LAMPIRAN
Lampiran 1 Wawancara Terkait Majeg di Klungkung

N PEMBANGUNAN
PK. 15.00 WITA DATASET

Pertemuan dengan pemajeg
dari Tusan, Klungkung

65

Lampiran 2 Proses mengambil gambar dataset

JONI PEMBANGUNAN
PK. 15.00 WITA DATASET

2025

Proses mengambil gambar
untuk dataset yang dilakukan
di desa Tusan, Klungkung

66

Lampiran 3 Pembangunan Dataset

AGUSTUS
PK. 09.00 WITA

Proses lablling dataset bersama
pemajeg untuk mendapatkan
hasil sesuai ahlinya

67

PEMBANGUNAN
DATASET

2025

\

QNN R

Lampiran 4 Stratafikasi Code

1 import os

2 import shutil

3 import numpy as np

4 import pandas as pd

5 from tqdm import tqdm

6 from iterstrat.ml_stratifiers import MultilabelStratifiedShuffleSplit
7

8

9

(]

===== KONFIGURASI =====
dataset_path = “image" # folder dataset asal

images_dir = os.path.join(dataset_path, "images")

11 labels_dir = os.path.join(dataset_path, "labels")

12 classes_txt = os.path,join(dataset_path, "classes.txt")
13 output_dir = “dataset_split_2" # folder hasil split

14 train_ratio, val_ratio, test_ratio = 0.8, 0.1, 9.1 # 80/10/10

16 # Baca nama class
17 with open(classes_txt) as f:

18 class_names = [c.strip() for c in f.readlines()]
19 num_classes = len(class_names)
20

21 # Baca semua file label
22 label_files = [f for f in os.listdir(labels_dir) if f.endswith(“.txt")]

24 # Hitung jumlah box per image per class
25 records = [}
26 for 1f in label_files:

27 counts = [0]*num_classes

28 with open(os.path.join(labels_dir, 1f)) as f:
29 for line in f:

30 cls_id = int(line.split()(0])

31 counts[cls_id] += 1

32 records.append([1f.replace(".txt","")] + counts)
33

34 df = pd.DataFrame(records, columns=["image"] + class_names)
35 X = df["image"].values
36 y = dflclass_names].values

38 # ===== Split Data Stratified
39 # Train/Test

40 msss1 = MultilabelStratifiedShuffleSplit(n_splits=1, test_size=test_ratio, random_state=42)
41 train_idx, test_idx = next(msssl.split(X, y))

43 X_train_full, X_test = X[train_idx], X[test_idx]
44 y_train_full, y_test = y[train_idx], y[test_idx]

46 # Train/Valid
47 msss2 = MultilabelStratifiedShuffleSplit(n_splits=1,

48 test_size=val_ratio/(train_ratio+val_ratio), random_state=42)

49 train_idx2, val_idx = next(msss2.split(X_train_full, y_train_full))

50

51 X_train, X_val = X_train_fullltrain_idx2], X_train_fulllval_idx]

52

53 splits = {

54 “train“: X_train,

55 "valid": X_val,

56 "test": X_test

57 }

58

59 # ===== Copy File ke Folder Bary =====

60 for split_name, images in splits.items():

61 for sub in ["images”, "labels"]:

62 os.makedirs(os.path.join(output_dir, split_name, sub), exist_ok=True)
63

64 for img_id in tqdm(images, desc=f"Copying {split_name}"):

65 img_file = img_id + ".jpg" # ganti sesuai format image jika perlu
66 Wl file = img_id + “.txt"

67

68 src_img = os.path.join(images_dir, img_file)

69 src_lbl = os.path.join(labels_dir, 1bl_file)

70 dst_img = os.path.join(output_dir, split_name, “images", img_file)
71 dst_lbl = os.path.join(output_dir, split_name, “labels", 1bl_file)
72

73 if os.path.exists(src_img):

74 shutil.copy2(src_img, dst_img)

75 if os.path.exists(src_lbl):

76 shutil.copy2(src_lbl, dst_lbl)

77

78 print("@ Dataset berhasil dipisah ke folder:", output_dir)

9

80 # ===== Statistik =====

81 print("\n=== 4| Statistik Dataset Split
82 for split_name, images in splits.items():

83 img_count = len(images)

84 class_counts = [@]+num_classes

85 total_boxes =

86

87 for img_id in images:

88 1bl_path = os.path. join(labels_dir, img_id + ".txt")
89 with open(1bl_path) as f:

90 for line in f:

91 cls_id = int(line.split()[0])

92 class_countsfcls_id] += 1

93 ‘total_boxes #= 1

94

95 print(f"\n[{split_name.upper()}]")

96 print(f* - Jumlah gambar + {img_count}")

