97

97

98

Lampiran 1. Kode Arsitektur CNN-K

def build custom cnn (input shape) :
inputs = Input (input_ shape)
#Encoder
#Blok 1

cl = Conv2D (64, (3, 3), activation='relu',
padding="'same') (inputs)

cl = BatchNormalization () (cl)

cl = Conv2D (64, (3, 3), activation='relu', padding='same') (cl)
cl = BatchNormalization() (cl)

pl = MaxPooling2D((2, 2)) (cl)

#Blok 2

c2 = Conv2D (128,
padding="'same') (pl)

c2 =

#Blok 3

c3 = Conv2D (25
padding="'same') (p2)

c3

Il
o
Q
o+
Q
=y
=
(@]
=
3
QO
[
-
N
QO
o+
-
O

c3 Conv2D (256, (3, 3), activation='relu',
padding="'same') (c3)

c3 = BatchNormalization() (c3)
p3 = MaxPooling2D((2, 2)) (c3)
#Bottleneck

b

Conv2D (512, (3, 3), activation='relu', padding='same') (p3)

b

BatchNormalization () (b)

b Conv2D (512, (3, 3), activation='relu', padding='same') (b)
b = BatchNormalization () (b)
#Decoder

#Blok 1

99

ul Conv2DTranspose (256, (2, 2), strides=(2, 2),
padding='same') (b)

ul

BatchNormalization () (ul)
ul = concatenate([ul, c3]) # Skip connection

c4 = Conv2D (256, (3, 3), activation='relu',
padding="same') (ul)

cd BatchNormalization () (c4)

c4 Conv2D (256, (3, 3), activation='relu',
padding="same') (c4)

c4 = BatchNormalization () (c4)
#Blok 2

u2 = Conv2DTranspose (128, (2, 2), strides=(2, 2),
padding="'same') (c4)

u2 = BatchNormalization () (u2)
u2 = concatenate([u2, c2]) # Skip connection
c5 = Conv2D (128, (3, 3), activation='relu',

padding="'same') (u2)

c5 = BatchNormalization () (c5)

c5 Conv2D (128, (3, 3), activation='relu',
padding="same"') (c5)

c5 = BatchNormalization () (c5)
#Blok 3

u3 = Conv2DTranspose (64, (2, 2),;, strides=(2, 2),
padding="'same"') (cb5)

u3 = BatchNormalization () (u3)

u3 = concatenate([u3, cl]) # Skip connection

c6 = Conv2D (64, (3, 3), activation='relu', padding='same') (u3)
c6 = BatchNormalization() (c6)

c6 = Conv2D (64, (3, 3), activation='relu', padding='same') (c6)
c6 = BatchNormalization() (c6)

#Output Layer
outputs = Conv2D(1l, (1, 1), activation='sigmoid') (c6)
model = Model (inputs=[inputs], outputs=[outputs])

return model

Lampiran 2. Kode Arsitektur U-VGG

100

def build vgglé unet (input shape) :

vggl6o = VGGl6 (weights='imagenet', include top=False,
input shape=input shape)

for layer in vgglé6.layers[:15]:
layer.trainable = False

#Encoder

cl = vggl6.get layer ("blockl conv2").output
c2 = vgglé6.get layer ("block2 conv2").output
c3 = vgglé6.get layer ("block3 conv3").output
c4 = vggl6.get layer ("block4 conv3").output
c5 = vgglé6.get layer ("block5 conv3").output

#Decoder

u6 = UpSampling2D((2, .2)) (c5); u6 = concatenate([u6, c4]); cb6

= Conv2D (256, (3,/3), activation='relu';, padding='same') (ub);
BatchNormalization () (¢6); c6 = Dropout (0.5) (c6)

cb6

u7 = UpSampling2D((2, 2)) (c6); u’7 = concatenate ([u7, c3]); c7

= Conv2D (256, (3, 3), activation='relu', padding='same') (u7);
BatchNormalization () (¢7); c7 = Dropout (0.5) (c7)

c7

u8 = UpSampling2D((2, 2)) (c7); u8 = concatenate([u8, c2]); c8

= Conv2D (128, (3, 3), activation='relu', padding='same') (u8);
BatchNormalization () (c8)

u9 = UpSampling2D((2, 2)) (c8); u9 = concatenate([u9, cl])
= Conv2D (64, (3, 3), activation='relu', padding='same') (u9);
BatchNormalization () (c9)

#Output
outputs = Conv2D(1l, (1, 1), activation='sigmoid') (c9)

return Model (inputs=vgglo6.input, outputs=outputs)

c8

; c9
c9 =

Lampiran 3. Kode Arsitektur DL-ResNet

def ASPP (inputs):
shape = inputs.shape

y_1x1 = Conv2D(256, (1, 1), padding="same",
activation="relu") (inputs)

101

y 3x3 r6 = Conv2D (256, (3, 3), padding="same",
activation="relu", dilation rate=6) (inputs)

y 3x3 rl2 = Conv2D(256, (3, 3), padding="same",
activation="relu", dilation rate=12) (inputs)

y 3x3 rl8 = Conv2D(256, (3, 3), padding="same",
activation="relu", dilation rate=18) (inputs)

y_pool = GlobalAveragePooling2D () (inputs)
y pool = tf.reshape(y pool, [-1, 1, 1, shape[-11])

y pool = Conv2D (256, 1, padding="same",
activation="relu") (y_pool)

y _pool = UpSampling2D((shape[l], shape[2]),
interpolation="bilinear") (y_pool)

y = concatenate([y 1x1, y 3x3 r6, y 3x3 rl2, y 3x3 rl8§,
y _pooll])

y = Conv2D (256, (1, 1), padding="same", activation="relu") (y)

return y

def build deeplabv3plus (input shape) :
#ENCODER

backbone = ResNet50 (weights="imagenet", include top=False,
input shape=input shape)

high level features =
backbone.get layer("conv4 block6 out").output (output stride=4)

low level features =
backbone.get layer ("conv2 block3 out") .output

#ASPP

x = ASPP(high level features)

#DECODER
Upsampling output ASPP
x = UpSampling2D(size=(4, 4), interpolation="bilinear") (x)

low level features = Conv2D (48, (1, 1), padding="same",
activation="relu") (low level features)

x = concatenate ([x, low level features])

X Conv2D (256, (3, 3), padding="same", activation="relu") (x)

102

x = Conv2D (256, (3, 3), padding="same", activation="relu") (x)

Final Upsampling

x = UpSampling2D(size=(4, 4), interpolation="bilinear") (x)

#Output Layer
outputs = Conv2D(1l, (1, 1), activation="sigmoid") (x)
model = Model (inputs=backbone.input, outputs=outputs)

return model

103

RIWAYAT HIDUP

Putu Haryaka Seta Dewa lahir di Busungbiu pada tanggal 12
Mei 2004. Penulis berkewarganegaraan Indonesia dan
beragama Hindu. Saat ini penulis bertempat tinggal di
Busungbiu, Buleleng, Bali, Indonesia. Penulis menempuh
pendidikan Sekolah Dasar di SD Negeri 5 Sanur dan lulus
pada jenjang tersebut. Selanjutnya, penulis melanjutkan

pendidikan di SMP Negeri 4 Busungbiu dan lulus pada

jenjang tersebut. Penulis kemudian menempuh pendidikan
menengah atas di SMA Negeri 1 Busungbiu dengan penjurusan Bahasa dan Sastra

hingga menyelesaikan pendidikan. Penulis terdaftar sebagai mahasiswa Program

Studi S1 Ilmu Komputer Universitas P an Ganesha sejak tahun 2022 sampai

