sensor for receiving the modulated signal of infrared remote control systems. A PIN diode and preamplifier are assembled on a lead frame, the epoxy package is designed as an IR filter. The modulated output signal, carrier out, can be used for repeater applications and code learning applications.


This component has not been qualified according to automotive specifications.

PARTS TABLE	PARTS TABLE						
Carrier frequency 38 kHz TSMP1138							
Package		Cast					
Pinning		1 = GND, 2 = carrier OUT, 3 = V_S					
Dimensions (mm)		10.0 W x 12.5 H x 5.8 D					
Mounting		Leaded					
Application		Repeater					

BLOCK DIAGRAM

APPLICATION CIRCUIT

Recommended circuit for best sensitivity in repeater applications. It limits the output voltage swing V_0 to about 0.7 V in order to avoid internal coupling.

Rev. 1.5, 23-Apr-2019

1

Document Number: 82484

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

RoHS

COMPLIANT HALOGEN

FREE

GREEN

(5-2008)

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Supply voltage (pin 3)		Vs	-0.3 to +6	V			
Supply current (pin 3)		I _S	5	mA			
Output voltage (pin 2)		Vo	-0.3 to 5.5	V			
Voltage at output to supply		V _S - V _O	-0.3 to (V _S + 0.3)	V			
Output current (pin 2)		Ι _Ο	5	mA			
Junction temperature		Тj	100	°C			
Storage temperature range		T _{stg}	-25 to +85	°C			
Operating temperature range		T _{amb}	-25 to +85	°C			
Power consumption	T _{amb} ≤ 85 °C	P _{tot}	10	mW			
Soldering temperature	$t \le 10$ s, 1 mm from case	T _{sd}	260	°C			

Note

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability

ELECTRICAL AND OPTICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Supply current (pin 3)	$E_v = 0, V_S = 5 V$	I _{SD}	0.55	0.7	0.9	mA		
Supply current (pin 3)	E _v = 40 klx, sunlight	I _{SH}	-	0.8	-	mA		
Supply voltage		VS	2.5	-	5.5	V		
Transmission distance	$\begin{array}{c} E_v = 0, \text{test signal see Fig. 1,} \\ IR \text{diode TSAL6200,} \\ I_F = 50 \text{mA} \end{array}$	d	-	10	-	m		
Output voltage low (pin 2)	$I_{OSL} = 0.5 \text{ mA}, E_e = 0.7 \text{ mW/m}^2,$ test signal see Fig. 1	V _{OSL}	-	-	100	mV		
Minimum irradiance	Less than 5 missing or 5 additional sub carrier pulses related to one burst	E _{e min.}	-	0.5	1	mW/m ²		
Maximum irradiance	Less than 5 missing or 5 additional sub carrier pulses related to one burst	E _{e max.}	30	-	-	W/m ²		
Directivity	Angle of half transmission distance	φ1/2	-	± 55	-	deg		

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

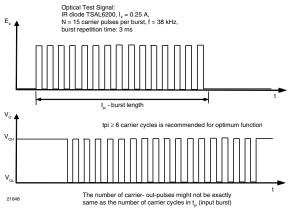


Fig. 1 - Output Function

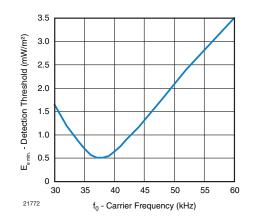


Fig. 2 - Frequency Dependence of Sensitivity

Rev. 1.5, 23-Apr-2019

Document Number: 82484

TSMP1138

Vishay Semiconductors

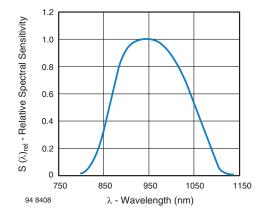


Fig. 3 - Relative Spectral Sensitivity vs. Wavelength

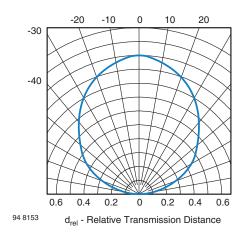


Fig. 4 - Horizontal Directivity ϕ_x

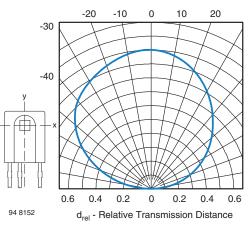
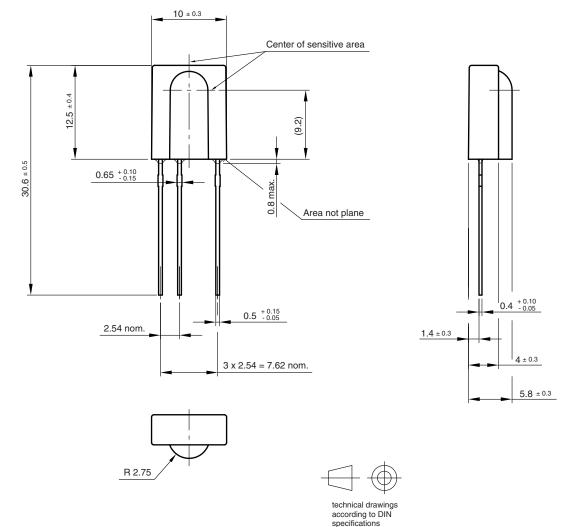


Fig. 5 - Vertical Directivity ϕ_y


Rev. 1.5, 23-Apr-2019

3

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.550-5095.01-4 Issue: xx; 20.05.09 96 12116-1

Vishay

Disclaimer

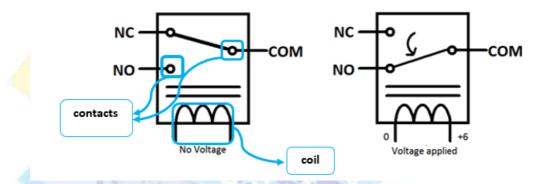
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

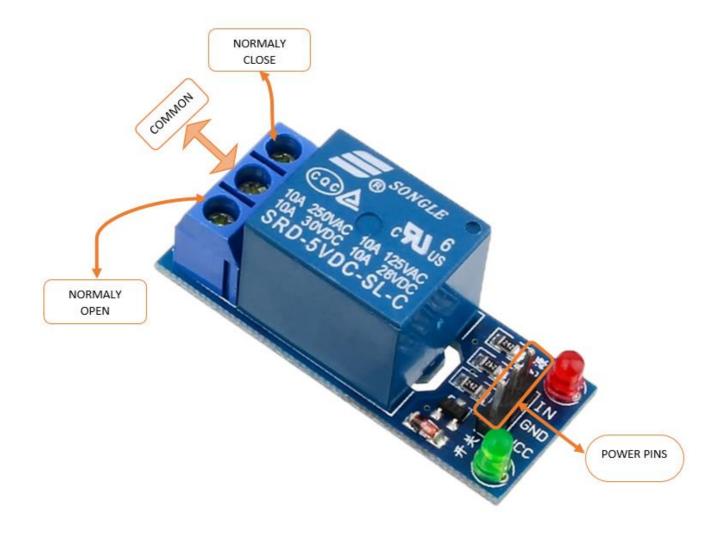
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.


No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

RELAY MODULES

RELAY WORKING IDEA

Relays consist of three pins normaly open pin , normaly closed pin, common pin and coil. When coil powerd on magntic field is generated the contacts connected to each other.


Relay modules 1-channel features

- Contact current 10A and 250V AC or 30V DC.
- Each channel has indication LED.
- Coil voltage 12V per channel.
- Kit operating voltage 5-12 V
- Input signal 3-5 V for each channel.
- Three pins for normally open and closed for each channel.

How to connect relay module with Arduino

As shown in relay working idea it depends on magnetic field generated from the coil so there is power isolation between the coil and the switching pins so coils can be easily powered from Arduino by connecting VCC and GND bins from Arduino kit to the relay module kit after that we choose Arduino output pins depending on the number of relays needed in project designed and set these pins to output and make it out high (5 V) to control the coil that allow controlling of switching process.

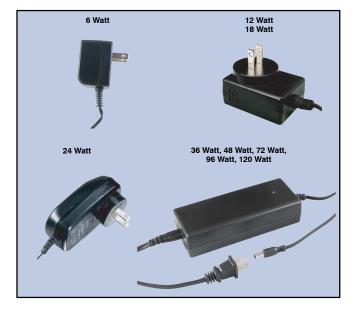
NOTE : whatever was the relay channels number the pinconfiguration is the same for every channel except the power pins (VCC and GND) are for the board itself. The input signal (IN) pin for every relay.

12V AC-DC Switching Regulated Power Supply CPU us

Specifications

AC Input

Voltage Range: 90 - 264 VAC Input Frequency: 47 – 63 Hz Inrush Current: 6W, 12W, 18W, 24W, 96W, and 120W Types: 30A Max 36W, 48W, and 72W Types: 15A Max


DC Output

Voltage Range: 11.4V - 12.6V Current Range: 0.1A - 10A

Reliability

Insulation Resistance: 50MΩ Min (Input to Output, DC 500V) MTBF: 50000 Hours (20000 Hours for 2A device ONLY)

Plug Types

2.1mm x 5.5mm Jack	2.5mm x 5.5mm Jack	1.35mm x 3.5mm Plug	2.1mm x 5.5mm Plug	2.5mm x 5.5mm Plug
6		N.	Les.	Se .

