
97

LAMPIRAN

97

98

Lampiran 1. Kode Arsitektur CNN-K

def build_custom_cnn(input_shape):

inputs = Input(input_shape)

#Encoder

#Blok 1

c1 = Conv2D(64, (3, 3), activation='relu',

padding='same')(inputs)

c1 = BatchNormalization()(c1)

c1 = Conv2D(64, (3, 3), activation='relu', padding='same')(c1)

c1 = BatchNormalization()(c1)

p1 = MaxPooling2D((2, 2))(c1)

#Blok 2

c2 = Conv2D(128, (3, 3), activation='relu',

padding='same')(p1)

c2 = BatchNormalization()(c2)

c2 = Conv2D(128, (3, 3), activation='relu',

padding='same')(c2)

c2 = BatchNormalization()(c2)

p2 = MaxPooling2D((2, 2))(c2)

#Blok 3

c3 = Conv2D(256, (3, 3), activation='relu',

padding='same')(p2)

c3 = BatchNormalization()(c3)

c3 = Conv2D(256, (3, 3), activation='relu',

padding='same')(c3)

c3 = BatchNormalization()(c3)

p3 = MaxPooling2D((2, 2))(c3)

#Bottleneck

b = Conv2D(512, (3, 3), activation='relu', padding='same')(p3)

b = BatchNormalization()(b)

b = Conv2D(512, (3, 3), activation='relu', padding='same')(b)

b = BatchNormalization()(b)

#Decoder

#Blok 1

99

u1 = Conv2DTranspose(256, (2, 2), strides=(2, 2),

padding='same')(b)

u1 = BatchNormalization()(u1)

u1 = concatenate([u1, c3]) # Skip connection

c4 = Conv2D(256, (3, 3), activation='relu',

padding='same')(u1)

c4 = BatchNormalization()(c4)

c4 = Conv2D(256, (3, 3), activation='relu',

padding='same')(c4)

c4 = BatchNormalization()(c4)

#Blok 2

u2 = Conv2DTranspose(128, (2, 2), strides=(2, 2),

padding='same')(c4)

u2 = BatchNormalization()(u2)

u2 = concatenate([u2, c2]) # Skip connection

c5 = Conv2D(128, (3, 3), activation='relu',

padding='same')(u2)

c5 = BatchNormalization()(c5)

c5 = Conv2D(128, (3, 3), activation='relu',

padding='same')(c5)

c5 = BatchNormalization()(c5)

#Blok 3

u3 = Conv2DTranspose(64, (2, 2), strides=(2, 2),

padding='same')(c5)

u3 = BatchNormalization()(u3)

u3 = concatenate([u3, c1]) # Skip connection

c6 = Conv2D(64, (3, 3), activation='relu', padding='same')(u3)

c6 = BatchNormalization()(c6)

c6 = Conv2D(64, (3, 3), activation='relu', padding='same')(c6)

c6 = BatchNormalization()(c6)

#Output Layer

outputs = Conv2D(1, (1, 1), activation='sigmoid')(c6)

model = Model(inputs=[inputs], outputs=[outputs])

return model

100

Lampiran 2. Kode Arsitektur U-VGG

def build_vgg16_unet(input_shape):

vgg16 = VGG16(weights='imagenet', include_top=False,

input_shape=input_shape)

for layer in vgg16.layers[:15]:

layer.trainable = False

#Encoder

c1 = vgg16.get_layer("block1_conv2").output

c2 = vgg16.get_layer("block2_conv2").output

c3 = vgg16.get_layer("block3_conv3").output

c4 = vgg16.get_layer("block4_conv3").output

c5 = vgg16.get_layer("block5_conv3").output

#Decoder

u6 = UpSampling2D((2, 2))(c5); u6 = concatenate([u6, c4]); c6

= Conv2D(256, (3, 3), activation='relu', padding='same')(u6); c6 =

BatchNormalization()(c6); c6 = Dropout(0.5)(c6)