97 print(f" - Total bounding box : {total_boxes}")

98 for cname, ccount in zip(class_names, class_counts):
99 print(f" + {cname:<15} : {ccount}")

100

68

Lampiran 5 Convert One Class

o0 0
1 import os
2 import shutil
3 import random
4
5 # Path asal
6 dataset_path = "image" # folder dataset asal
7 images_dir = os.path.join(dataset_path, "images")
8 labels_dir = os.path.join(dataset_path, "labels")
9
10 # Path hasil (format sesuai YOLO)
11 output_dir = "Dataset_3" # ganti nama jadi "Data"
12 train_ratio, val_ratio, test_ratio = 0.8, 0.1, 0.1
13
14 # Buat folder output dengan struktur YOLO
15 for split in ["train", "valid", "test"]:
16 os.makedirs(os.path.join(output_dir, split, "images"), exist_ok=True)
17 os.makedirs(os.path.join(output_dir, split, "labels"), exist_ok=True)
18
19 # Baca semua file gambar (asumsi jpg/png/jpeg)
20 all_images = [f for f in os.listdir(images_dir) if f.endswith(('.jpg', '.png', '.jpeg'))]
21 random.shuffle(all_images)
22
23 # Hitung jumlah untuk tiap split
24 n_total = len(all_images)
25 n_train = int(n_total * train_ratio)
26 n_val = int(n_total * val_ratio)
27 n_test = n_total - n_train - n_val
28
29 splits = {
30 “train": all_images[:n_train],
31 "valid": all_images[n_train:n_train+n_vall,
32 "test": all_images[n_train+n_val:]
a3 ¥
34
35 # Fungsi untuk ubah label: semua class jadi @ (kelapa)
36 def convert_label(label_path, out_path):
37 new_lines = []
38 with open(label_path, "r") as f:
39 for line in f:
40 parts = line.strip().split()
41 if len(parts) >= 5:
42 parts[@] = "@" # ubah class id ke @
43 new_lines.append(" ".join(parts) + "\n")
44 with open(out_path, "w") as f:
45 f.writelines(new_lines)
46
47 # Copy file sesuai split
48 for split, images in splits.items():
49 for img_file in images:
50 # copy image
51 src_img = os.path.join(images_dir, img_file)
52 dst_img = os.path.join(output_dir, split, "images", img_file)
53 shutil.copy(src_img, dst_img)
54
55 # copy & convert label
56 label_file = os.path.splitext(img_file)[0] + ".txt"
57 src_label = os.path.join(labels_dir, label_file)
58 dst_label = os.path.join(output_dir, split, "labels", label_file)
59
60 if os.path.exists(src_label):
61 convert_label(src_label, dst_label)
62
63 # Buat classes.txt baru (hanya 1 class: kelapa)
64 with open(os.path.join(output_dir, "classes.txt"), "w") as f:
65 f.write("kelapa\n")
66
67 print(f"Dataset berhasil dibuat di folder: {output_dir}")
68 print(f"Total gambar: {n_total} (train={n_train}, valid={n_val}, test={n_test})")
69

69

Lampiran 6 Crop Image Base On Class

o000
1 import os
2 import cv2
3
4 # === KONFIGURASI ===
5 dataset_path = "image" # folder utama dataset Roboflow
6 images_path = os.path.join(dataset_path, "images")
7 labels_path = os.path.join(dataset_path, "labels")
8 output_path = "cropped_dataset" # hasil crop per class
9 classes_file = os.path.join(dataset_path, "classes.txt")
10
11 # Baca nama kelas
12 with open(classes_file, "r") as f:
13 class_names = [line.strip() for line in f.readlines()]
14
15 os.makedirs(output_path, exist_ok=True)
16
17 # Loop semua label
18 for label_file in os.listdir(labels_path):
19 if not label_file.endswith(".txt"):
20 continue
23
22 image_name = os.path.splitext(label_file)[0] + ".jpg"
23 image_path = os.path.join(images_path, image_name)
24
25 if not os.path.exists(image_path):
26 print(f" [WARNING] Gambar {image_name} tidak ditemukan.")
27 continue
28
29 # Load image
30 img = cv2.imread(image_path)
31 h, w, _ = img.shape
32
33 # Baca setiap baris label (bounding box)
34 with open(os.path.join(labels_path, label_file), "r") as f:
35 for i, line in enumerate(f):
36 cls_id, x_c, y_c, bw, bh = map(float, line.strip().split())
37
38 # Konversi dari rasio YOLO ke pixel
39 x_c, y_c, bw, bh = x_c *w, y_c *x h, bw x w, bh x h
40 x1 = int(x_c - bw / 2)
41 yl = int(y_c - bh / 2)
42 x2 = int(x_c + bw / 2)
43 y2 = int(y_c + bh / 2)
44
45 # Pastikan tidak keluar batas
46 x1, y1 = max(0, x1), max(@, y1)
47 x2, y2 = min(w, x2), min(h, y2)
48
49 # Crop
50 crop_img = img[yl:y2, x1:x2]
51
52 # Buat folder sesuai class
53 class_name = class_names [int(cls_id)]
54 save_dir = os.path.join(output_path, class_name)
55 os.makedirs(save_dir, exist_ok=True)
56
57 # Simpan crop
58 save_path = os.path.join(save_dir, f"{os.path.splitext(image_name)[0]}_{i}.jpg")
59 cv2.imwrite(save_path, crop_img)
60
61 print(f"[SAVED] {save_path}")
62