Ordering Information

		DC Output		
	NTE Type No.	Amps	Wattage	Plug Type
	57-12D-500-1	500mA	6	2.1mm x 5.5mm Jack
	57-12D-500-2	500mA	6	2.5mm x 5.5mm Jack
	57-12D-500-3	500mA	6	1.35mm ID x 3.5mm OD Plug
	57-12D-500-4	500mA	6	2.1mm ID x 5.5mm OD Plug
	57-12D-500-5	500mA	6	2.5mm ID x 5.5mm OD Plug
	57-12D-1000-1	1A	12	2.1mm x 5.5mm Jack
	57-12D-1000-2	1A	12	2.5mm x 5.5mm Jack
	57-12D-1000-3	1A	12	1.35mm ID x 3.5mm OD Plug
	57-12D-1000-4	1A	12	2.1mm ID x 5.5mm OD Plug
	57-12D-1000-5	1A	12	2.5mm ID x 5.5mm OD Plug
	57-12D-1500-1	1.5A	18	2.1mm x 5.5mm Jack
	57-12D-1500-2	1.5A	18	2.5mm x 5.5mm Jack
	57-12D-1500-4	1.5A	18	2.1mm ID x 5.5mm OD Plug
	57-12D-1500-5	1.5A	18	2.5mm ID x 5.5mm OD Plug
	57-12D-2000-4	2A	24	2.1mm ID x 5.5mm OD Plug
	57-12D-2000-5	2A	24	2.5mm ID x 5.5mm OD Plug
NEW	57-12D-3000-3	ЗA	36	1.35mm ID x 3.5mm OD Plug
NEW	57-12D-3000-4	ЗA	36	2.1mm ID x 5.5mm OD Plug
NEW	57-12D-4000-4	4A	48	2.1mm ID x 5.5mm OD Plug
NEW	57-12D-6000-4	6A	72	2.1mm ID x 5.5mm OD Plug
NEW	57-12D-8000-4	8A	96	2.1mm ID x 5.5mm OD Plug
	57-12D-10000-4	10A	120	2.1mm ID x 5.5mm OD Plug

Need Power Jacks to go with your power supply? You can click here to find them.

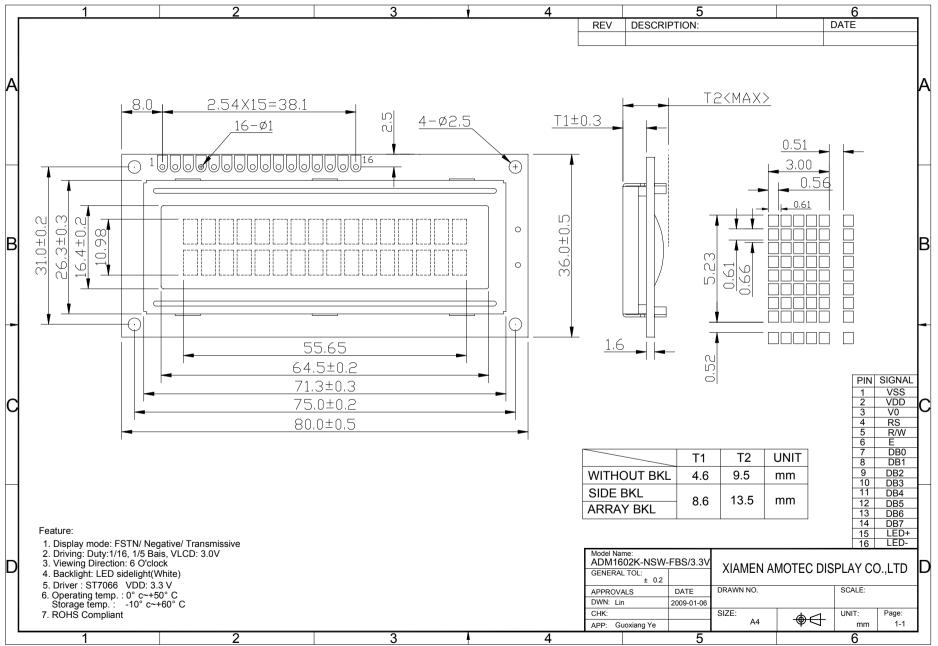
XIAMEN AMOTEC DISPLAY CO., LTD **SPECIFICATIONS OF** LCD MODULE MODULE NO : ADM1602K-NSW-FBS/3.3V **DOC.REVISION: 00** SIGNATURE DATE PREPARED BY QIU 2008-10-29 (RD ENGINEER) Chen Ye CHECKED BY 2008-10-29 APPROVED BY 2008-10-29

DOCUMEN	DOCUMENT REVISION HISTORY						
VERSINO	DATE	DESCRIPTION	CHANGED BY				
	Oct-29-2008	First issue					

CONTENTS

Item	Page
Functions & Features	3
Mechanical specifications	3
Dimensional Outline	4
Absolute maximum ratings	5
Block diagram	5 5 5
Pin description	5
Contrast adjust	6
Optical characteristics	6
Electrical characteristics	6
Timing Characteristics	7-8
Instruction description	9-12
Display character address code:	12
character pattern	13
Quality Specifications	1421

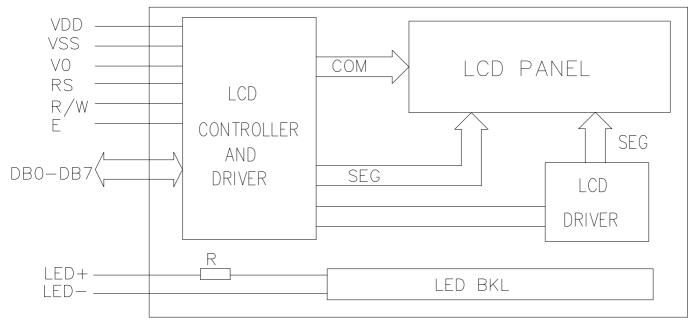
1. Features


- 1. 5x8 dots with cursor
- 2. 16characters *2lines display
- 3. 4-bit or 8-bit MPU interfaces
- 4. Built-in controller (ST7066 or equivalent)5. Display Mode & Backlight Variations6. ROHS Compliant

	DTN							
LCD type	DFSTN	☑FSTN Negative						
	□STN Yellow 0	Green	□STN	Gray			□STN Blue	Negative
View direction	⊠6 O'clock		□12 O	'clock				
Rear Polarizer	□Reflective	CReflective DTransflective				⊠Transmiss	sive	
Backlight Type	⊠LED	DEL		□Internal Power		⊠3.3V Input		
Backlight Type		□CCF	_ ØExternal Power		ower	□5.0V Input		
Backlight Color	⊠White	D Blue	;	□ Amber		□Yellow-Gre	een	
Temperature Range	⊠Normal		□Wide	□Wide		□Super Wid	le	
DC to DC circuit	□Build-in			ØNot Build-in				
Touch screen	□With			⊠With	out			
Font type	⊠English-Japa	nese	□Englis	□English-Europen		DEnglis	h-Russian	□other

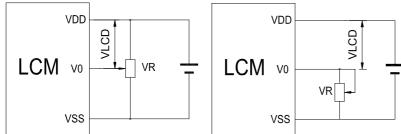
MECHANICAL SPECIFICATIONS 2.

Module size	80.0mm(L)*36.0mm(W)* Max13.5(H)mm
Viewing area	64.5mm(L)*16.4mm(W)
Character size	3.00mm(L)*5.23mm(W)
Character pitch	3.51mm(L)*5.75mm(W)
Weight	Approx.

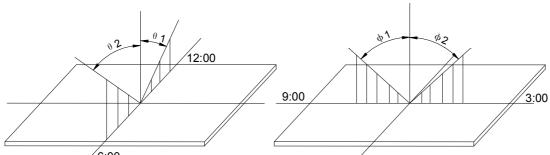

3. Outline dimension

4. Absolute maximum ratings

Item	Symbol		Standard		Unit
Power voltage	Vdd-Vss	0	-	7.0	V
Input voltage	V _{IN}	VSS	-	VDD	v
Operating temperature range	V _{OP}	0	-	+50	ŝ
Storage temperature range	V _{ST}	-10	-	+60	C


5. Block diagram

6. Interface pin description


Pin no.	Symbol	External connection	Function
1	Vss		Signal ground for LCM
2	Vdd	Power supply	Power supply for logic for LCM
3	V ₀		Contrast adjust
4	RS	MPU	Register select signal
5	R/W	MPU	Read/write select signal
6	E	MPU	Operation (data read/write) enable signal
7~10	DB0~DB3	MPU	Four low order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCM. These four are not used during 4-bit operation.
11~14	DB4~DB7	MPU	Four high order bi-directional three-state data bus lines. Used for data transfer between the MPU
15	LED+	LED BKL power	Power supply for BKL
16	LED-	supply	Power supply for BKL

7. Contrast adjust

 $V_{\text{DD-}}V_0\text{: LCD Driving voltage} \quad VR\text{: }10k\text{--}20k$

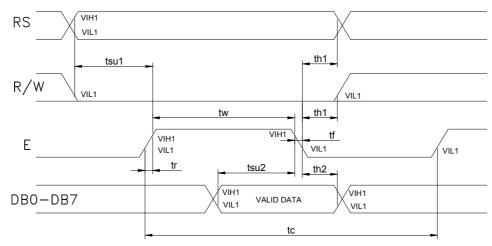
8. Optical characteristics

6:00

STN type display module (Ta=25°C, VDD=3.3V)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
	θ1			20		
Viewing angle	θ2	Cr≥3		40		dog
	Φ1	Cr≠3		35		deg
	Φ2			35		
Contrast ratio	Cr		-	10	-	-
Response time (rise)	Tr	-	-	200	250	me
Response time (fall)	Tr	-	-	300	350	ms

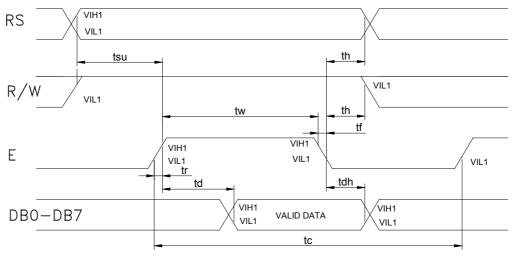
9. Electrical characteristics


DC characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage for LCD	V _{DD} -V ₀	Ta =25℃	-	3.0	-	V
Input voltage	Vdd		3.1	3.3	3.5	
Supply current	DD	Ta=25℃, V _{DD} =3.3V	-	1.5	2.5	mA
Input leakage current	Ilkg		-	-	1.0	uA
"H" level input voltage	VIH		2.2	-	Vdd	
"L" level input voltage	VIL	Twice initial value or less	0	-	0.6	
"H" level output voltage	Vон	LOH=-0.25mA	2.4	-	-	V
"L" level output voltage	Vol	LOH=1.6mA	-	-	0.4	
Backlight supply voltage	VF		-	3.0		
Backlight supply current	I _{LED}	VLED=3.3 V R=25 Ω			16	mA

10. Timing Characteristics Write cycle (Ta=25°C, VDD=3.3V)

Parameter	Symbol	Test pin	Min.	Тур.	Max.	Unit
Enable cycle time	tc		500	-	-	
Enable pulse width	tw	E	300	-	-	
Enable rise/fall time	tr, tr		-	-	25	
RS; R/W setup time	t su1	RS; R/W	100	-	-	ns
RS; R/W address hold time	t _{h1}	RS; R/W	10	-	-	10
Read data output delay	t su2	DB0~DB7	60	-	-	
Read data hold time	th2	ופסייטטט	10	-	-	


Write mode timing diagram

Read cycle (Ta=25°C, VDD=3.3V)

Parameter	Symbol	Test pin	Min.	Тур.	Max.	Unit
Enable cycle time	tc		500	-	-	
Enable pulse width	tw	Е	300	-	-	
Enable rise/fall time	tr, tr		-	-	25	
RS; R/W setup time	t su	RS; R/W	100	-	-	ns
RS; R/W address hold time	th	RS; R/W	10	-	-	115
Read data output delay	td	DB0~DB7	60	-	90	
Read data hold time	t dh		20	-	-	

Read mode timing diagram

11. FUNCTION DESCRIPTION

11.1 System Interface

This chip has all two kinds of interface type with MPU : 4-bit bus and 8-bit bus. 4-bit bus and 8-bit bus is selected by DL bit in the instruction register.

