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Appendix  1. Smart Contract User Struct Code 

var User = { 

    secondaryWallet: ADDRESS, 

    isRegistered: BOOLEAN 

} 

 

var users = MAPPING(ADDRESS - > User) 

Appendix  2. Smart Contract registerSecondaryWallet Function Code 

function registerSecondaryWallet(secondaryAddress: 

ADDRESS) { 

    if (secondaryAddress == ZERO_ADDRESS) { 

        throw "Invalid address" 

    } 

    if (users[CALLER_ADDRESS].isRegistered == TRUE) { 

        throw "Already registered" 

    } 

 

    users[CALLER_ADDRESS].secondaryWallet = 

secondaryAddress 

    users[CALLER_ADDRESS].isRegistered = TRUE 

 

    emit UserRegistered(CALLER_ADDRESS, secondaryAddress) 

} 

Appendix  3. Smart Contract authenticate Function Code 

function authenticate(messageHash, v1, r1, s1, v2, r2, s2) 

returns BOOLEAN { 

    var recoveredPrimary = RECOVER_ADDRESS(messageHash, 

v1, r1, s1) 

    var recoveredSecondary = RECOVER_ADDRESS(messageHash, 

v2, r2, s2) 

 

    var user_data = users[recoveredPrimary] 

 

    if (user_data.isRegistered == TRUE and 

user_data.secondaryWallet == recoveredSecondary) { 

        return TRUE 

    } else { 
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        return FALSE 

    } 

} 

Appendix  4. Backend Database and Contract Configuration Code 

// Initializes database connection pool and loads 

blockchain configs 

var DATABASE_POOL = CONNECT_TO_MYSQL_DB() 

var RPC_URL = LOAD_ENV("RPC_URL") 

var CONTRACT_ADDRESS = LOAD_ENV("CONTRACT_ADDRESS") 

 

// Sets up Ethereum provider and smart contract instance 

var ETHEREUM_PROVIDER = NEW_JSON_RPC_PROVIDER(RPC_URL) 

var CONTRACT_ABI = [ /* ... contract function definitions 

... */ ] 

var SMART_CONTRACT_INSTANCE = 

NEW_CONTRACT(CONTRACT_ADDRESS, CONTRACT_ABI, 

ETHEREUM_PROVIDER) 

 

// HTTPS Configuration 

var SECURE_CONNECTION = LOAD_ENV("SECURE_CONNECTION") // 

'true' or 'false' 

var HTTPS_OPTIONS = LOAD_SSL_CERTIFICATES() // Loads key 

and cert files 

Appendix  5. Backend Registration Route Code 

route POST / api / register { 

    // Extracts and validates email/password 

    var email = REQUEST.BODY.email 

    var password = REQUEST.BODY.password 

 

    // Validates input and checks if user already exists 

    if (email or password MISSING) { 

        return ERROR_400 

    } 

    if (USER_EXISTS_IN_DB(email)) { 

        return ERROR_409 

    } 
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    // Hashes password and saves new user to database 

    var hashedPassword = HASH_PASSWORD(password) 

    SAVE_USER_TO_DB(email, hashedPassword) 

 

    return SUCCESS_201("User registered.") 

} 

Appendix  6. Backend Login Route Code 

route POST / api / login { 

    // Extracts and validates email/password 

    var email = REQUEST.BODY.email 

    var password = REQUEST.BODY.password 

 

    // Finds user, compares password, and checks wallet 

registration 

    var user = FIND_USER_IN_DB(email) 

    if (user NOT FOUND) { 

        return ERROR_404 

    } 

    if (NOT COMPARE_HASH(password, user.password)) { 

        return ERROR_401 

    } 

 

    // Check if wallets are registered; include primary 

wallet address in JWT payload 

    if (user.primary_wallet_address NOT SET or 

user.secondary_wallet_address NOT SET) { 

        return ERROR_403_NEEDS_SETUP(user.email) 

    } 

 

    // Creates and returns JWT token 

    var token = CREATE_JWT({ 

        id: user.id, 

        email: user.email, 

        primaryWalletAddress: user.primary_wallet_address 

    }) 

    return SUCCESS_200("Login successful.", token, 

user.wallet_info) 

