LAMPIRAN

Lampiran 1. Riwayat Hidup

RIWAYAT HIDUP

Made Donita Maharani lahir di Singaraja pada 5
Desember 2002. Penulis lahir dari pasangan suami
istri Bapak Alm. I Gede Sudirtha dan Ibu Nyoman
Kartini. Penulis berkebangsaan Indonesia dan
beragama Hindu. Kini penulis beralamat di BTN

Griya Permai Blok B/12, Baktiseraga, Kabupaten

Buleleng, Provinsi Bali. Penulis menyelesaikan
pendidikan dasar di SD Laboratorium Undiksha
Singaraja dan lulus tahun 2015. Kemudian penulis
melanjutkan pendidikan di SMP N 1 Singaraja dan lulus tahun 2018. Pada tahun
2021, penulis lulus dart SMA N 1 Singaraja jurusan [lmu Pengetahuan Alam dan
melanjutkan ke studi (S1) di Universitas Pendidikan Ganesha dengan Program

Studi Sistem Informasi, Jurusan Teknik Informatika.

94

Lampiran 2. Surat Ketersediaan Pelabelan Data

KEMENTERIAN PENDIDIKAN TINGGI, SAINS,
DAN TEKNOLOGI
UNIVERSITAS PENDIDIKAN GANESHA
FAKULTAS TEKNIK DAN KEJURUAN

Jalan Udayana Nomor 11 Singaraja - Bali Kode Pos 81116
Telepon !03\62} 22570 Email: fikiwundiksha.ac.ad Laman: http://ftk undiksha ac.id

Nomor : 2902/UN48.11.1/DLO3.00/2025 Singaraja, 20 Oktober 2025

Perithal : Surat Permohonan Pengambilan Data

Yth. Kepala SMA Negeri 4 Singaraja
¢.q. Guru Bahasa Indonesia

di tempat

Dengan hormat, sehubungan dengan proses penyelesalan Tugas Akhir/Skripsi, maka melalui surat ini
kami mohon Bapak/Ibu berkenan memberikan data yang terkait dengan data yang dibutuhkan.

Adapun mahasiswa yang akan melakukan pengambilan data seperti tersebut di bawah ini:

Nama : Made Donita Maharan
NIM » 2115091065

Program Studi : Sistem Informasi
Jurusan : Teknik Informatika

Data yang dibutuhkan: Mengisi label Sentimen (Negatif dan Positif) pada komentar
vang ada di formulir vang telah diberikan.

Judul Penelitian : Perbandingan Kinerja Ekstraksi Fitur TF-IDF & BOW Dalam
Sentimen Analisis BPIS Kesehatan Dengan Algoritma
XGBoost.

Demikian kami sampaikan, atas perhatian dan kerjasamanya, dincapkan terima kasih.

a.n Dekan
Wakil Dekan Bidang Akademik,

Made Windu Antara Kesiman
NIP 198211112008121001

95

Lampiran 3. Sertifikat Pendidik

96

No. 0000062

I

e

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI
REPUBLIK INDONESIA

SERTIFIKAT PENDIDIK

Nomor: 0010482315620540
Berdasarkan Surat Keputusan Menteri Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia Nomor 46/E/0/2023
tanggal 10 Januari 2023 tentang ljin Pembukaan Program Studi Pendidikan Profesi Guru,
Rektor Universitas Pendidikan Ganesha menyatakan bahwa:
LUH PUTU YENI SUSTRIYANINGSIH
Nomor Induk Mahasiswa: 2274805117
lahir di Banjar pada tanggal dua bulan Mei tahun seribu sembilan ratus delapan puluh empat
telah memenuhi semua syarat penyelesaian Pendidikan Profesi Guru dan LULUS Uji Kompetensi Mahasiswa Pendidikan Profesi Guru.
Kepadanya diberikan sebutan profesi GURU (Gr.) Bahasa Indonesia
sesuai hak dan kewajiban yang melekat pada sebutan profesi tersebut.