11.2 Busy Flag (BF)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7 port. Before executing the next instruction, be sure that BF is not high.

11.3 Address Counter (AC)

Address Counter (AC) stores DDRAM/CGRAM address, transferred from IR. After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1. When RS = "Low" and R/W = "High", AC can be read through DB0 – DB6 ports.

11.4 Display Data RAM (DDRAM)

DDRAM stores display data of maximum 80 x 8 bits (80 characters). DDRAM address is set in the address counter (AC) as a hexadecimal number.

Display position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DDRAM address	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
DDRAM address	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

11.5 CGROM (Character Generator ROM)

CGROM has a 5 x 8 dots 204 characters pattern and a 5 x 10 dots 32 characters pattern. CGROM has 204 character patterns of 5 x 8 dots.

11.6 CGRAM (Character Generator RAM)

CGRAM has up to 5 8 dot, 8 characters. By writing font data to CGRAM, user defined characters can be used.

	C	Cha	ira	cte	r C	od	е			0	CGI	RAN	Λ			Ch	ara	cte	r Pa	atte	rns	;
		(DI	DR/	٩M	Da	ita)				Address				(CGRAM Data)								
b8	b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0
						0	0	0				0	0	0				1	1	1	1	1
						0	0	0				0	0	1				0	0	1	0	0
						0	0	0				0	1	0				0	0	1	0	0
0	0	0	0	0	_	0	0	0	0	0	0	0	1	1				0	0	1	0	0
Ľ	0	0	0	0	-	0	0	0	U	U	U	1	0	0	-	-	-	0	0	1	0	0
						0	0	0				1	0	1				0	0	1	0	0
						0	0	0				1	1	0				0	0	1	0	0
						0	0	0				1	1	1				0	0	0	0	0
						0	0	1				0	0	0				1	1	1	1	0
						0	0	1				0	0	1				1	0	0	0	1
						0	0	1				0	1	0				1	0	0	0	1
0	0	0	0	0	_	0	0	1	0	0	1	0	1	1	_			1	1	1	1	0
۲ 0	0	0	0	0	-	0	0	1	U	U	'	1	0	0	-	-	-	1	0	1	0	0
						0	0	1				1	0	1				1	0	0	1	0
						0	0	1				1	1	0				1	0	0	0	1
						0	0	1				1	1	1				0	0	0	0	0

Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns (CGRAM Data) Notes:

1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).

2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position

and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bit will light up the 8th line regardless of the cursor presence.

3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).

4. As shown Table, CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00H or 08H.

5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.

"-": Indicates no effect.

11.7 Cursor/Blink Control Circuit

It controls cursor/blink ON/OFF at cursor position.

11.8 Outline

To overcome the speed difference between the internal clock of ST7066 and the MPU clock, ST7066 performs internal operations by storing control in formations to IR or DR. The internal operation is determined according to the signal from MPU, composed of read/write and data bus (Refer to Table7). Instructions can be divided largely into four groups:

- 1) ST7066 function set instructions (set display methods, set data length, etc.)
- 2) Address set instructions to internal RAM
- 3) Data transfer instructions with internal RAM
- 4) Others

The address of the internal RAM is automatically increased or decreased by 1.

Note: during internal operation, busy flag (DB7) is read "High".

Busy flag check must be preceded by the next instruction.

11.9 Instruct	tion T	able										
				Ins	tructi	ion co	ode					Execution
Instruction	RS	R/W	DB;	DB	DB 5	DB₄	DB;	DB	DB 1	DB	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRA and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" From AC and return cursor to Its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction And blinking of entire display	39us
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and Blinking of cursor (B) on/off Control bit.	
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display Shift control bit, and the Direction, without changing of DDRAM data.	39us
Function set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8- Bit/4-bit), numbers of display Line (N: =2-line/1-line) and, Display font type (F: 5x11/5x8)	39us
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address Counter.	39us
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address Counter.	39us
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal Operation or not can be known By reading BF. The contents of Address counter can also be read.	Ous
Write data to Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43us
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43us

NOTE:

When an MPU program with checking the busy flag (DB7) is made, it must be necessary 1/2fosc is necessary for executing the next instruction by the falling edge of the "E" signal after the busy flag (DB7) goes to "Low".

11.3Contents

1) Clear display

.,									
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter).

Return cursor to the original status, namely, bring the cursor to the left edge on the fist line of the display. Make the entry mode increment (I/D="High").

2) Return home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	-

Return home is cursor return home instruction.

Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM does not change.

3) Entry mode set

-,,									
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	SH

Set the moving direction of cursor and display.

I/D: increment / decrement of DDRAM address (cursor or blink)

When I/D="high", cursor/blink moves to right and DDRAM address is increased by 1.

When I/D="Low", cursor/blink moves to left and DDRAM address is increased by 1.

*CGRAM operates the same way as DDRAM, when reading from or writing to CGRAM.

SH: shift of entire display

When DDRAM read (CGRAM read/write) operation or SH="Low", shifting of entire display is not performed. If SH ="High" and DDRAM write operation, shift of entire display is performed according to I/D value. (I/D="high". shift left, I/D="Low". Shift right).

4) Display ON/OFF control

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	0	0	1	D	С	В
< · ·		, ,								

Control display/cursor/blink ON/OFF 1 bit register.

D: Display ON/OFF control bit

When D="High", entire display is turned on.

When D="Low", display is turned off, but display data remains in DDRAM.

C: cursor ON/OFF control bit

When D="High", cursor is turned on.

When D="Low", cursor is disappeared in current display, but I/D register preserves its data.

B: Cursor blink ON/OFF control bit

When B="High", cursor blink is on, which performs alternately between all the "High" data and display characters at the cursor position.

When B="Low", blink is off.

5) Cursor or display shift

		j =							
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	-	-

Shifting of right/left cursor position or display without writing or reading of display data.

This instruction is used to correct or search display data.

During 2-line mode display, cursor moves to the 2nd line after the 40th digit of the 1st line.

Note that display shift is performed simultaneously in all the lines.

When display data is shifted repeatedly, each line is shifted individually.

When display shift is performed, the contents of the address counter are not changed.

Shift patterns according to S/C and R/L bits

S/C	R/L	Operation
0	0	Shift cursor to the left, AC is decreased by 1
0	1	Shift cursor to the right, AC is increased by 1
1	0	Shift all the display to the left, cursor moves according to the display
1	1	Shift all the display to the right, cursor moves according to the display

6) Function set

<u>- 0) i and</u>									
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	F	-	-

DL: Interface data length control bit

When DL="High", it means 8-bit bus mode with MPU. When DL="Low", it means 4-bit bus mode with MPU. Hence, DL is a signal to select 8-bit or 4-bit bus mode. When 4-but bus mode, it needs to transfer 4-bit data twice.

N: Display line number control bit

When N="Low", 1-line display mode is set. When N="High", 2-line display mode is set.

F: Display line number control bit

When F="Low", 5x8 dots format display mode is set. When F="High", 5x11 dots format display mode.

7) Set CGRAM address

Ŕ	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC.

The instruction makes CGRAM data available from MPU.

8) Set DDRAM address

Γ	ŔS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Set DDRAM address to AC.

This instruction makes DDRAM data available form MPU.

When 1-line display mode (N=LOW), DDRAM address is form "00H" to "4FH".In 2-line display mode (N=High), DDRAM address in the 1st line form "00H" to "27H", and DDRAM address in the 2nd line is from "40H" to "67H".

9) Read busy flag & address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

This instruction shows whether SPLC780D is in internal operation or not.

If the resultant BF is "High", internal operation is in progress and should wait BF is to be LOW, which by then the nest instruction can be performed. In this instruction you can also read the value of the address counter.

10) Write data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8-bit data to DDRAM/CGRAM.

The selection of RAM from DDRAM, and CGRAM, is set by the previous address set instruction (DDRAM address set).

RAM set instruction can also determine the AC direction to RAM.

After write operation. The address is automatically increased/decreased by 1, according to the entry mode.

11) Read data from RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM.

The selection of RAM is set by the previous address set instruction. If the address set instruction of RAM is not performed before this instruction, the data that has been read first is invalid, as the direction of AC is not yet determined. If RAM data is read several times without RAM address instructions set before, read operation, the correct RAM data can be obtained from the second. But the first data would be incorrect, as there is no time margin to transfer RAM data.

In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set

instruction, it also transfers RAM data to output data register.

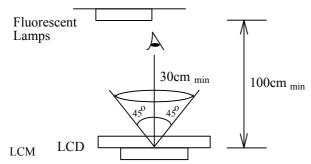
After read operation, address counter is automatically increased/decreased by 1 according to the entry mode.

After CGRAM read operation, display shift may not be executed correctly.

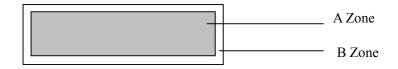
NOTE: In case of RAM write operation, AC is increased/decreased by 1 as in read operation.

At this time, AC indicates next address position, but only the previous data can be read by the read instruction.