} 
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Appendix  7. Backend Save Wallets Route 

route POST / api / save - wallets { 

    // Extracts user email and wallet addresses 

    var email = REQUEST.BODY.email 

    var primaryAddress = REQUEST.BODY.primaryAddress 

    var secondaryAddress = REQUEST.BODY.secondaryAddress 

 

    // Validates input 

    if (email or addresses MISSING) { 

        return ERROR_400 

    } 

 

    // Updates user's wallet addresses in the database 

    var result = UPDATE_USER_WALLETS_IN_DB(email, 

primaryAddress, secondaryAddress) 

 

    if (result.AFFECTED_ROWS == 0) { 

        return ERROR_404("User not found.") 

    } 

 

    return SUCCESS_200("Wallets saved.") 

} 

Appendix  8. Backend Challenge Message Route Pseudocode 

route GET / api / challenge - message(PROTECTED BY 

AUTH_TOKEN) { 

    // Generates a unique timestamp-based challenge 

message 

    var message = "Login challenge at " + 

CURRENT_TIMESTAMP() 

 

    return SUCCESS_200({ 

        message: message 

    }) 

} 
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Appendix  9.  Backend Nonce Generation Route 

route GET / api / nonce /: primaryAddress { 

    var primaryAddress = REQUEST.PARAMS.primaryAddress 

    if (primaryAddress IS NOT VALID_ETHEREUM_ADDRESS) { 

        return ERROR_400 

    } 

 

    // Generates a new random UUID nonce 

    var newNonce = GENERATE_UUID() 

 

    // Stores/updates the nonce in the database for the 

primary address 

    SAVE_NONCE_TO_DB(primaryAddress, newNonce) 

 

    return SUCCESS_200({ 

        nonce: newNonce 

    }) 

} 

Appendix  10. Backend 2FA Verification Route  

route POST / api / verify - 2 fa { 

    var originalMessage = REQUEST.BODY.originalMessage 

    var sig1 = REQUEST.BODY.sig1 

    var sig2 = REQUEST.BODY.sig2 

 

    if (any_fields_missing) { 

        return ERROR_400 

    } 

 

    var messageHash = HASH_MESSAGE(originalMessage) 

    var [v1, r1, s1] = SPLIT_SIGNATURE(sig1) 

    var [v2, r2, s2] = SPLIT_SIGNATURE(sig2) 

    var isAuthenticated = 

SMART_CONTRACT_INSTANCE.CALL_AUTHENTICATE(messageHash, v1, 

r1, s1, v2, r2, s2) 

 

    if (isAuthenticated) { 
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        return SUCCESS_200("2FA successful!") 

    } else { 

        return SUCCESS_200("2FA failed.") 

    } 

} 

Appendix  11. Frontend App Component State Management and Navigation 

component App { 

    var screenState = 'login' 

    var sessionState = { 

        isAuthenticated: FALSE, 

        user: NULL, 

        token: NULL 

    } 

 

    function navigateTo(newScreen) { 

        screenState = newScreen 

    } 

 

    render { 

        if (screenState == 'register') { 

            return RegisterPage(...) 

        } else if (screenState == 'setup-wallets') { 

            return SetupWalletsPage(...) 

        } else if (screenState == '2fa') { 

            return TwoFactorAuthApp(...) 

        } else if (screenState == 'home') { 

            return HomePage(...) 

        } else { 

            return LoginPage(...) 

        } 

    } 

} 

Appendix  12. Frontend LoginPage Component Pseudocode 

component LoginPage(onProceedTo2FA, onNavigateToRegister, 

onNeedsWalletSetup) { 

    var emailState = '' 

    var passwordState = '' 
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    function handleLogin(event) { 

        PREVENT_DEFAULT(event) try { 

            var response = FETCH_POST(BACKEND_URL + 

'/login', { 

                emailState, 

                passwordState 

            }) if (response.status != OK) { 

                if (response.needsWalletSetup) { 

                    CALL 

onNeedsWalletSetup(response.email) 

                } else { 

                    throw response.error 

                } 

            } else { 

                CALL onProceedTo2FA(response.user, 

response.token) 