70

Lampiran 7 Code Counting

e0e
1 @app.post("/analyze")
2 async def analyze_image(
3 file: UploadFile = File(...),
4 model: str = Form{DEFAULT_MODEL),
5 conf;: Optional[float] = Form(©.25),
6 iou: Optional[fleat] = Form(@.45),
7 max_det: Optionallint] = Form(10@),
8
9 “HReturn coconut counts and confidence for your frontend.
10
11 Response shape:
12 {
13 "young_coconuts": int,
14 “mature_coconuts": int,
15 “confidence": float
16 }
17 ann
18 try:
19 mdl = load_model(model)
20 except Exception as e:
21 raise HTTPException(status_code=400, detail=str(e))
22
23 content = await file.read()
24 try:
25 pil = Image.open{io.BytesIO(content)).convert("“RGB")
26 except Exception as e:
27 raise HTTPException(status_code=4@@, detail=f"Invalid image: {e}")
28
29 try:
3 results = mdl.predict(source=np.array{pil), conf=conf, iou=iou, max_det=max_det, verbose=False)
31 except Exception as e:
32 raise HTTPException(status_code=508, detail=f"Predict error: {e}")
33
34 res = results[@]
35 names = getattri{mdl, “names", {}) or {}
36
37 young = @
kL] mature = @
39 scores: List[float] = []
40
41 if hasattr(res, "boxes") and res.boxes is not None:
42 try:
43 confs = res.boxes.conf.cpul).numpy() if hasattr{res.boxes.conf, “cpu") else np.arraylres.boxes,conf)
44 clss = res.boxes.cls.cpul).numpy() if hasattr(res.boxes.cls, "cpu") else np.array(res.boxes.cls)
45 for s, ¢ in ziplconfs, clss):
46 scores.append(float(s})
47 cls_name = names.get(int(c), str{int(c))).lower()
48 if cls_name in (“kelapa_muda", "kelapa muda", "young_coconut”, "youngcoconut"):
49 young += 1
50 elif cls_name in (“kelapa_tua", "kelapa tua", "mature_coconut", “"maturecoconut"):
51 mature += 1
52 else:
53 # unknown class - ignore or handle as needed
54 pass
55 except Exception:
56 # if extraction fails, return zeros
57 young = B
58 mature = 0
59 scores = []
6@
61 confidence = round(max(scores) * 100, 2) if scores else 9.0
62
63 return JSONResponse({
64 "'young_coconuts™: young,
65 “mature_coconuts": mature,
66 “confidence": confidence,
67 H
68
69
70 if __name__ == "_main__":
71 import uvicorn
72 uvicorn,run("main:app"”, host="9.0.0.8", port=80080, reload=True)
73

71

Lampiran 8 Tabel Detail Arsitektur YOLOv11n

Block Layer Output Size | Kernel | Stride | Filters Description
Type Size
Input - 640x640x%3 - - - Gambar input
RGB
Backbone | Conv 320%320%x32 | 3x3 2 32 Konvolusi awal
dengan stride 2
Backbone | C2f Block | 320x320x64 | - - 64 Cross-stage
partial fused
(CSP varian)
Backbone | Conv 160x160x128 | 3x3 2 128 Downsampling
Backbone | C3k Block | 160x160x128 | - - 128 Residual block
dengan
bottleneck
Backbone | Conv 80x80%256 3x3 2 256 Downsampling
Backbone | SPPF 80x80x256 - - 256 Spatial Pyramid
Pooling - Fast
Neck C2PSA 80x80x256 - - 256 Partial Self-
Attention untuk
fusi fitur
Neck Upsample |-160%160x128 | - - 128 Upsampling
fitur resolusi
menengah
Head Detect(P3) .80%80% - - - Prediksi objek
skala kecil
Head Detect(P4) | 40x40x - - - Prediksi objek
skala sedang
Head Detect(PS) | 20x20x% - - - Prediksi objek
skala besar
Head DFL - - - - Distribution
Focal Loss
untuk regresi
box