12.Sta		rd ch	narac	cter p	patte	rn										
Upper 4bit Lower 4bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	гннн	HLLL	HLLH	HLHL	HLHH	HHLL	HHLH	HHHL	нннн
LLLL	CG RAM (1)															
LLLH	(2)															
LLHL	(3)															
LLHH	(4)															
LHLL	(5)															
LHLH	(6)															
LHHL	(7)															
гннн	(8)															
HLLL	(1)															
HLLH	(2)															
HLHL	(3)															
нгнн	(4)															
HHLL	(5)															
HHLH	(6)															
HHHL	(7)															
нннн	(8)															


40.01 - 4.4 4

13. QUALITY SPECIFICATIONS


13.1 Standard of the product appearance test

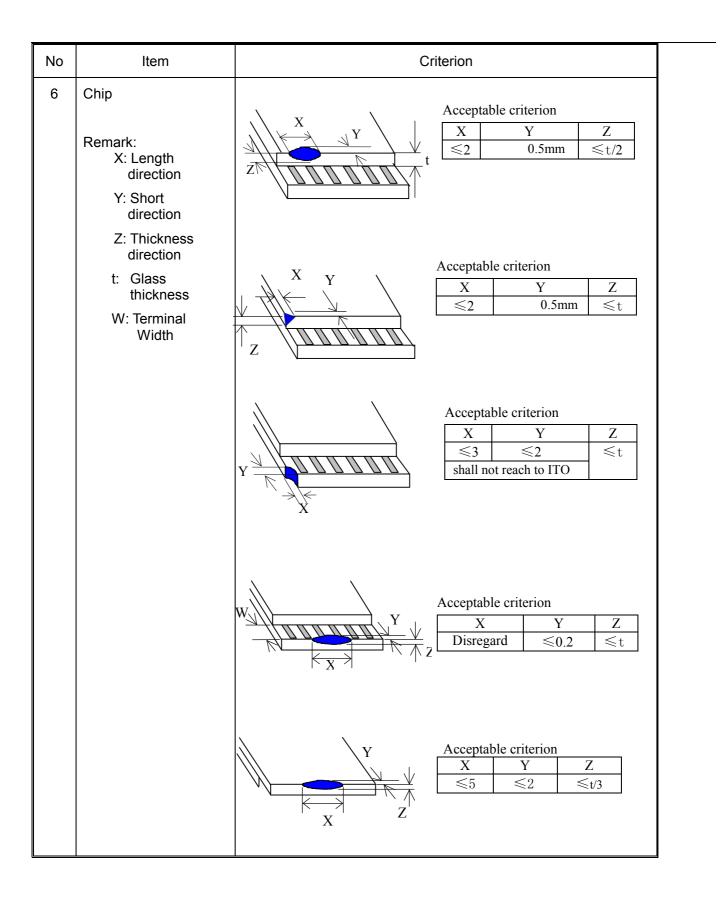
Manner of appearance test: The inspection should be performed in using 20W x 2 fluorescent lamps. Distance between LCM and fluorescent lamps should be 100 cm or more. Distance between LCM and inspector eyes should be 30 cm or more.

Viewing direction for inspection is 45° from vertical against LCM.

Definition of zone:

- A Zone: Active display area (minimum viewing area).
- B Zone: Non-active display area (outside viewing area).

13.2 Specification of quality assurance AQL inspection standard


Sampling method: MIL-STD-105E, Level II, single sampling

Defect classification (Note: * is not including)

Classify		Item	Note	AQL
Major	Display state	Short or open circuit	1	0.65
		LC leakage		
		Flickering		
		No display		
		Wrong viewing direction		
		Contrast defect (dim, ghost)	2	
		Back-light	1,8	
	Non-display	Flat cable or pin reverse	10	
		Wrong or missing component	11	
Minor	Display	Background color deviation	2	1.0
	state	Black spot and dust	3	
		Line defect, Scratch	4	
		Rainbow	5	
		Chip	6	
		Pin hole	7	
		Protruded	12	
	Polarizer	Bubble and foreign material	3	
	Soldering	Poor connection	9	
	Wire	Poor connection	10	
	ТАВ	Position, Bonding strength	13	

Note on defect classification

No.	Item	Criterion
1	Short or open circuit	Not allow
	LC leakage	
	Flickering	
	No display	
	Wrong viewing direction	
	Wrong Back-light	
2	Contrast defect	Refer to approval sample
	Background color deviation	
3	Point defect, Black spot, dust (including Polarizer) φ = (X+Y)/2	Point SizeAcceptable Qty. $\phi \leq 0.10$ Disregard $0.10 < \phi \leq 0.20$ 3 $0.20 < \phi \leq 0.25$ 2 $0.25 < \phi \leq 0.30$ 1 $\phi > 0.30$ 0Unit: mm
4	Line defect, Scratch	$ \begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & $
5	Rainbow	Not more than two color changes across the viewing area

No.	Item	Criterion
7	Segment pattern W = Segment width $\phi = (X+Y)/2$	(1) Pin hole $\phi < 0.10$ mm is acceptable.
8	Back-light	(1) The color of backlight should correspond its specification.(2) Not allow flickering
9	Soldering	 (1) Not allow heavy dirty and solder ball on PCB. (The size of dirty refer to point and dust defect) (2) Over 50% of lead should be solderedon Land.
10	Wire	 (1) Copper wire should not be rusted (2) Not allow crack on copper wire connection. (3) Not allow reversing the position of the flat cable. (4) Not allow exposed copper wire inside the flat cable.
11*	PCB	(1) Not allow screw rust or damage.(2) Not allow missing or wrong putting of component.

No	ltem	Criterion
12	Protruded W: Terminal Width	W Y $Y \le 0.4$ X X X X X X X X
13	ТАВ	1. Position H H H TAB H
		2 TAB bonding strength test
		TAB
		P (=F/TAB bonding width) ≥650gf/cm ,(speed rate: 1mm/min) 5pcs per SOA (shipment)
14	Total no. of acceptable Defect	 A. Zone Maximum 2 minor non-conformities per one unit. Defect distance: each point to be separated over 10mm B. Zone It is acceptable when it is no trouble for quality and assembly
		in customer's end product.

13.3 Reliability of LCM

Reliability test condition:

Item	Condition	Time (hrs)	Assessment
High temp. Storage	80°C	48	
High temp. Operating	70°C	48	No abnormalities
Low temp. Storage	-30°C	48	in functions
Low temp. Operating	-20°C	48	and appearance
Humidity	40°C/ 90%RH	48	
Temp. Cycle	$0^{\circ}C \leftarrow 25^{\circ}C \rightarrow 50^{\circ}C$ (30 min $\leftarrow 5$ min \rightarrow 30min)	10cycles	

Recovery time should be 24 hours minimum. Moreover, functions, performance and appearance shall be free from remarkable deterioration within 50,000 hours under ordinary operating and storage conditions room temperature ($20\pm8^{\circ}C$), normal humidity (below 65% RH), and in the area not exposed to direct sun light.

13.4 Precaution for using LCD/LCM

LCD/LCM is assembled and adjusted with a high degree of precision. Do not attempt to make any alteration or modification. The followings should be noted.

General Precautions:

- 1. LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- 2. The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol, ethyl alcohol or trichlorotriflorothane, do not use water, ketone or aromatics and never scrub hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not make any modification on the PCB without consulting AMOTEC
- 5. When mounting a LCM, make sure that the PCB is not under any stress such as bending

or twisting. Elastomer contacts are very delicate and missing pixels could result from

slight dislocation of any of the elements.

6. Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed

and lose contact, resulting in missing pixels and also cause rainbow on the display.

7. Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal adheres to skin or clothes, wash it off immediately with soap and water.

Static Electricity Precautions:

- 1. CMOS LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into contact with the module.
- 2. Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.

- 3. Do not touch the connection terminals of the display with bare hand; it will cause disconnection or defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.
- 5. Only properly grounded soldering irons should be used.
- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches.
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

Soldering Precautions:

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.
- 3. Soldering temperature: 280°C+10°C
- 4. Soldering time: 3 to 4 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7. Flux residue should be removed.

Operation Precautions:

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- 2. Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.
- 6.Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.

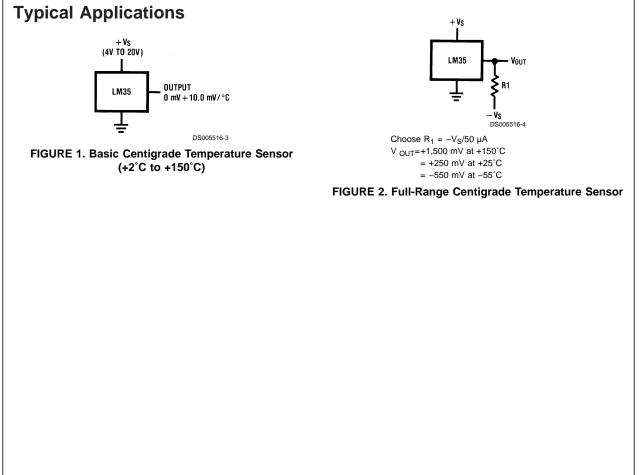
7. For long-term storage over 40 C is required, the relative humidity should be kept below 60%, and avoid direct sunlight.

Limited Warranty

AMOTEC LCDs and modules are not consumer products, but may be incorporated by AMOTEC 's customers into consumer products or components thereof, AMOTEC does not warrant that its LCDs and components are fit for any such particular purpose.

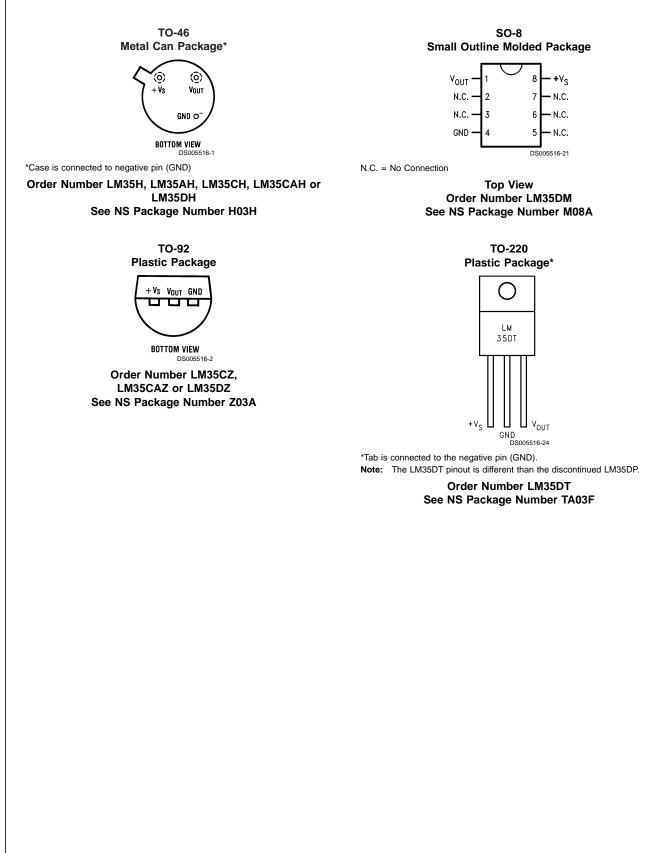
- 1. The liability of AMOTEC is limited to repair or replacement on the terms set forth below. AMOTEC will not be responsible for any subsequent or consequential events or injury or damage to any personnel or user including third party personnel and/or user. Unless otherwise agreed in writing between AMOTEC and the customer, AMOTEC will only replace or repair any of its LCD which is found defective electrically or visually when inspected in accordance with AMOTEC general LCD inspection standard. (Copies available on request)
- 2. No warranty can be granted if any of the precautions state in handling liquid crystal display above has been disregarded. Broken glass, scratches on polarizer mechanical damages as well as defects that are caused accelerated environment tests are excluded from warranty.
- 3. In returning the LCD/LCM, they must be properly packaged; there should be detailed description of the failures or defect.