            } 

        } catch (error) { 

            /* ... display error ... */ } 

    } 

    render { 

        /* ... login form UI ... */ } 

} 

Appendix  13. Frontend RegisterPage Component Pseudocode 

component RegisterPage(onNavigateToLogin, 

onRegistrationSuccess) { 

    var emailState = '' 

    var passwordState = '' 

 

    function handleRegister(event) { 

        PREVENT_DEFAULT(event) 

        try { 

            var response = FETCH_POST(BACKEND_URL + 

'/register', { 

                emailState, 

                passwordState 

            }) 

            if (response.status != OK) { 
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                throw response.error 

            } 

            SET_TIMEOUT(function() { 

                CALL onRegistrationSuccess(emailState) 

            }, 1500) 

        } catch (error) { 

            /* ... display error ... */ } 

    } 

 

    render { 

        /* ... registration form UI ... */ } 

} 

Appendix  14. Frontend SetupWalletsPage Component 

component SetupWalletsPage(email, onSetupComplete, 

onBackToLogin) { 

    var primaryAddressState = NULL 

    var secondaryAddressInputState = '' 

    var onChainStatusState = NULL 

 

    function connectPrimaryWallet() { 

        primaryAddressState = CONNECTED_METAMASK_ADDRESS 

        CALL checkRegistrationStatus(primaryAddressState, 

primaryProviderState) 

    } 

 

    function handleFinalizeSetup() { 

        if (onChainStatusState.isRegistered) { 

            CALL saveWalletsToDB(primaryAddressState, 

onChainStatusState.secondaryWallet) 

        } else { 

            var tx = AWAIT 

CONTRACT_INSTANCE.registerSecondaryWallet(secondaryAddress

InputState) 

            AWAIT tx.WAIT_FOR_CONFIRMATION() 

            CALL saveWalletsToDB(primaryAddressState, 

secondaryAddressInputState) 

        } 

    } 
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    function saveWalletsToDB(primary, secondary) { 

        var response = FETCH_POST(BACKEND_URL + '/save-

wallets', { 

            email, 

            primaryAddress: primary, 

            secondaryAddress: secondary 

        }) 

        if (response.status != OK) { 

            throw response.error 

        } 

        SET_TIMEOUT(CALL onSetupComplete(), 2000) 

    } 

 

    render { 

        /* ... wallet setup UI ... */ } 

} 

Appendix  15. Frontend TwoFactorAuthApp Component 

component TwoFactorAuthApp(user, token, on2FAComplete, 

onBackToLogin) { 

    var primaryAddressState = NULL 

    var secondaryWalletAddressState = NULL 

    var loginMessageState = '' 

    var sig1State = '' 

    var sig2State = '' 

 

    function handleInitiateLogin() { 

        var challenge = AWAIT FETCH_CHALLENGE_MESSAGE() 

        loginMessageState = challenge.message 

        sig1State = AWAIT 

SIGN_MESSAGE(PRIMARY_WALLET_SIGNER, loginMessageState) 

        AWAIT 

CONNECT_SECONDARY_WALLET_AND_SIGN(loginMessageState) 

    } 

 

    function 

CONNECT_SECONDARY_WALLET_AND_SIGN(messageToSign) { 
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        sig2State = AWAIT 

SIGN_MESSAGE(SECONDARY_WALLET_SIGNER, messageToSign) 

    } 

 

    function handleVerify2FA(msg, s1, s2_val, pAddr) { 

        var response = FETCH_POST(BACKEND_URL + '/verify-

2fa', { 

            msg, 

            s1, 

            s2_val, 

            pAddr 

        }, AUTH_HEADER: token) 

        if (response.status != OK) { 

            throw response.message 

        } 

        if (response.success) { 

            CALL on2FAComplete() 

        } else { 

            /* ... display failure ... */ } 

    } 

 

    render { 

        /* ... 2FA setup and login UI ... */ } 

} 

The complete code can be found on the GitHub repository linked below, 

but you'll need to contact the author directly to get the access for the full 

implemented code. 

Link: https://github.com/chiknwy/DualWalletAuth
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