

121

APPENDICES

122

Appendix 1. Smart Contract User Struct Code

var User = {

 secondaryWallet: ADDRESS,

 isRegistered: BOOLEAN

}

var users = MAPPING(ADDRESS - > User)

Appendix 2. Smart Contract registerSecondaryWallet Function Code

function registerSecondaryWallet(secondaryAddress:

ADDRESS) {

 if (secondaryAddress == ZERO_ADDRESS) {

 throw "Invalid address"

 }

 if (users[CALLER_ADDRESS].isRegistered == TRUE) {

 throw "Already registered"

 }

 users[CALLER_ADDRESS].secondaryWallet =

secondaryAddress

 users[CALLER_ADDRESS].isRegistered = TRUE

 emit UserRegistered(CALLER_ADDRESS, secondaryAddress)

}

Appendix 3. Smart Contract authenticate Function Code

function authenticate(messageHash, v1, r1, s1, v2, r2, s2)

returns BOOLEAN {

 var recoveredPrimary = RECOVER_ADDRESS(messageHash,

v1, r1, s1)

 var recoveredSecondary = RECOVER_ADDRESS(messageHash,

v2, r2, s2)

 var user_data = users[recoveredPrimary]

 if (user_data.isRegistered == TRUE and

user_data.secondaryWallet == recoveredSecondary) {

 return TRUE

 } else {

123

 return FALSE

 }

}

Appendix 4. Backend Database and Contract Configuration Code

// Initializes database connection pool and loads

blockchain configs

var DATABASE_POOL = CONNECT_TO_MYSQL_DB()

var RPC_URL = LOAD_ENV("RPC_URL")

var CONTRACT_ADDRESS = LOAD_ENV("CONTRACT_ADDRESS")

// Sets up Ethereum provider and smart contract instance

var ETHEREUM_PROVIDER = NEW_JSON_RPC_PROVIDER(RPC_URL)

var CONTRACT_ABI = [/* ... contract function definitions

... */]

var SMART_CONTRACT_INSTANCE =

NEW_CONTRACT(CONTRACT_ADDRESS, CONTRACT_ABI,

ETHEREUM_PROVIDER)

// HTTPS Configuration

var SECURE_CONNECTION = LOAD_ENV("SECURE_CONNECTION") //

'true' or 'false'

var HTTPS_OPTIONS = LOAD_SSL_CERTIFICATES() // Loads key

and cert files

Appendix 5. Backend Registration Route Code

route POST / api / register {

 // Extracts and validates email/password

 var email = REQUEST.BODY.email

 var password = REQUEST.BODY.password

 // Validates input and checks if user already exists

 if (email or password MISSING) {

 return ERROR_400

 }

 if (USER_EXISTS_IN_DB(email)) {

 return ERROR_409

 }

124

 // Hashes password and saves new user to database

 var hashedPassword = HASH_PASSWORD(password)

 SAVE_USER_TO_DB(email, hashedPassword)

 return SUCCESS_201("User registered.")

}

Appendix 6. Backend Login Route Code

route POST / api / login {

 // Extracts and validates email/password

 var email = REQUEST.BODY.email

 var password = REQUEST.BODY.password

 // Finds user, compares password, and checks wallet

registration

 var user = FIND_USER_IN_DB(email)

 if (user NOT FOUND) {

 return ERROR_404

 }

 if (NOT COMPARE_HASH(password, user.password)) {

 return ERROR_401

 }

 // Check if wallets are registered; include primary

wallet address in JWT payload

 if (user.primary_wallet_address NOT SET or

user.secondary_wallet_address NOT SET) {

 return ERROR_403_NEEDS_SETUP(user.email)

 }

 // Creates and returns JWT token

 var token = CREATE_JWT({

 id: user.id,

 email: user.email,

 primaryWalletAddress: user.primary_wallet_address

 })

 return SUCCESS_200("Login successful.", token,

user.wallet_info)

}

125

Appendix 7. Backend Save Wallets Route

route POST / api / save - wallets {

 // Extracts user email and wallet addresses

 var email = REQUEST.BODY.email

 var primaryAddress = REQUEST.BODY.primaryAddress

 var secondaryAddress = REQUEST.BODY.secondaryAddress

 // Validates input

 if (email or addresses MISSING) {

 return ERROR_400

 }

 // Updates user's wallet addresses in the database

 var result = UPDATE_USER_WALLETS_IN_DB(email,

primaryAddress, secondaryAddress)

 if (result.AFFECTED_ROWS == 0) {

 return ERROR_404("User not found.")