November 2000


LM35 Precision Centigrade Temperature Sensors

General Description

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of ±1/4°C at room temperature and $\pm \frac{3}{4}$ °C over a full -55 to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only 60 µA from its supply, it has very low self-heating, less than 0.1°C in still air. The LM35 is rated to operate over a -55° to +150°C temperature range, while the LM35C is rated for a -40° to +110°C range (-10° with improved accuracy). The LM35 series is available packaged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-220 package.


Features

- Calibrated directly in ° Celsius (Centigrade)
- Linear + 10.0 mV/°C scale factor
- 0.5°C accuracy guaranteeable (at +25°C)
- Rated for full –55° to +150°C range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4 to 30 volts
- Less than 60 µA current drain
- Low self-heating, 0.08°C in still air
- Nonlinearity only ±¼°C typical
- **I** Low impedance output, 0.1 Ω for 1 mA load

Connection Diagrams

Absolute Maximum Ratings (Note 10)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	+35V to -0.2V
Output Voltage	+6V to -1.0V
Output Current	10 mA
Storage Temp.;	
TO-46 Package,	–60°C to +180°C
TO-92 Package,	–60°C to +150°C
SO-8 Package,	–65°C to +150°C
TO-220 Package,	–65°C to +150°C
Lead Temp.:	
TO-46 Package, (Soldering, 10 seconds)	300°C

TO-92 and TO-220 Package, 260°C (Soldering, 10 seconds) SO Package (Note 12) Vapor Phase (60 seconds) 215°C Infrared (15 seconds) 220°C ESD Susceptibility (Note 11) 2500V Specified Operating Temperature Range: $\mathrm{T}_{\mathrm{MIN}}$ to T $_{\mathrm{MAX}}$ (Note 2) LM35, LM35A -55°C to +150°C -40°C to +110°C LM35C, LM35CA LM35D 0° C to +100 $^{\circ}$ C

Electrical Characteristics

(Notes 1, 6)

Parameter	Conditions		LM35A		LM35CA			
		Typical	Tested Limit	Design Limit	Typical	Tested Limit	Design Limit	Units (Max.)
Accuracy	T _A =+25°C	±0.2	±0.5		±0.2	±0.5		°C
(Note 7)	T _A =-10°C	±0.3			±0.3		±1.0	°C
	T _A =T _{MAX}	±0.4	±1.0		±0.4	±1.0		°C
	T _A =T _{MIN}	±0.4	±1.0		±0.4		±1.5	°C
Nonlinearity	T _{MIN} ≤T _A ≤T _{MAX}	±0.18		±0.35	±0.15		±0.3	°C
(Note 8)								
Sensor Gain	T _{MIN} ≤T _A ≤T _{MAX}	+10.0	+9.9,		+10.0		+9.9,	mV/°C
(Average Slope)			+10.1				+10.1	
Load Regulation	T _A =+25°C	±0.4	±1.0		±0.4	±1.0		mV/mA
(Note 3) 0≤l _L ≤1 mA	T _{MIN} ≤T _A ≤T _{MAX}	±0.5		±3.0	±0.5		±3.0	mV/mA
Line Regulation	T _A =+25°C	±0.01	±0.05		±0.01	±0.05		mV/V
(Note 3)	4V≤V _S ≤30V	±0.02		±0.1	±0.02		±0.1	mV/V
Quiescent Current	V _S =+5V, +25°C	56	67		56	67		μA
(Note 9)	V _S =+5V	105		131	91		114	μA
	V _S =+30V, +25°C	56.2	68		56.2	68		μA
	V _S =+30V	105.5		133	91.5		116	μA
Change of	4V≤V _S ≤30V, +25°C	0.2	1.0		0.2	1.0		μA
Quiescent Current	4V≤V _S ≤30V	0.5		2.0	0.5		2.0	μA
(Note 3)								
Temperature		+0.39		+0.5	+0.39		+0.5	µA/°C
Coefficient of								
Quiescent Current								
Minimum Temperature	In circuit of	+1.5		+2.0	+1.5		+2.0	°C
for Rated Accuracy	Figure 1, I _L =0							
Long Term Stability	$T_{J}=T_{MAX}$, for	±0.08			±0.08			°C
	1000 hours							

LM35

-M35

Electrical Characteristics

(Notes 1, 6)

Parameter	Conditions	LM35			LM35C, LM35D			
			Tested	Design		Tested	Design	Units
		Typical	Limit	Limit	Typical	Limit	Limit	(Max.)
			(Note 4)	(Note 5)		(Note 4)	(Note 5)	
Accuracy,	T _A =+25°C	±0.4	±1.0		±0.4	±1.0		°C
LM35, LM35C	T _A =-10°C	±0.5			±0.5		±1.5	°C
(Note 7)	T _A =T _{MAX}	±0.8	±1.5		±0.8		±1.5	°C
	T _A =T _{MIN}	±0.8		±1.5	±0.8		±2.0	°C
Accuracy, LM35D	T _A =+25°C				±0.6	±1.5		°C
(Note 7)	T _A =T _{MAX}				±0.9		±2.0	°C
	T _A =T _{MIN}				±0.9		±2.0	°C
Nonlinearity	T _{MIN} ≤T _A ≤T _{MAX}	±0.3		±0.5	±0.2		±0.5	°C
(Note 8)								
Sensor Gain	T _{MIN} ≤T _A ≤T _{MAX}	+10.0	+9.8,		+10.0		+9.8,	mV/°C
(Average Slope)			+10.2				+10.2	
Load Regulation	T _A =+25°C	±0.4	±2.0		±0.4	±2.0		mV/mA
(Note 3) 0≤I _L ≤1 mA	T _{MIN} ≤T _A ≤T _{MAX}	±0.5		±5.0	±0.5		±5.0	mV/mA
Line Regulation	T _A =+25°C	±0.01	±0.1		±0.01	±0.1		mV/V
(Note 3)	4V≤V _S ≤30V	±0.02		±0.2	±0.02		±0.2	mV/V
Quiescent Current	V _S =+5V, +25°C	56	80		56	80		μA
(Note 9)	V _s =+5V	105		158	91		138	μA
	V _S =+30V, +25°C	56.2	82		56.2	82		μA
	V _s =+30V	105.5		161	91.5		141	μA
Change of	4V≤V _S ≤30V, +25°C	0.2	2.0		0.2	2.0		μA
Quiescent Current	4V≤V _S ≤30V	0.5		3.0	0.5		3.0	μA
(Note 3)								
Temperature		+0.39		+0.7	+0.39		+0.7	µA/°C
Coefficient of								
Quiescent Current								
Minimum Temperature	In circuit of	+1.5		+2.0	+1.5		+2.0	°C
for Rated Accuracy	Figure 1, I _L =0							
Long Term Stability	T _J =T _{MAX} , for	±0.08			±0.08			°C
	1000 hours							

Note 1: Unless otherwise noted, these specifications apply: $-55^{\circ}C \le T_J \le +150^{\circ}C$ for the LM35 and LM35A; $-40^{\circ} \le T_J \le +110^{\circ}C$ for the LM35C and LM35CA; and $0^{\circ} \le T_J \le +100^{\circ}C$ for the LM35D. $V_S = +5Vdc$ and $I_{LOAD} = 50 \ \mu$ A, in the circuit of *Figure 2*. These specifications also apply from $+2^{\circ}C$ to T_{MAX} in the circuit of *Figure 1*. Specifications in **boldface** apply over the full rated temperature range.

Note 2: Thermal resistance of the TO-46 package is 400°C/W, junction to ambient, and 24°C/W junction to case. Thermal resistance of the TO-92 package is 180°C/W junction to ambient. Thermal resistance of the small outline molded package is 220°C/W junction to ambient. Thermal resistance of the TO-220 package is 90°C/W junction to ambient. For additional thermal resistance information see table in the Applications section.

Note 3: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.

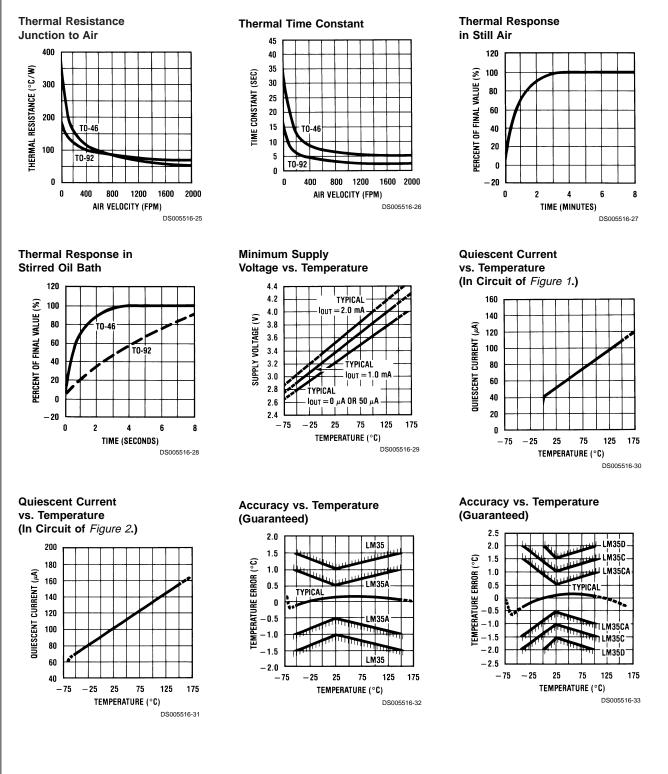
Note 4: Tested Limits are guaranteed and 100% tested in production.