72

Lampiran 9 Tabel Detail Arsitektur YOLOv11s

Block Layer Output Size | Kernel | Stride | Filters Description
Type Size
Input - 640x640x%3 - - - Gambar input
640x640 dengan
3 channel RGB
Backbone | Conv 320%320%x64 | 3x3 2 64 Konvolusi awal
dengan stride 2
Backbone | C3k2 320%320%x128 | - - 128 Blok C3k2
pertama
Backbone | Conv 160x160%256 | 3%3 2 256 Konvolusi
dengan stride 2
Backbone | C3k2 160x160%256 | - - 256 Blok C3k2
kedua
Backbone | Conv 80x80x512 3x3 2 512 Konvolusi
dengan stride 2
Backbone | C3k2 80x80%512 - - 512 Blok C3k2
ketiga
Backbone | Conv 40x40x1024 | 3%3 2 1024 Konvolusi
dengan stride 2
Backbone | SPPF 40%x40x1024" | - - 1024 | Spatial Pyramid
Pooling Fast
Backbone | C2PSA 40x40%x512 - - 512 Attention block
(PSA)
Neck Upsample~[z80x80x512 - - - Upsampling
Neck Concat 80%80x768 - - - Concatenate
feature maps
Neck C3k2 80x80x%256 - - 256 Blok C3k2
Neck Upsample | 160x160%256 | - - - Upsampling
Neck Concat 160x160x512 | - - - Concatenate
feature maps
Neck C3k2 160x160x128 | - - 128 Blok C3k2
Neck Conv + 80x80%256 3%3 2 256 Downsampling
Concat + merge
Neck C3k2 80x80%256 - - 256 Blok C3k2
Neck Conv + 40%x40%512 3x3 2 512 Downsampling
Concat + merge
Neck C3k2 40x40x512 - - 512 Blok C3k2
Head Detect - - - - Layer deteksi
(prediksi
bounding box &
klasifikasi)

73

Lampiran 10 Tabel Detail Arsitektur YOLOv11m

Block Layer Output Size | Kernel | Stride | Filters Description
Type Size
Input - 640x640x%3 - - - Gambar input
RGB
Backbone | Conv 320%320%x64 | 3%3 2 64 Konvolusi awal
dengan stride 2
Backbone | C2f Block | 320%x320%x128 | - - 128 Cross-stage
partial fused
(CSP varian)
Backbone | Conv 160x160%x256 | 33 2 256 Downsampling
Backbone | C3k2 160x160%256 | - - 256 Residual block
Block dengan
bottleneck (2x)
Backbone | Conv 80x80x512 3x3 2 512 Downsampling
Backbone | C3k2 80x80x512 - - 512 Residual block
Block dengan
bottleneck (2x)
Backbone | Conv 40x40x512 3x3 2 512 Downsampling
Backbone | C3k2 40x40x512 - - 512 Residual block
Block dengan
bottleneck (2x)
Backbone | Conv 20%x20x512 3x3 2 512 Downsampling
Backbone | C3k2 20%x20x512 - - 512 Residual block
Block dengan
bottleneck (2x)
Backbone | SPPF 20%20x512 - - 512 Spatial Pyramid
Pooling - Fast
Neck C2PSA 20x20x512 - - 512 Position-
Sensitive
Attention untuk
fusi fitur
Neck Upsample | 40x40%512 - x2 - Upsampling
fitur resolusi
tinggi
Neck Concat 40x40x1024 | - - - Penggabungan
fitur backbone
dan neck
Neck C3k2 40x40x512 - - 512 Residual block
Block setelah concat
Neck Upsample | 80x80x512 - x2 - Upsampling
fitur resolusi
menengah
Neck Concat 80x80x768 - - - Penggabungan
fitur backbone
dan neck
Neck C3k2 80x80%256 - - 256 Residual block
Block setelah concat
Neck Conv 40x40x512 3x3 2 512 Downsampling
Neck Concat 40x40x1024 | - - - PANet fusion

74

Neck C3k2 40x40%x512 - 512 Residual block
Block setelah concat
Neck Conv 20%20x512 3x3 512 Downsampling
Neck Concat 20x20x1024 | - - PANet fusion
Neck C3k2 20%x20%512 - 512 Residual block
Block setelah concat
Head Detect(P3) | 80x80 - - Prediksi objek
skala kecil
Head Detect(P4) | 40x40 - - Prediksi objek
skala sedang
Head Detect(P5) | 20x20 - - Prediksi objek
skala besar
Head DFL - - - Distribution
Focal Loss

untuk regresi
box

75