 }

 return SUCCESS_200("Wallets saved.")

}

Appendix 8. Backend Challenge Message Route Pseudocode

route GET / api / challenge - message(PROTECTED BY

AUTH_TOKEN) {

 // Generates a unique timestamp-based challenge

message

 var message = "Login challenge at " +

CURRENT_TIMESTAMP()

 return SUCCESS_200({

 message: message

 })

}

126

Appendix 9. Backend Nonce Generation Route

route GET / api / nonce /: primaryAddress {

 var primaryAddress = REQUEST.PARAMS.primaryAddress

 if (primaryAddress IS NOT VALID_ETHEREUM_ADDRESS) {

 return ERROR_400

 }

 // Generates a new random UUID nonce

 var newNonce = GENERATE_UUID()

 // Stores/updates the nonce in the database for the

primary address

 SAVE_NONCE_TO_DB(primaryAddress, newNonce)

 return SUCCESS_200({

 nonce: newNonce

 })

}

Appendix 10. Backend 2FA Verification Route

route POST / api / verify - 2 fa {

 var originalMessage = REQUEST.BODY.originalMessage

 var sig1 = REQUEST.BODY.sig1

 var sig2 = REQUEST.BODY.sig2

 if (any_fields_missing) {

 return ERROR_400

 }

 var messageHash = HASH_MESSAGE(originalMessage)

 var [v1, r1, s1] = SPLIT_SIGNATURE(sig1)

 var [v2, r2, s2] = SPLIT_SIGNATURE(sig2)

 var isAuthenticated =

SMART_CONTRACT_INSTANCE.CALL_AUTHENTICATE(messageHash, v1,

r1, s1, v2, r2, s2)

 if (isAuthenticated) {

127

 return SUCCESS_200("2FA successful!")

 } else {

 return SUCCESS_200("2FA failed.")

 }

}

Appendix 11. Frontend App Component State Management and Navigation

component App {

 var screenState = 'login'

 var sessionState = {

 isAuthenticated: FALSE,

 user: NULL,

 token: NULL

 }

 function navigateTo(newScreen) {

 screenState = newScreen

 }

 render {

 if (screenState == 'register') {

 return RegisterPage(...)

 } else if (screenState == 'setup-wallets') {

 return SetupWalletsPage(...)

 } else if (screenState == '2fa') {

 return TwoFactorAuthApp(...)

 } else if (screenState == 'home') {

 return HomePage(...)

 } else {

 return LoginPage(...)

 }

 }

}

Appendix 12. Frontend LoginPage Component Pseudocode

component LoginPage(onProceedTo2FA, onNavigateToRegister,

onNeedsWalletSetup) {

 var emailState = ''

 var passwordState = ''

128

 function handleLogin(event) {

 PREVENT_DEFAULT(event) try {

 var response = FETCH_POST(BACKEND_URL +

'/login', {

 emailState,

 passwordState

 }) if (response.status != OK) {

 if (response.needsWalletSetup) {

 CALL

onNeedsWalletSetup(response.email)

 } else {

 throw response.error

 }

 } else {

 CALL onProceedTo2FA(response.user,

response.token)

 }

 } catch (error) {

 /* ... display error ... */ }

 }

 render {

 /* ... login form UI ... */ }

}

Appendix 13. Frontend RegisterPage Component Pseudocode

component RegisterPage(onNavigateToLogin,

onRegistrationSuccess) {

 var emailState = ''

 var passwordState = ''

 function handleRegister(event) {

 PREVENT_DEFAULT(event)

 try {

 var response = FETCH_POST(BACKEND_URL +

'/register', {

 emailState,

 passwordState

 })

 if (response.status != OK) {

129

 throw response.error

 }

 SET_TIMEOUT(function() {

 CALL onRegistrationSuccess(emailState)