Note 5: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.

Note 6: Specifications in **boldface** apply over the full rated temperature range.

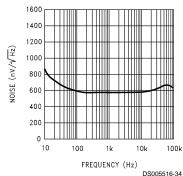
Note 7: Accuracy is defined as the error between the output voltage and 10mv/°C times the device's case temperature, at specified conditions of voltage, current, and temperature (expressed in °C).

Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.


Note 9: Quiescent current is defined in the circuit of Figure 1.

Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. See Note 1.

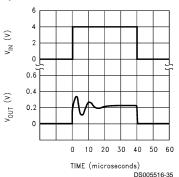
Note 11: Human body model, 100 pF discharged through a 1.5 k Ω resistor.


Note 12: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Noise Voltage


Applications

The LM35 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about 0.01°C of the surface temperature.

This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM35 die would be at an intermediate temperature between the surface temperature and the air temperature. This is expecially true for the TO-92 plastic package, where the copper leads are the principal thermal path to carry heat into the device, so its temperature might be closer to the air temperature than to the surface temperature.

To minimize this problem, be sure that the wiring to the LM35, as it leaves the device, is held at the same temperature as the surface of interest. The easiest way to do this is to cover up these wires with a bead of epoxy which will insure that the leads and wires are all at the same temperature as the surface, and that the LM35 die's temperature will not be affected by the air temperature.

Start-Up Response

The TO-46 metal package can also be soldered to a metal surface or pipe without damage. Of course, in that case the V– terminal of the circuit will be grounded to that metal. Alternatively, the LM35 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM35 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to insure that moisture cannot corrode the LM35 or its connections.

These devices are sometimes soldered to a small light-weight heat fin, to decrease the thermal time constant and speed up the response in slowly-moving air. On the other hand, a small thermal mass may be added to the sensor, to give the steadiest reading despite small deviations in the air temperature.

Temperature Rise of LM35 Due To Self-heating (Thermal Resistance, θ_{JA})

	TO-46,	TO-46*,	TO-92,	TO-92**,	SO-8	SO-8**	TO-220
	no heat sink	small heat fin	no heat sink	small heat fin	no heat sink	small heat fin	no heat sink
Still air	400°C/W	100°C/W	180°C/W	140°C/W	220°C/W	110°C/W	90°C/W
Moving air	100°C/W	40°C/W	90°C/W	70°C/W	105°C/W	90°C/W	26°C/W
Still oil	100°C/W	40°C/W	90°C/W	70°C/W			
Stirred oil	50°C/W	30°C/W	45°C/W	40°C/W			
(Clamped to metal,							
Infinite heat sink)	(2-	4°C/W)			(5	5°C/W)	

*Wakefield type 201, or 1" disc of 0.020" sheet brass, soldered to case, or similar.

**TO-92 and SO-8 packages glued and leads soldered to 1" square of 1/16" printed circuit board with 2 oz. foil or similar.

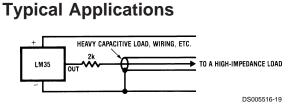
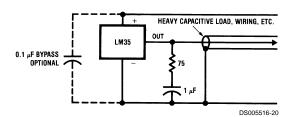
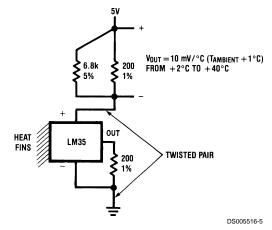
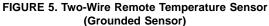


FIGURE 3. LM35 with Decoupling from Capacitive Load

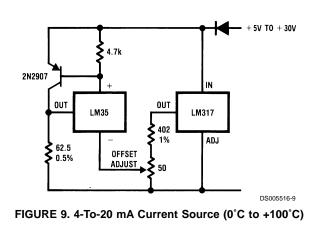



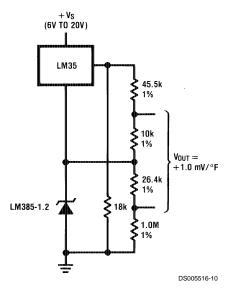

FIGURE 4. LM35 with R-C Damper

CAPACITIVE LOADS

Like most micropower circuits, the LM35 has a limited ability to drive heavy capacitive loads. The LM35 by itself is able to drive 50 pf without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a resistor; see *Figure 3*. Or you can improve the tolerance of capacitance with a series R-C damper from output to ground; see *Figure 4*.

When the LM35 is applied with a 200 Ω load resistor as shown in *Figure 5*, *Figure 6* or *Figure 8* it is relatively immune to wiring capacitance because the capacitance forms a bypass from ground to input, not on the output. However, as with any linear circuit connected to wires in a hostile environment, its performance can be affected adversely by intense electromagnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR transients, etc, as its wiring can act as a receiving antenna and its internal junctions can act as receiving antenna and its internal junctions can act as 75 Ω in series with 0.2 or 1 µF from output to ground are often useful. These are shown in *Figure 13*, *Figure 14*, and *Figure 16*.


FIGURE 8. Two-Wire Remote Temperature Sensor (Output Referred to Ground)

LM35

Typical Applications (Continued)

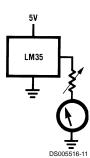


FIGURE 11. Centigrade Thermometer (Analog Meter)