u7 = UpSampling2D((2, 2))(c6); u7 = concatenate([u7, c3]); c7

= Conv2D(256, (3, 3), activation='relu', padding='same')(u7); c7 =

BatchNormalization()(c7); c7 = Dropout(0.5)(c7)

u8 = UpSampling2D((2, 2))(c7); u8 = concatenate([u8, c2]); c8

= Conv2D(128, (3, 3), activation='relu', padding='same')(u8); c8 =

BatchNormalization()(c8)

u9 = UpSampling2D((2, 2))(c8); u9 = concatenate([u9, c1]); c9

= Conv2D(64, (3, 3), activation='relu', padding='same')(u9); c9 =

BatchNormalization()(c9)

#Output

outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)

return Model(inputs=vgg16.input, outputs=outputs)

Lampiran 3. Kode Arsitektur DL-ResNet

def ASPP(inputs):

shape = inputs.shape

y_1x1 = Conv2D(256, (1, 1), padding="same",

activation="relu")(inputs)

101

y_3x3_r6 = Conv2D(256, (3, 3), padding="same",

activation="relu", dilation_rate=6)(inputs)

y_3x3_r12 = Conv2D(256, (3, 3), padding="same",

activation="relu", dilation_rate=12)(inputs)

y_3x3_r18 = Conv2D(256, (3, 3), padding="same",

activation="relu", dilation_rate=18)(inputs)

y_pool = GlobalAveragePooling2D()(inputs)

y_pool = tf.reshape(y_pool, [-1, 1, 1, shape[-1]])

y_pool = Conv2D(256, 1, padding="same",

activation="relu")(y_pool)

y_pool = UpSampling2D((shape[1], shape[2]),

interpolation="bilinear")(y_pool)

y = concatenate([y_1x1, y_3x3_r6, y_3x3_r12, y_3x3_r18,

y_pool])

y = Conv2D(256, (1, 1), padding="same", activation="relu")(y)

return y

def build_deeplabv3plus(input_shape):

#ENCODER

backbone = ResNet50(weights="imagenet", include_top=False,

input_shape=input_shape)

high_level_features =

backbone.get_layer("conv4_block6_out").output (output_stride=4)

low_level_features =

backbone.get_layer("conv2_block3_out").output

#ASPP

x = ASPP(high_level_features)

#DECODER

Upsampling output ASPP

x = UpSampling2D(size=(4, 4), interpolation="bilinear")(x)

low_level_features = Conv2D(48, (1, 1), padding="same",

activation="relu")(low_level_features)

x = concatenate([x, low_level_features])

x = Conv2D(256, (3, 3), padding="same", activation="relu")(x)

102

x = Conv2D(256, (3, 3), padding="same", activation="relu")(x)

Final Upsampling

x = UpSampling2D(size=(4, 4), interpolation="bilinear")(x)

#Output Layer

outputs = Conv2D(1, (1, 1), activation="sigmoid")(x)

model = Model(inputs=backbone.input, outputs=outputs)

return model

103

RIWAYAT HIDUP

Putu Haryaka Seta Dewa lahir di Busungbiu pada tanggal 12

Mei 2004. Penulis berkewarganegaraan Indonesia dan

beragama Hindu. Saat ini penulis bertempat tinggal di

Busungbiu, Buleleng, Bali, Indonesia. Penulis menempuh

pendidikan Sekolah Dasar di SD Negeri 5 Sanur dan lulus

pada jenjang tersebut. Selanjutnya, penulis melanjutkan

pendidikan di SMP Negeri 4 Busungbiu dan lulus pada

jenjang tersebut. Penulis kemudian menempuh pendidikan

menengah atas di SMA Negeri 1 Busungbiu dengan penjurusan Bahasa dan Sastra

hingga menyelesaikan pendidikan. Penulis terdaftar sebagai mahasiswa Program

Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha sejak tahun 2022 sampai

dengan penyusunan skripsi ini.

