121

122

Appendix 1. Smart Contract User Struct Code

var User = {
secondaryWallet: ADDRESS,
isRegistered: BOOLEAN

}

var users = MAPPING(ADDRESS - > User)

Appendix 2. Smart Contract registerSecondaryWallet Function Code

function registerSecondaryWallet(secondaryAddress:
ADDRESS) {
if (secondaryAddress == ZERO_ADDRESS) {
throw "Invalid address"”
}
if (users[CALLER_ADDRESS].isRegistered == TRUE) {
throw "Adready. registered”

users[CALLER-JADDRESS].secondaryWallet =
secondaryAddress
users[CALLER_ADDRESS].isRegistered = TRUE

emit UserRegistered(CALLER_ADDRESS, secondaryAddress)

}

Appendix 3. Smart Contract authenticate Function Code

function authenticate(messageHash, v1, ri1, sl1, v2, r2, s2)
returns BOOLEAN {

var recoveredPrimary = RECOVER_ADDRESS(messageHash,
vl, rl, si1)

var recoveredSecondary = RECOVER_ADDRESS(messageHash,
v2, r2, s2)

var user_data = users[recoveredPrimary]

if (user_data.isRegistered == TRUE and
user_data.secondaryWallet == recoveredSecondary) {
return TRUE
} else {

123

return FALSE

}

Appendix 4. Backend Database and Contract Configuration Code

// Initializes database connection pool and loads
blockchain configs

var DATABASE_POOL = CONNECT_TO_MYSQL_DB()

var RPC_URL = LOAD_ENV("RPC_URL")

var CONTRACT_ADDRESS = LOAD_ENV("CONTRACT_ADDRESS")

// Sets up Ethereum provider and smart contract instance
var ETHEREUM_PROVIDER = NEW. 3JSON_RPC_PROVIDER(RPC_URL)
var CONTRACT_ABI = [/*#... contract function definitions
var SMART_CONTRACT_ INSTANCE =

NEW_CONTRACT (CGONTRACT_ADDRESS, CONTRACT_ ABI,
ETHEREUM_PROVIDER)

// HTTPS Configuration

var SECURE_CONNECTION = LOAD ENV("SECURE_CONNECTION") //
"true' or 'false'

var HTTPS_OPTIONS = LOAD_SSL_CERTIFICATES() // Loads key
and cert files

Appendix 5. Backend Registration Route Code

route POST / api / register {
// Extracts and validates email/password
var email = REQUEST.BODY.email
var password = REQUEST.BODY.password

// Validates input and checks if user already exists
if (email or password MISSING) {
return ERROR_400
}
if (USER_EXISTS IN DB(email)) {
return ERROR_409

124

// Hashes password and saves new user to database
var hashedPassword = HASH_PASSWORD(password)
SAVE_USER_TO DB(email, hashedPassword)

return SUCCESS _201("User registered.")

}

Appendix 6. Backend Login Route Code

route POST / api / login {
// Extracts and validates email/password
var email = REQUEST.BODY.email
var password = REQUEST.BODY.password

// Finds user, comparesipassword, and checks wallet
registration

var user = FIND/ USER IN/ DB(email)

if (user NOT FOUND) {
return ERROR_404

}

if (NOT COMPARE_HASH(password, user.password)) {
return ERROR_401

// Check if wallets are registered; include primary
wallet address in JWT/;payload
if (user.primary wallet<address NOT SET or
user.secondary wallet address NOT SET) {
return ERROR_403 NEEDS_SETUP(user.email)

// Creates and returns JWT token
var token = CREATE_JWT({
id: user.id,
email: user.email,
primaryWalletAddress: user.primary_wallet_address
})
return SUCCESS 200("Login successful.", token,
user.wallet info)

}

125

Appendix 7. Backend Save Wallets Route

route POST / api / save - wallets {
// Extracts user email and wallet addresses
var email = REQUEST.BODY.email
var primaryAddress = REQUEST.BODY.primaryAddress
var secondaryAddress = REQUEST.BODY.secondaryAddress

// Validates input
if (email or addresses MISSING) {
return ERROR_400

// Updates user's wallet addresses in the database
var result = UPDATE_USER WALLETS IN DB(email,
primaryAddress, secondaryAddress)

if (result.AFFECTED ROWS == @) {
return ERROR_404("User /not found.™)

return SUCCESS_200("Wallets saved.")

}

Appendix 8. Backend Challenge Message Route Pseudocode

route GET / api / challenge™- message(PROTECTED BY
AUTH_TOKEN) {

// Generates a unique timestamp-based challenge
message

var message = "Login challenge at " +
CURRENT_TIMESTAMP()

return SUCCESS_200({
message: message

})

Appendix 9. Backend Nonce Generation Route

126

route GET / api / nonce /: primaryAddress {
var primaryAddress = REQUEST.PARAMS.primaryAddress
if (primaryAddress IS NOT VALID ETHEREUM_ ADDRESS) {
return ERROR_400

// Generates a new random UUID nonce
var newNonce = GENERATE_UUID()

// Stores/updates the nonce in the database for the
primary address

SAVE_NONCE_TO_DB{(primaryAddress, newNonce)

return SUCCESS 200 ({
noncé: newNonce

})

}

Appendix 10. Backend 2FA Verification Route

route POST / api / verify - 2 fa {
var originalMessage = REQUEST.BODY.originalMessage
var sigl = REQUEST.BODY.Sigl
var sig2 = REQUEST.BODY.sig2

if (any_fields_missing) {
return ERROR_400

var messageHash = HASH_MESSAGE (originalMessage)
var [vl, rl, s1] = SPLIT_SIGNATURE(sigl)

var [v2, r2, s2] = SPLIT_SIGNATURE(sig2)

var isAuthenticated =

rl, si1, v2, r2, s2)

if (isAuthenticated) {

SMART_CONTRACT_INSTANCE.CALL_AUTHENTICATE(messageHash, v1,

127

return SUCCESS 200("2FA successful!")
} else {
return SUCCESS_200("2FA failed.")