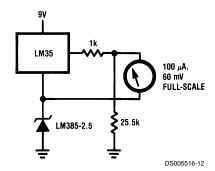
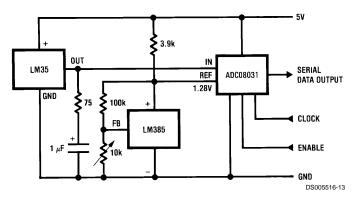
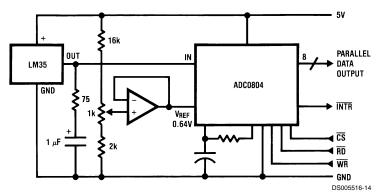
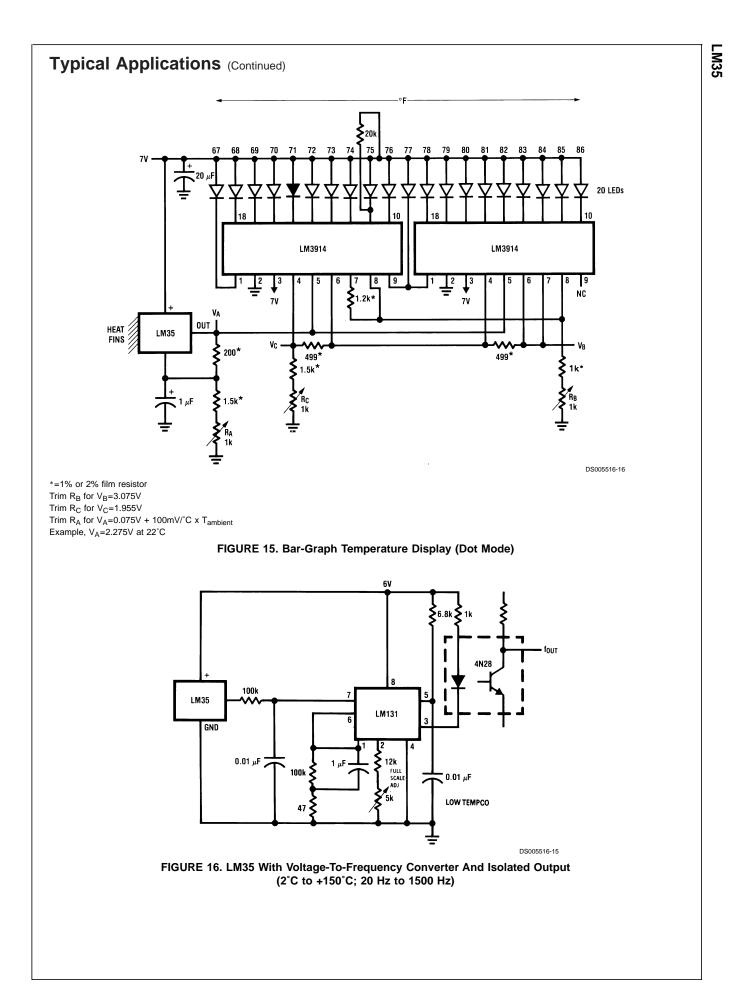
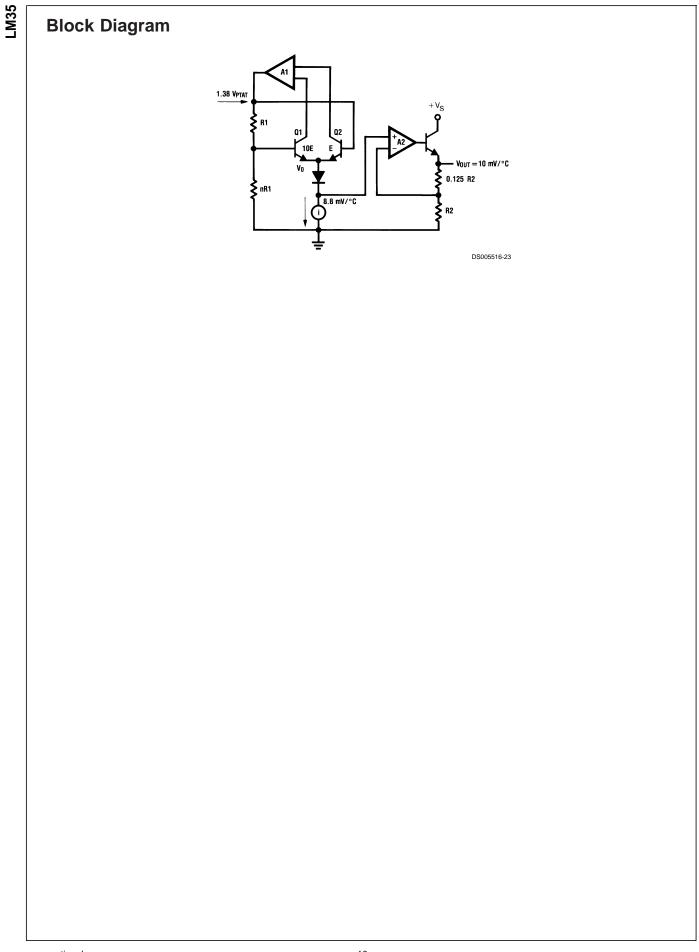
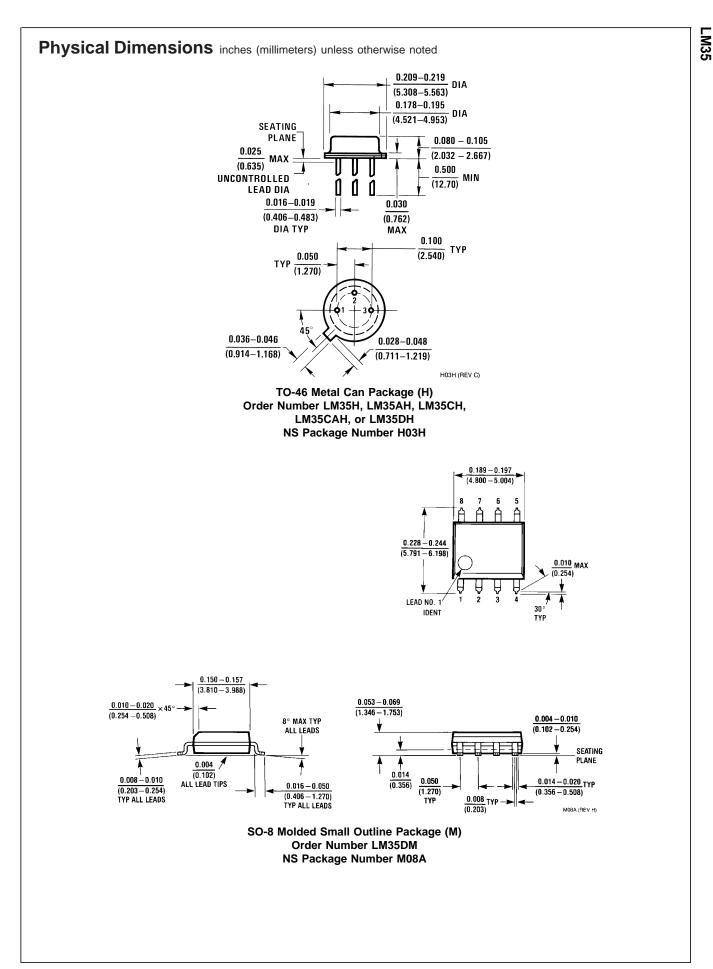
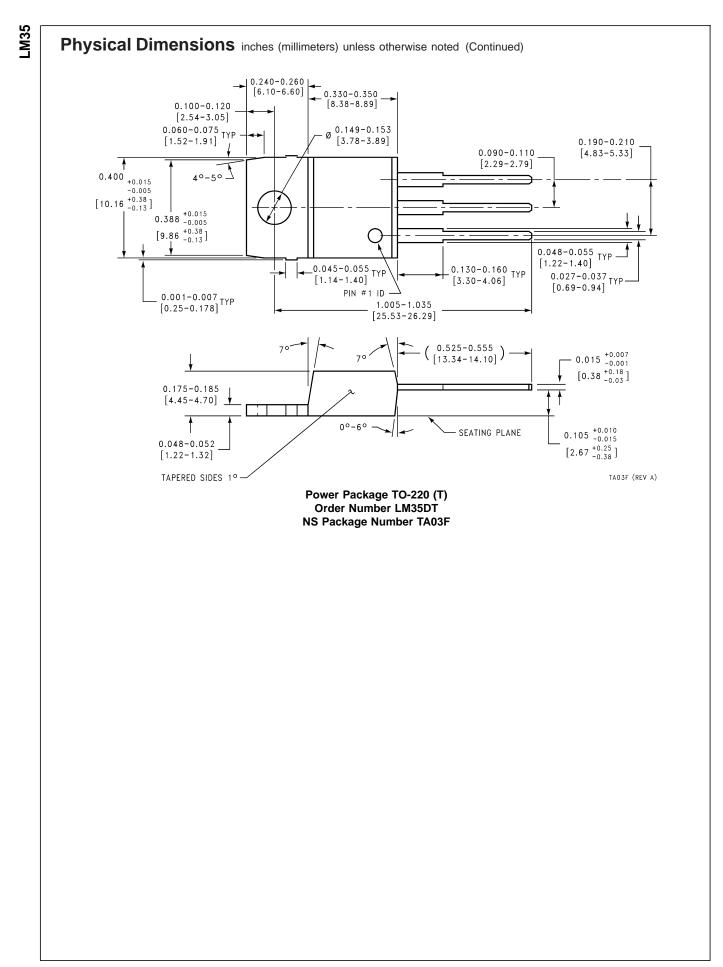
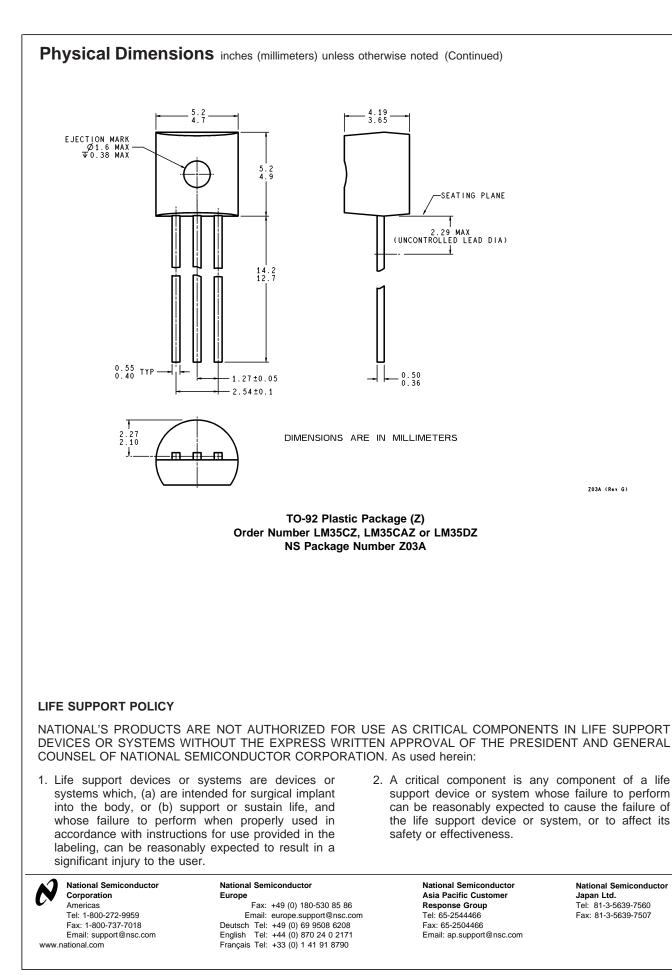


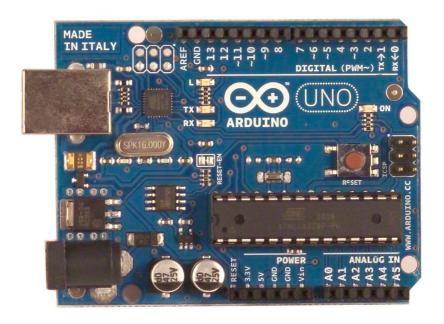
FIGURE 12. Fahrenheit ThermometerExpanded Scale Thermometer (50° to 80° Fahrenheit, for Example Shown)


FIGURE 13. Temperature To Digital Converter (Serial Output) (+128°C Full Scale)






www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Arduino UNO

Œ

Product Overview

The Arduino Uno is a microcontroller board based on the ATmega328 (<u>datasheet</u>). It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-serial converter.

"Uno" means one in Italian and is named to mark the upcoming release of Arduino 1.0. The Uno and version 1.0 will be the reference versions of Arduno, moving forward. The Uno is the latest in a series of USB Arduino boards, and the reference model for the Arduino platform; for a comparison with previous versions, see the <u>index of Arduino boards</u>.

Technical Specification

EAGLE files: arduino-duemilanove-uno-design.zip Schematic: arduino-uno-schematic.pdf

Summary

Microcontroller	ATmega328
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limits)	6-20V
Digital I/O Pins	14 (of which 6 provide PWM output)
Analog Input Pins	6
DC Current per I/O Pin	40 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	32 KB of which 0.5 KB used by bootloader
SRAM	2 KB
EEPROM	1 KB
Clock Speed	16 MHz

TX/RX "Test" digital pins Leds Led 13 MADE IN ITALY TX⇒1 RX≮0 ~5 -5 ~3 DIGITAL (PWM~) Power USB Interface Led ARDUINO RX 110 PK16.000Y) **ICSP** 6 . BHR 4 Header 1 10 - -ATmega328 000 Reset External Button ANALOG IN POWER Power 45 A3 Supply 12C power analog pins pins

the board

The Arduino Uno can be powered via the USB connection or with an external power supply. The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

- VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to • 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.
- 5V. The regulated power supply used to power the microcontroller and other components on the board. This can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.
- **3V3.** A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
- **GND.** Ground pins.

Memorv

Power

The Atmega328 has 32 KB of flash memory for storing code (of which 0,5 KB is used for the bootloader); It has also 2 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library).

Input and Output

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

- Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. TThese pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip .
- External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a • rising or falling edge, or a change in value. See the attachInterrupt() function for details.
- PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the <u>analogWrite()</u> function.
- SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which, although provided by the underlying hardware, is not currently included in the Arduino language.
- LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is • on, when the pin is LOW, it's off.

The Uno has 6 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and the analogReference() function. Additionally, some pins have specialized functionality:

I²C: 4 (SDA) and 5 (SCL). Support I²C (TWI) communication using the Wire library. •

There are a couple of other pins on the board:

- AREF. Reference voltage for the analog inputs. Used with <u>analogReference()</u>.
- **Reset.** Bring this line LOW to reset the microcontroller. Typically used to add a reset button to • shields which block the one on the board.

See also the mapping between Arduino pins and Atmega328 ports.

Communication

The Arduino Uno has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An ATmega8U2 on the board channels this serial communication over USB and appears as a virtual com port to software on the computer. The '8U2 firmware uses the standard USB COM drivers, and no external driver is needed. However, on Windows, an *.inf file is required...

