121



122

Appendix 1. Smart Contract User Struct Code

var User = {
secondaryWallet: ADDRESS,
isRegistered: BOOLEAN

}

var users = MAPPING(ADDRESS - > User)

Appendix 2. Smart Contract registerSecondaryWallet Function Code

function registerSecondaryWallet(secondaryAddress:
ADDRESS) {
if (secondaryAddress == ZERO_ADDRESS) {
throw "Invalid address"”
}
if (users[CALLER_ADDRESS].isRegistered == TRUE) {
throw "Adready. registered”

users[CALLER-JADDRESS].secondaryWallet =
secondaryAddress
users[CALLER_ADDRESS].isRegistered = TRUE

emit UserRegistered(CALLER_ADDRESS, secondaryAddress)

}

Appendix 3. Smart Contract authenticate Function Code

function authenticate(messageHash, v1, ri1, sl1, v2, r2, s2)
returns BOOLEAN {

var recoveredPrimary = RECOVER_ADDRESS(messageHash,
vl, rl, si1)

var recoveredSecondary = RECOVER_ADDRESS(messageHash,
v2, r2, s2)

var user_data = users[recoveredPrimary]

if (user_data.isRegistered == TRUE and
user_data.secondaryWallet == recoveredSecondary) {
return TRUE
} else {
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return FALSE

}

Appendix 4. Backend Database and Contract Configuration Code

// Initializes database connection pool and loads
blockchain configs

var DATABASE_POOL = CONNECT_TO_MYSQL_DB()

var RPC_URL = LOAD_ENV("RPC_URL")

var CONTRACT_ADDRESS = LOAD_ENV("CONTRACT_ADDRESS")

// Sets up Ethereum provider and smart contract instance
var ETHEREUM_PROVIDER = NEW. 3JSON_RPC_PROVIDER(RPC_URL)
var CONTRACT_ABI = [ /*#... contract function definitions
var SMART_CONTRACT_ INSTANCE =

NEW_CONTRACT (CGONTRACT_ADDRESS, CONTRACT_ ABI,
ETHEREUM_PROVIDER)

// HTTPS Configuration

var SECURE_CONNECTION = LOAD ENV("SECURE_CONNECTION") //
"true' or 'false'

var HTTPS_OPTIONS = LOAD_SSL_CERTIFICATES() // Loads key
and cert files

Appendix 5. Backend Registration Route Code

route POST / api / register {
// Extracts and validates email/password
var email = REQUEST.BODY.email
var password = REQUEST.BODY.password

// Validates input and checks if user already exists
if (email or password MISSING) {
return ERROR_400
}
if (USER_EXISTS IN DB(email)) {
return ERROR_409
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// Hashes password and saves new user to database
var hashedPassword = HASH_PASSWORD(password)
SAVE_USER_TO DB(email, hashedPassword)

return SUCCESS _201("User registered.")

}

Appendix 6. Backend Login Route Code

route POST / api / login {
// Extracts and validates email/password
var email = REQUEST.BODY.email
var password = REQUEST.BODY.password

// Finds user, comparesipassword, and checks wallet
registration

var user = FIND/ USER IN/ DB(email)

if (user NOT FOUND) {
return ERROR_404

}

if (NOT COMPARE_HASH(password, user.password)) {
return ERROR_401

// Check if wallets are registered; include primary
wallet address in JWT/;payload
if (user.primary wallet<address NOT SET or
user.secondary wallet address NOT SET) {
return ERROR_403 NEEDS_SETUP(user.email)

// Creates and returns JWT token
var token = CREATE_JWT({
id: user.id,
email: user.email,
primaryWalletAddress: user.primary_wallet_address
})
return SUCCESS 200("Login successful.", token,
user.wallet info)

}
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Appendix 7. Backend Save Wallets Route

route POST / api / save - wallets {
// Extracts user email and wallet addresses
var email = REQUEST.BODY.email
var primaryAddress = REQUEST.BODY.primaryAddress
var secondaryAddress = REQUEST.BODY.secondaryAddress

// Validates input
if (email or addresses MISSING) {
return ERROR_400

// Updates user's wallet addresses in the database
var result = UPDATE_USER WALLETS IN DB(email,
primaryAddress, secondaryAddress)

if (result.AFFECTED ROWS == @) {
return ERROR_404("User /not found.™)

return SUCCESS_200("Wallets saved.")

}

Appendix 8. Backend Challenge Message Route Pseudocode

route GET / api / challenge™- message(PROTECTED BY
AUTH_TOKEN) {

// Generates a unique timestamp-based challenge
message

var message = "Login challenge at " +
CURRENT_TIMESTAMP()

return SUCCESS_200({
message: message

})




Appendix 9. Backend Nonce Generation Route
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route GET / api / nonce /: primaryAddress {
var primaryAddress = REQUEST.PARAMS.primaryAddress
if (primaryAddress IS NOT VALID ETHEREUM_ ADDRESS) {
return ERROR_400

// Generates a new random UUID nonce
var newNonce = GENERATE_UUID()

// Stores/updates the nonce in the database for the
primary address

SAVE_NONCE_TO_DB{(primaryAddress, newNonce)

return SUCCESS 200 ({
noncé: newNonce

})

}

Appendix 10. Backend 2FA Verification Route

route POST / api / verify - 2 fa {
var originalMessage = REQUEST.BODY.originalMessage
var sigl = REQUEST.BODY.Sigl
var sig2 = REQUEST.BODY.sig2

if (any_fields_missing) {
return ERROR_400

var messageHash = HASH_MESSAGE (originalMessage)
var [vl, rl, s1] = SPLIT_SIGNATURE(sigl)

var [v2, r2, s2] = SPLIT_SIGNATURE(sig2)

var isAuthenticated =

rl, si1, v2, r2, s2)

if (isAuthenticated) {

SMART_CONTRACT_INSTANCE.CALL_AUTHENTICATE(messageHash, v1,
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return SUCCESS 200("2FA successful!")
} else {
return SUCCESS_200("2FA failed.")