}

Appendix 11. Frontend App Component State Management and Navigation

component App {
var screenState = 'login'
var sessionState = {
isAuthenticated: FALSE,
user: NULL,
token: NULL

function nayvigateTo(newScreen): {
screenState = newScreen

}
render {
if (screenState == 'register') {
return RegisterPage(...)
} else'if (screenState == 'setup-wallets') {
return SetupWalletsPage(...)
} else if|(screenState == '2fa') {
return TwoFactorAuthApp(...)
} else if (screenState == 'home') {
return HomePage(...)
} else {
return LoginPage(...)
}
}

}

Appendix 12. Frontend LoginPage Component Pseudocode

component LoginPage(onProceedTo2FA, onNavigateToRegister,
onNeedsWalletSetup) {
var emailState =
var passwordState =

128

function handlelLogin(event) {
PREVENT_DEFAULT(event) try {
var response = FETCH_POST(BACKEND URL +
'/login', {
emailState,
passwordState
}) if (response.status != OK) {
if (response.needsWalletSetup) {
CALL
onNeedsWalletSetup(response.email)
} else {
throw response.error
}
} else {
CALL onProceedTo2FA(response.user,
response.token)
}
} catch (error) {
[* =, display error ... */ }
}
render {
FAINY (A Al

}

Appendix 13. Frontend RegisterPage Component Pseudocode

component RegisterPage(onNavigateTologin,
onRegistrationSuccess) {

var emailState = "'

var passwordState = "'

function handleRegister(event) {
PREVENT_DEFAULT(event)
try {
var response = FETCH_POST(BACKEND_URL +
'/register’', {
emailState,
passwordState

})

if (response.status != 0OK) {

129

throw response.error

}
SET_TIMEOUT (function() {

CALL onRegistrationSuccess(emailState)

}, 1500)
} catch (error) {
/* ... display error ... */ }
}
render {
/* ... registration form UI ... */ }

}

Appendix 14. Frontend SetupWalletsPage Component

component SetupWalletsPage(email, onSetupComplete,
onBackToLogin) A{

var primapryAddressState = NULL

var secondaryAddressInputState = '/

var onChainStatusState = NULL

function ‘connectPrimaryWallet() {
primaryAddressState = CONNECTED METAMASK_ADDRESS
CALL checkRegistrationStatus(primaryAddressState,
primaryProviderState)

}

function handleFinalizeSetup() {
if (onChainStatusState.isRegistered) {
CALL saveWalletsToDB(primaryAddressState,
onChainStatusState.secondaryWallet)
} else {
var tx = AWAIT
CONTRACT_INSTANCE.registerSecondaryWallet(secondaryAddress
InputState)
AWAIT tx.WAIT_FOR_CONFIRMATION()
CALL saveWalletsToDB(primaryAddressState,
secondaryAddressInputState)

}

130

function saveWalletsToDB(primary, secondary) {
var response = FETCH_POST(BACKEND_URL + '/save-
wallets', {

email,
primaryAddress: primary,
secondaryAddress: secondary

})

if (response.status != OK) {
throw response.error

}

SET_TIMEOUT(CALL onSetupComplete(), 2000)
}
render {

/* ... wallet setup UL'.L.. */%}

}

Appendix 15. Frontend-TwoFactorAuthApp Component

component TwoFactorAuthApp(user, token, on2FAComplete,
onBackToLogin) A
var primaryAddressState = NULL
var secondaryWalletAddressState = NULL
var loginMessageState = "'
var siglStatei= ""
var sig2State = "'
function handleInitiatelLogin() {
var challenge = AWAIT FETCH_CHALLENGE_MESSAGE ()
loginMessageState = challenge.message
siglState = AWAIT
SIGN_MESSAGE (PRIMARY WALLET SIGNER, loginMessageState)
AWAIT
CONNECT_SECONDARY_WALLET_AND_SIGN(loginMessageState)

}

function
CONNECT_SECONDARY_WALLET_AND_SIGN(messageToSign) {

131

sig2State = AWAIT
SIGN_MESSAGE (SECONDARY_WALLET_SIGNER, messageToSign)

}

function handleVerify2FA(msg, sl1, s2_val, pAddr) {
var response = FETCH_POST(BACKEND URL + '/verify-
2fa', {
msg,
s1,
s2_val,
pAddr
}, AUTH_HEADER: token)
if (response.status != 0OK) {
throw response.message
}
if (response.success) {
CALL on2FAComplete()
} else {
[* =, display failure ...=*/ }

render {
/* ... 2FA setup and login UI ... */ }

The complete code can be found on the GitHub repository linked below,
but you'll need to contact the author directly to get the access for the full
implemented code.

Link: https://github.com/chiknwy/DualWalletAuth

132

BIOGRAPHY

Chiko Gita Satria was born on April 19, 2004, in
Jakarta, Indonesia. He currently lives in his hometown,
South Jakarta. He completed his elementary education

at SDN 09 Jakarta, graduating in 2016, and continued

his studies at SMPN 178 Jakarta, graduating in 2019.
He then attended SMAN 87 Jakarta for his senior high
school education, where he concentrated in
Mathematics and Science. After graduating from high school, he aimed to continue
his studies at a university and was accepted into Universitas Pendidikan Ganesha,
where he chose Computer Science as his major. He has been an active student at
the university since 2022 and remains enrolled at the time of writing this

undergraduate thesis.