The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the USB-toserial chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Uno's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus; see the documentation for details. To use the SPI communication, please see the ATmega328 datasheet.

Programming

The Arduino Uno can be programmed with the Arduino software (download). Select "Arduino Uno w/ ATmega328" from the Tools > Board menu (according to the microcontroller on your board). For details, see the reference and tutorials.

The ATmega328 on the Arduino Uno comes preburned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the original STK500 protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header; see these instructions for details.

The ATmega8U2 firmware source code is available. The ATmega8U2 is loaded with a DFU bootloader, which can be activated by connecting the solder jumper on the back of the board (near the map of Italy) and then resetting the 8U2. You can then use Atmel's FLIP software (Windows) or the DFU programmer (Mac OS X and Linux) to load a new firmware. Or you can use the ISP header with an external programmer (overwriting the DFU bootloader).

Automatic (Software) Reset

Rather than requiring a physical press of the reset button before an upload, the Arduino Uno is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Uno is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Uno. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data.

The Uno contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset by connecting a 110 ohm resistor from 5V to the reset line; see <u>this forum thread</u> for details.

USB Overcurrent Protection

The Arduino Uno has a resettable polyfuse that protects your computer's USB ports from shorts and overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection until the short or overload is removed.

Physical Characteristics

The maximum length and width of the Uno PCB are 2.7 and 2.1 inches respectively, with the USB connector and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing of the other pins.

radiospares

How to use Arduino

Arduino can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is programmed using the Arduino programming language (based on Wiring) and the Arduino development environment (based on Processing). Arduino projects can be stand-alone or they can communicate with software on running on a computer (e.g. Flash, Processing, MaxMSP).

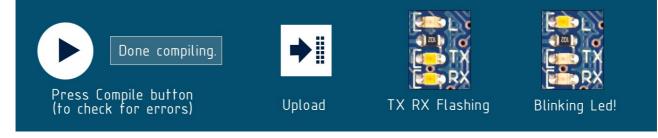
Arduino is a cross-platoform program. You'll have to follow different instructions for your personal OS. Check on the Arduino site for the latest instructions. http://arduino.cc/en/Guide/HomePage

Windows Install

Once you have downloaded/unzipped the arduino IDE, you can Plug the Arduino to your PC via USB cable.

Blink led

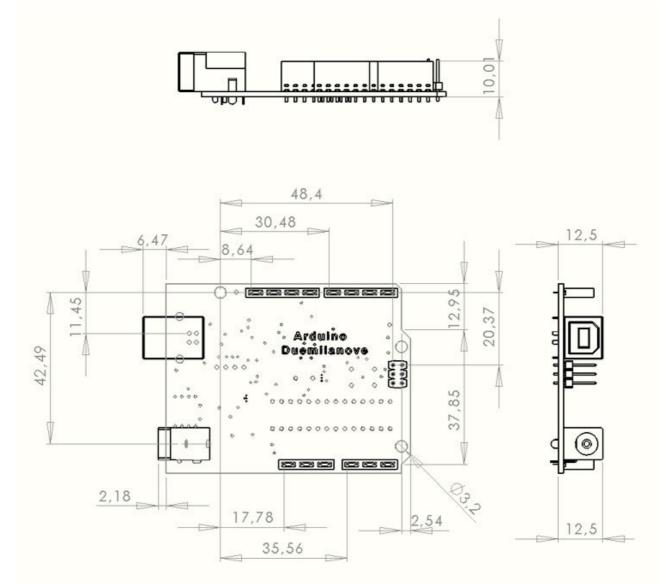
Now you're actually ready to "burn" your first program on the arduino board. To select "blink led", the physical translation of the well known programming "hello world". select

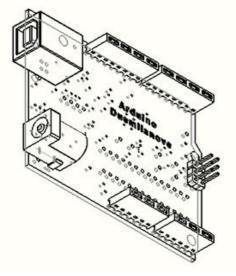

File>Sketchbook> Arduino-0017>Examples> **Digital>Blink**

Once you have your skecth you'll see something very close to the screenshot on the right.

In Tools>Board select

Now you have to go to Tools>SerialPort and select the right serial port, the one arduino is attached to.





Dimensioned Drawing

Radiospares RADIONICS

Terms & Conditions

1. Warranties

1.1 The producer warrants that its products will conform to the Specifications. This warranty lasts for one (1) years from the date of the sale. The producer shall not be liable for any defects that are caused by neglect, misuse or mistreatment by the Customer, including improper installation or testing, or for any products that have been altered or modified in any way by a Customer. Moreover, The producer shall not be liable for any defects that result from Customer's design, specifications or instructions for such products. Testing and other quality control techniques are used to the extent the producer deems necessary.

1.2 If any products fail to conform to the warranty set forth above, the producer's sole liability shall be to replace such products. The producer's liability shall be limited to products that are determined by the producer not to conform to such warranty. If the producer elects to replace such products, the producer shall have a reasonable time to replacements. Replaced products shall be warranted for a new full warranty period.

1.3 EXCEPT AS SET FORTH ABOVE, PRODUCTS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." THE PRODUCER DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING PRODUCTS, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

1.4 Customer agrees that prior to using any systems that include the producer products, Customer will test such systems and the functionality of the products as used in such systems. The producer may provide technical, applications or design advice, quality characterization, reliability data or other services. Customer acknowledges and agrees that providing these services shall not expand or otherwise alter the producer's warranties, as set forth above, and no additional obligations or liabilities shall arise from the producer providing such services.

1.5 The Arduino[™] products are not authorized for use in safety-critical applications where a failure of the product would reasonably be expected to cause severe personal injury or death. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Arduino[™] products are neither designed nor intended for use in military or aerospace applications or environments and for automotive applications or environment. Customer acknowledges and agrees that any such use of Arduino[™] products which is solely at the Customer's risk, and that Customer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

1.6 Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products and any use of Arduino[™] products in Customer's applications, notwithstanding any applications-related information or support that may be provided by the producer.

2. Indemnification

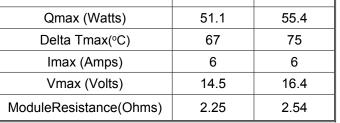
The Customer acknowledges and agrees to defend, indemnify and hold harmless the producer from and against any and all third-party losses, damages, liabilities and expenses it incurs to the extent directly caused by: (i) an actual breach by a Customer of the representation and warranties made under this terms and conditions or (ii) the gross negligence or willful misconduct by the Customer.

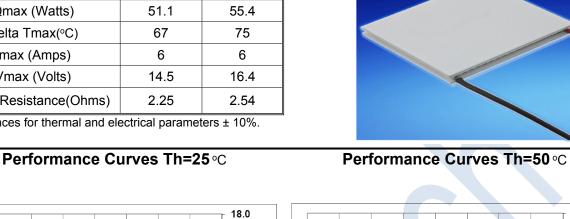
3. Consequential Damages Waiver

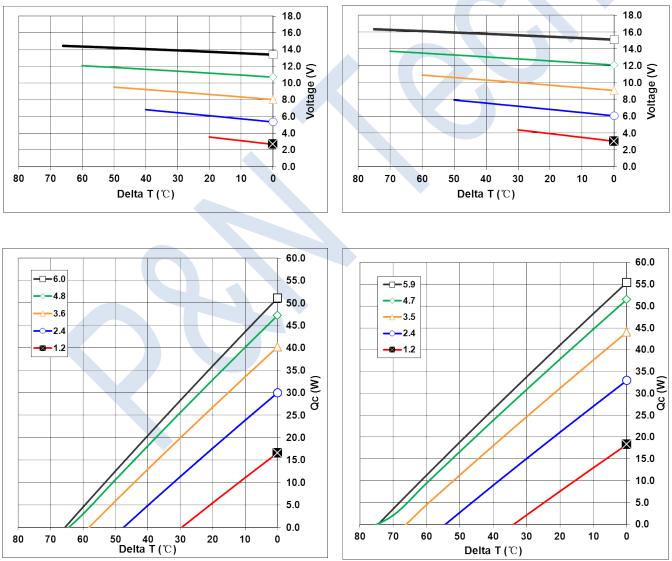
In no event the producer shall be liable to the Customer or any third parties for any special, collateral, indirect, punitive, incidental, consequential or exemplary damages in connection with or arising out of the products provided hereunder, regardless of whether the producer has been advised of the possibility of such damages. This section will survive the termination of the warranty period.

4. Changes to specifications

The producer may make changes to specifications and product descriptions at any time, without notice. The Customer must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." The producer reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The product information on the Web Site or Materials is subject to change without notice. Do not finalize a design with this information.

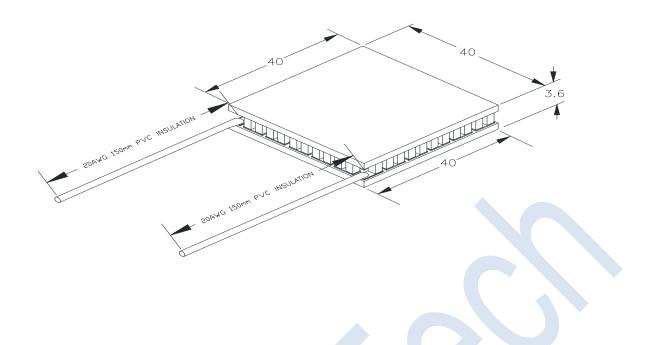



P&N Technology (Xiamen) Co.,Ltd.


Thermoelectric Cooler Performance Specifications

Hot SideTemperature(°C)	25 °C	50 °C
Qmax (Watts)	51.1	55.4
Delta Tmax(°C)	67	75
Imax (Amps)	6	6
Vmax (Volts)	14.5	16.4
ModuleResistance(Ohms)	2.25	2.54

**Tolerances for thermal and electrical parameters ± 10%.



Mechanical Drawing:

TEC1-127060-40X40 W150mm

Operation Tips:

- Max Operating Temperature: 90°C.
- Do not exceed Imax or Vmax when operating module.
- Please consult P&N Technology for moisture and corrosion protection options.

Address:5/F Xinfei Building 28th Xiangming Road, Torch (xiang'an) Hi-tech Zone, XiamenFujian China.Sales Tel:+ 86 - 592 - 352 1988Fax:+ 86-592-352 1989Postcode:361 101Web:www.pengnantech.com