 }, 1500)

 } catch (error) {

 /* ... display error ... */ }

 }

 render {

 /* ... registration form UI ... */ }

}

Appendix 14. Frontend SetupWalletsPage Component

component SetupWalletsPage(email, onSetupComplete,

onBackToLogin) {

 var primaryAddressState = NULL

 var secondaryAddressInputState = ''

 var onChainStatusState = NULL

 function connectPrimaryWallet() {

 primaryAddressState = CONNECTED_METAMASK_ADDRESS

 CALL checkRegistrationStatus(primaryAddressState,

primaryProviderState)

 }

 function handleFinalizeSetup() {

 if (onChainStatusState.isRegistered) {

 CALL saveWalletsToDB(primaryAddressState,

onChainStatusState.secondaryWallet)

 } else {

 var tx = AWAIT

CONTRACT_INSTANCE.registerSecondaryWallet(secondaryAddress

InputState)

 AWAIT tx.WAIT_FOR_CONFIRMATION()

 CALL saveWalletsToDB(primaryAddressState,

secondaryAddressInputState)

 }

 }

130

 function saveWalletsToDB(primary, secondary) {

 var response = FETCH_POST(BACKEND_URL + '/save-

wallets', {

 email,

 primaryAddress: primary,

 secondaryAddress: secondary

 })

 if (response.status != OK) {

 throw response.error

 }

 SET_TIMEOUT(CALL onSetupComplete(), 2000)

 }

 render {

 /* ... wallet setup UI ... */ }

}

Appendix 15. Frontend TwoFactorAuthApp Component

component TwoFactorAuthApp(user, token, on2FAComplete,

onBackToLogin) {

 var primaryAddressState = NULL

 var secondaryWalletAddressState = NULL

 var loginMessageState = ''

 var sig1State = ''

 var sig2State = ''

 function handleInitiateLogin() {

 var challenge = AWAIT FETCH_CHALLENGE_MESSAGE()

 loginMessageState = challenge.message

 sig1State = AWAIT

SIGN_MESSAGE(PRIMARY_WALLET_SIGNER, loginMessageState)

 AWAIT

CONNECT_SECONDARY_WALLET_AND_SIGN(loginMessageState)

 }

 function

CONNECT_SECONDARY_WALLET_AND_SIGN(messageToSign) {

131

 sig2State = AWAIT

SIGN_MESSAGE(SECONDARY_WALLET_SIGNER, messageToSign)

 }

 function handleVerify2FA(msg, s1, s2_val, pAddr) {

 var response = FETCH_POST(BACKEND_URL + '/verify-

2fa', {

 msg,

 s1,

 s2_val,

 pAddr

 }, AUTH_HEADER: token)

 if (response.status != OK) {

 throw response.message

 }

 if (response.success) {

 CALL on2FAComplete()

 } else {

 /* ... display failure ... */ }

 }

 render {

 /* ... 2FA setup and login UI ... */ }

}

The complete code can be found on the GitHub repository linked below,

but you'll need to contact the author directly to get the access for the full

implemented code.

Link: https://github.com/chiknwy/DualWalletAuth

132

BIOGRAPHY

Chiko Gita Satria was born on April 19, 2004, in

Jakarta, Indonesia. He currently lives in his hometown,

South Jakarta. He completed his elementary education

at SDN 09 Jakarta, graduating in 2016, and continued

his studies at SMPN 178 Jakarta, graduating in 2019.

He then attended SMAN 87 Jakarta for his senior high

school education, where he concentrated in

Mathematics and Science. After graduating from high school, he aimed to continue

his studies at a university and was accepted into Universitas Pendidikan Ganesha,

where he chose Computer Science as his major. He has been an active student at

the university since 2022 and remains enrolled at the time of writing this

undergraduate thesis.

