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Lampiran 1. Kode Arsitektur CNN-K 

def build_custom_cnn(input_shape): 

inputs = Input(input_shape) 

#Encoder 

#Blok 1 

c1 = Conv2D(64, (3, 3), activation='relu', 

padding='same')(inputs) 

 

c1 = BatchNormalization()(c1) 

c1 = Conv2D(64, (3, 3), activation='relu', padding='same')(c1) 

c1 = BatchNormalization()(c1) 

p1 = MaxPooling2D((2, 2))(c1) 

#Blok 2 

c2 = Conv2D(128, (3, 3), activation='relu', 

padding='same')(p1) 

c2 = BatchNormalization()(c2) 

c2 = Conv2D(128, (3, 3), activation='relu', 

padding='same')(c2) 

c2 = BatchNormalization()(c2) 

p2 = MaxPooling2D((2, 2))(c2) 

#Blok 3 

c3 = Conv2D(256, (3, 3), activation='relu', 

padding='same')(p2) 

c3 = BatchNormalization()(c3) 

c3 = Conv2D(256, (3, 3), activation='relu', 

padding='same')(c3) 

c3 = BatchNormalization()(c3) 

p3 = MaxPooling2D((2, 2))(c3) 

#Bottleneck 

b = Conv2D(512, (3, 3), activation='relu', padding='same')(p3) 

b = BatchNormalization()(b) 

b = Conv2D(512, (3, 3), activation='relu', padding='same')(b) 

b = BatchNormalization()(b) 

#Decoder 

#Blok 1 
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u1 = Conv2DTranspose(256, (2, 2), strides=(2, 2), 

padding='same')(b) 

u1 = BatchNormalization()(u1) 

u1 = concatenate([u1, c3]) # Skip connection 

c4 = Conv2D(256, (3, 3), activation='relu', 

padding='same')(u1) 

c4 = BatchNormalization()(c4) 

c4 = Conv2D(256, (3, 3), activation='relu', 

padding='same')(c4) 

c4 = BatchNormalization()(c4) 

#Blok 2 

u2 = Conv2DTranspose(128, (2, 2), strides=(2, 2), 

padding='same')(c4) 

u2 = BatchNormalization()(u2) 

u2 = concatenate([u2, c2]) # Skip connection 

c5 = Conv2D(128, (3, 3), activation='relu', 

padding='same')(u2) 

c5 = BatchNormalization()(c5) 

c5 = Conv2D(128, (3, 3), activation='relu', 

padding='same')(c5) 

c5 = BatchNormalization()(c5) 

#Blok 3 

u3 = Conv2DTranspose(64, (2, 2), strides=(2, 2), 

padding='same')(c5) 

u3 = BatchNormalization()(u3) 

u3 = concatenate([u3, c1]) # Skip connection 

c6 = Conv2D(64, (3, 3), activation='relu', padding='same')(u3) 

c6 = BatchNormalization()(c6) 

c6 = Conv2D(64, (3, 3), activation='relu', padding='same')(c6) 

c6 = BatchNormalization()(c6) 

#Output Layer 

outputs = Conv2D(1, (1, 1), activation='sigmoid')(c6) 

model = Model(inputs=[inputs], outputs=[outputs]) 

return model 
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Lampiran 2. Kode Arsitektur U-VGG 

def build_vgg16_unet(input_shape): 

vgg16 = VGG16(weights='imagenet', include_top=False, 

input_shape=input_shape) 

for layer in vgg16.layers[:15]: 

layer.trainable = False 

#Encoder 

c1 = vgg16.get_layer("block1_conv2").output 

c2 = vgg16.get_layer("block2_conv2").output 

c3 = vgg16.get_layer("block3_conv3").output 

c4 = vgg16.get_layer("block4_conv3").output 

c5 = vgg16.get_layer("block5_conv3").output 

#Decoder 

u6 = UpSampling2D((2, 2))(c5); u6 = concatenate([u6, c4]); c6 

= Conv2D(256, (3, 3), activation='relu', padding='same')(u6); c6 = 

BatchNormalization()(c6); c6 = Dropout(0.5)(c6) 

u7 = UpSampling2D((2, 2))(c6); u7 = concatenate([u7, c3]); c7 

= Conv2D(256, (3, 3), activation='relu', padding='same')(u7); c7 = 

BatchNormalization()(c7); c7 = Dropout(0.5)(c7) 

u8 = UpSampling2D((2, 2))(c7); u8 = concatenate([u8, c2]); c8 

= Conv2D(128, (3, 3), activation='relu', padding='same')(u8); c8 = 

BatchNormalization()(c8) 

u9 = UpSampling2D((2, 2))(c8); u9 = concatenate([u9, c1]); c9 

= Conv2D(64, (3, 3), activation='relu', padding='same')(u9); c9 = 

BatchNormalization()(c9) 

#Output 

outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9) 

return Model(inputs=vgg16.input, outputs=outputs) 

 

Lampiran 3. Kode Arsitektur DL-ResNet 
 

def ASPP(inputs): 

shape = inputs.shape 

y_1x1 = Conv2D(256, (1, 1), padding="same", 

activation="relu")(inputs) 
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y_3x3_r6 = Conv2D(256, (3, 3), padding="same", 

activation="relu", dilation_rate=6)(inputs) 

y_3x3_r12 = Conv2D(256, (3, 3), padding="same", 

activation="relu", dilation_rate=12)(inputs) 

y_3x3_r18 = Conv2D(256, (3, 3), padding="same", 

activation="relu", dilation_rate=18)(inputs) 

y_pool = GlobalAveragePooling2D()(inputs) 

y_pool = tf.reshape(y_pool, [-1, 1, 1, shape[-1]]) 

y_pool = Conv2D(256, 1, padding="same", 

activation="relu")(y_pool) 

y_pool = UpSampling2D((shape[1], shape[2]), 

interpolation="bilinear")(y_pool) 

y = concatenate([y_1x1, y_3x3_r6, y_3x3_r12, y_3x3_r18, 

y_pool]) 

y = Conv2D(256, (1, 1), padding="same", activation="relu")(y) 

return y 

 

def build_deeplabv3plus(input_shape): 

#ENCODER 

backbone = ResNet50(weights="imagenet", include_top=False, 

input_shape=input_shape) 

high_level_features = 

backbone.get_layer("conv4_block6_out").output (output_stride=4) 

low_level_features = 

backbone.get_layer("conv2_block3_out").output 

 

 

#ASPP 

x = ASPP(high_level_features) 

 

 

#DECODER 

# Upsampling output ASPP 

x = UpSampling2D(size=(4, 4), interpolation="bilinear")(x) 

low_level_features = Conv2D(48, (1, 1), padding="same", 

activation="relu")(low_level_features) 

x = concatenate([x, low_level_features]) 

x = Conv2D(256, (3, 3), padding="same", activation="relu")(x) 
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x = Conv2D(256, (3, 3), padding="same", activation="relu")(x) 

 

 

# Final Upsampling 

x = UpSampling2D(size=(4, 4), interpolation="bilinear")(x) 

 

 

#Output Layer 

outputs = Conv2D(1, (1, 1), activation="sigmoid")(x) 

model = Model(inputs=backbone.input, outputs=outputs) 

return model 
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