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Lampiran 1. Kode Arsitektur CNN-K

def build custom cnn (input shape) :
inputs = Input (input_ shape)
#Encoder
#Blok 1

cl = Conv2D (64, (3, 3), activation='relu',
padding="'same') (inputs)

cl = BatchNormalization () (cl)

cl = Conv2D (64, (3, 3), activation='relu', padding='same') (cl)
cl = BatchNormalization() (cl)

pl = MaxPooling2D( (2, 2)) (cl)

#Blok 2

c2 = Conv2D (128,
padding="'same') (pl)

c2 =

#Blok 3

c3 = Conv2D (25
padding="'same') (p2)

c3
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c3 Conv2D (256, (3, 3), activation='relu',
padding="'same') (c3)

c3 = BatchNormalization() (c3)
p3 = MaxPooling2D( (2, 2)) (c3)
#Bottleneck

b

Conv2D (512, (3, 3), activation='relu', padding='same') (p3)

b

BatchNormalization () (b)

b Conv2D (512, (3, 3), activation='relu', padding='same') (b)
b = BatchNormalization () (b)
#Decoder

#Blok 1
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ul Conv2DTranspose (256, (2, 2), strides=(2, 2),
padding='same') (b)

ul

BatchNormalization () (ul)
ul = concatenate([ul, c3]) # Skip connection

c4 = Conv2D (256, (3, 3), activation='relu',
padding="same') (ul)

cd BatchNormalization () (c4)

c4 Conv2D (256, (3, 3), activation='relu',
padding="same') (c4)

c4 = BatchNormalization () (c4)
#Blok 2

u2 = Conv2DTranspose (128, (2, 2), strides=(2, 2),
padding="'same') (c4)

u2 = BatchNormalization () (u2)
u2 = concatenate([u2, c2]) # Skip connection
c5 = Conv2D (128, (3, 3), activation='relu',

padding="'same') (u2)

c5 = BatchNormalization () (c5)

c5 Conv2D (128, (3, 3), activation='relu',
padding="same"') (c5)

c5 = BatchNormalization () (c5)
#Blok 3

u3 = Conv2DTranspose (64, (2, 2),;, strides=(2, 2),
padding="'same"') (cb5)

u3 = BatchNormalization () (u3)

u3 = concatenate([u3, cl]) # Skip connection

c6 = Conv2D (64, (3, 3), activation='relu', padding='same') (u3)
c6 = BatchNormalization() (c6)

c6 = Conv2D (64, (3, 3), activation='relu', padding='same') (c6)
c6 = BatchNormalization() (c6)

#Output Layer
outputs = Conv2D(1l, (1, 1), activation='sigmoid') (c6)
model = Model (inputs=[inputs], outputs=[outputs])

return model




Lampiran 2. Kode Arsitektur U-VGG
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def build vgglé unet (input shape) :

vggl6o = VGGl6 (weights='imagenet', include top=False,
input shape=input shape)

for layer in vgglé6.layers[:15]:
layer.trainable = False

#Encoder

cl = vggl6.get layer ("blockl conv2").output
c2 = vgglé6.get layer ("block2 conv2").output
c3 = vgglé6.get layer ("block3 conv3").output
c4 = vggl6.get layer ("block4 conv3").output
c5 = vgglé6.get layer ("block5 conv3").output

#Decoder

u6 = UpSampling2D( (2, .2)) (c5); u6 = concatenate([u6, c4]); cb6

= Conv2D (256, (3,/3), activation='relu';, padding='same') (ub);
BatchNormalization () (¢6); c6 = Dropout (0.5) (c6)

cb6

u7 = UpSampling2D((2, 2)) (c6); u’7 = concatenate ([u7, c3]); c7

= Conv2D (256, (3, 3), activation='relu', padding='same') (u7);
BatchNormalization () (¢7); c7 = Dropout (0.5) (c7)

c7

u8 = UpSampling2D( (2, 2)) (c7); u8 = concatenate([u8, c2]); c8

= Conv2D (128, (3, 3), activation='relu', padding='same') (u8);
BatchNormalization () (c8)

u9 = UpSampling2D( (2, 2)) (c8); u9 = concatenate([u9, cl])
= Conv2D (64, (3, 3), activation='relu', padding='same') (u9);
BatchNormalization () (c9)

#Output
outputs = Conv2D(1l, (1, 1), activation='sigmoid') (c9)

return Model (inputs=vgglo6.input, outputs=outputs)

c8

; c9
c9 =

Lampiran 3. Kode Arsitektur DL-ResNet

def ASPP (inputs):
shape = inputs.shape

y_1x1 = Conv2D(256, (1, 1), padding="same",
activation="relu") (inputs)
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y 3x3 r6 = Conv2D (256, (3, 3), padding="same",
activation="relu", dilation rate=6) (inputs)

y 3x3 rl2 = Conv2D(256, (3, 3), padding="same",
activation="relu", dilation rate=12) (inputs)

y 3x3 rl8 = Conv2D(256, (3, 3), padding="same",
activation="relu", dilation rate=18) (inputs)

y_pool = GlobalAveragePooling2D () (inputs)
y pool = tf.reshape(y pool, [-1, 1, 1, shape[-11])

y pool = Conv2D (256, 1, padding="same",
activation="relu") (y_pool)

y _pool = UpSampling2D((shape[l], shape[2]),
interpolation="bilinear") (y_pool)

y = concatenate([y 1x1, y 3x3 r6, y 3x3 rl2, y 3x3 rl8§,
y _pooll])

y = Conv2D (256, (1, 1), padding="same", activation="relu") (y)

return y

def build deeplabv3plus (input shape) :
#ENCODER

backbone = ResNet50 (weights="imagenet", include top=False,
input shape=input shape)

high level features =
backbone.get layer("conv4 block6 out").output (output stride=4)

low level features =
backbone.get layer ("conv2 block3 out") .output

#ASPP

x = ASPP(high level features)

#DECODER
# Upsampling output ASPP
x = UpSampling2D(size=(4, 4), interpolation="bilinear") (x)

low level features = Conv2D (48, (1, 1), padding="same",
activation="relu") (low level features)

x = concatenate ([x, low level features])

X Conv2D (256, (3, 3), padding="same", activation="relu") (x)
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x = Conv2D (256, (3, 3), padding="same", activation="relu") (x)

# Final Upsampling

x = UpSampling2D(size=(4, 4), interpolation="bilinear") (x)

#Output Layer
outputs = Conv2D(1l, (1, 1), activation="sigmoid") (x)
model = Model (inputs=backbone.input, outputs=outputs)

return model
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