}

Appendix 11. Frontend App Component State Management and Navigation

component App {
var screenState = 'login'
var sessionState = {
isAuthenticated: FALSE,
user: NULL,
token: NULL

function nayvigateTo(newScreen): {
screenState = newScreen

}
render {
if (screenState == 'register') {
return RegisterPage(...)
} else'if (screenState == 'setup-wallets') {
return SetupWalletsPage(...)
} else if|(screenState == '2fa') {
return TwoFactorAuthApp(...)
} else if (screenState == 'home') {
return HomePage(...)
} else {
return LoginPage(...)
}
}

}

Appendix 12. Frontend LoginPage Component Pseudocode

component LoginPage(onProceedTo2FA, onNavigateToRegister,
onNeedsWalletSetup) {
var emailState =
var passwordState =
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function handlelLogin(event) {
PREVENT_DEFAULT(event) try {
var response = FETCH_POST(BACKEND URL +
'/login', {
emailState,
passwordState
}) if (response.status != OK) {
if (response.needsWalletSetup) {
CALL
onNeedsWalletSetup(response.email)
} else {
throw response.error
}
} else {
CALL onProceedTo2FA(response.user,
response.token)
}
} catch (error) {
[* =, display error ... */ }
}
render {
FAINY (A Al

}

Appendix 13. Frontend RegisterPage Component Pseudocode

component RegisterPage(onNavigateTologin,
onRegistrationSuccess) {

var emailState = "'

var passwordState = "'

function handleRegister(event) {
PREVENT_DEFAULT(event)
try {
var response = FETCH_POST(BACKEND_URL +
'/register’', {
emailState,
passwordState

})

if (response.status != 0OK) {
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throw response.error

}
SET_TIMEOUT (function() {

CALL onRegistrationSuccess(emailState)

}, 1500)
} catch (error) {
/* ... display error ... */ }
}
render {
/* ... registration form UI ... */ }

}

Appendix 14. Frontend SetupWalletsPage Component

component SetupWalletsPage(email, onSetupComplete,
onBackToLogin) A{

var primapryAddressState = NULL

var secondaryAddressInputState = '/

var onChainStatusState = NULL

function ‘connectPrimaryWallet() {
primaryAddressState = CONNECTED METAMASK_ADDRESS
CALL checkRegistrationStatus(primaryAddressState,
primaryProviderState)

}

function handleFinalizeSetup() {
if (onChainStatusState.isRegistered) {
CALL saveWalletsToDB(primaryAddressState,
onChainStatusState.secondaryWallet)
} else {
var tx = AWAIT
CONTRACT_INSTANCE.registerSecondaryWallet(secondaryAddress
InputState)
AWAIT tx.WAIT_FOR_CONFIRMATION()
CALL saveWalletsToDB(primaryAddressState,
secondaryAddressInputState)

}
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function saveWalletsToDB(primary, secondary) {
var response = FETCH_POST(BACKEND_URL + '/save-
wallets', {

email,
primaryAddress: primary,
secondaryAddress: secondary

})

if (response.status != OK) {
throw response.error

}

SET_TIMEOUT(CALL onSetupComplete(), 2000)
}
render {

/* ... wallet setup UL'.L.. */%}

}

Appendix 15. Frontend-TwoFactorAuthApp Component

component TwoFactorAuthApp(user,  token, on2FAComplete,
onBackToLogin) A
var primaryAddressState = NULL
var secondaryWalletAddressState = NULL
var loginMessageState = "'
var siglStatei= ""
var sig2State = "'
function handleInitiatelLogin() {
var challenge = AWAIT FETCH_CHALLENGE_MESSAGE ()
loginMessageState = challenge.message
siglState = AWAIT
SIGN_MESSAGE (PRIMARY WALLET SIGNER, loginMessageState)
AWAIT
CONNECT_SECONDARY_WALLET_AND_SIGN(loginMessageState)

}

function
CONNECT_SECONDARY_WALLET_AND_SIGN(messageToSign) {
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sig2State = AWAIT
SIGN_MESSAGE (SECONDARY_WALLET_SIGNER, messageToSign)

}

function handleVerify2FA(msg, sl1, s2_val, pAddr) {
var response = FETCH_POST(BACKEND URL + '/verify-
2fa', {
msg,
s1,
s2_val,
pAddr
}, AUTH_HEADER: token)
if (response.status != 0OK) {
throw response.message
}
if (response.success) {
CALL on2FAComplete()
} else {
[* =, display failure ...=*/ }

render {
/* ... 2FA setup and login UI ... */ }

The complete code can be found on the GitHub repository linked below,
but you'll need to contact the author directly to get the access for the full
implemented code.

Link: https://github.com/chiknwy/DualWalletAuth
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