Singaraja; 15 Agustus 2023
Rekto/rl,’ |

NIP 196702211993031002

001045201 50200053-0010482315620540-169331130¢

Lampiran 4. Surat Keterangan Validasi

97

KEMENTERIAN PENDIDIKAN TINGGI, SAINS,
DAN TEKNOLOGI
UNIVERSITAS PENDIDIKAN GANESHA
FAKULTAS TEKNIK DAN KEJURUAN

Jalan Udayana Nomor 11 Singaraja - Bali Kode Pos 81116
n (0362) 22570 Email: fik@undiksha.ac.id Laman: http:/fik undiksha ac.id

Tel

SURAT KETERANGAN VALIDASI
LABELING DATASET

Yang bertanda tangan di bawah ini:

Nama : Dra. Kadek Widhiasih
NIP : 196612311997022006
Menerangkan bahwa Mahasiswa Universitas Pendidikan Ganesha di bawah ini:
Nama : Made Donita Maharani
NIM : 2115091065
Prodi/Jurusan : Sistem Informasi/Teknik Informatika

Memang benar bahwa dataset yang sudah dilabeli telah divalidasi pada
tanggal 20 Oktober 2025. Demikian surat ketcrangan ini dibuat dengan

sebenarnya untuk dapat digunakan sebagaimana mestinya.

Singaraja, 20 Oktober 2025
Ahli pakar I1,

" 3

Dra.Kadek Widhiasih
NIP 19661231 1997022006

98

KEMENTERIAN PENDIDIKAN TINGGI, SAINS,
DAN TEKNOLOGI
UNIVERSITAS PENDIDIKAN GANESHA

FAKULTAS TEKNIK DAN KEJURUAN

Jalan Udayana Nomor 11 Singaraja - Bali Kode Pos 81116
Tel i - fk@undiksha.ac.id Laman: http:/ftk undiksha ac id

SURAT KETERANGAN VALIDASI
LABELING DATASET
Yang bertanda tangan di bawah ini:
Nama : Ni Nyoman Sartini, S.Pd
NIP : 199607272023212016
Menerangkan bahwa Mahasiswa Universitas Pendidikan Ganesha di bawah ini:
Nama : Made Donita Maharani
NIM : 2115091065

Prodi/Jurusan : Sistem Informasi/Teknik Informatika

Memang benar bahwa dataset yang sudah dilabeli telah divalidasi pada

tanggal 20 Oktober 2025. Demikian surat keterangan ini dibuat dengan

sebenarnya untuk dapat digunakan sebagaimana mestinya.

Singaraja, 20 Oktober 2025
hli pakar I,

- e

Ni Nyoman Sartini, S.Pd
NIP 199607272023212016

99

KEMENTERIAN PENDIDIKAN TINGGI, SAINS,
DAN TEKNOLOGI
UNIVERSITAS PENDIDIKAN GANESHA
FAKULTAS TEKNIK DAN KFEJURUAN
Jalan Udayana Nomor 11 Singaraja - Bali Kode Pos 81116

Tel 0362) 22570 Email: fik@undikshaac id Laman: http-/ftk undiksha acid

SURAT KETERANGAN VALIDASI
LABELING DATASET

Yang bertanda tangan di bawah ini:

Nama : Luh Putu Yeni Sustriyaningsih, S.Pd
NIP : 198405022023212016
Menerangkan bahwa Mahasiswa Universitas Pendidikan Ganesha di bawah ini:
Nama : Made Donita Maharani
NIM : 2115091065
Prodi/Jurusan : Sistem Informasi/Teknik Informatika

Memang benar bahwa dataset yang sudah dilabeli telah divalidasi pada
tanggal 20 Oktober 2025. Demikian surat keterangan ini dibuat dengan
sebenamnya untuk dapat digunakan sebagaimana mestinya.

Singaraja, 20 Oktober 2025
Ahli pakar III,

ni Sustriyaningsih, S.P
NIP 198405022023212016

100

Lampiran 5. Dokumentasi bersama Validator

T

o N o ¥ L
o sy ol il
LN e ¥ o)

L N

LU ‘,3%5, —
Sl L)
f‘ e \f? |)

101

Lampiran 6. Proses Scraping Data di Aplikasi X

!'sudo
!'sudo
!'sudo

lcurl

Masukkan Twitter Auth Token
twitter auth token = "TOKEN" # ganti dengan token masing-

masing

Install Node.js untuk tweet-harvest

repo.gpg.key | sudo gpg --dearmor -o
/etc/apt/keyrings/nodesource.gpg

INODE MAJOR=20 && echo "deb [signed-
by=/etc/apt/keyrings/nodesource.gpg]
https:

| sudo tee /etc/apt/sources.list.d/nodesource.list

!'sudo apt-get update -y

!'sudo apt-get install -y nodejs

'node -v

filename = "bpjs.csv" # nama file hasil scraping

search keyword = 'BPJS Kesehatan since:2021-01-01 until:2025-
07-31"

limit = 400 # jumlah maksimal tweet

apt-get update -y

apt-get install -y ca-certificates curl gnupg
mkdir -p /etc/apt/keyrings

-fsSL https://deb.nodesource.com/gpgkey/nodesource-

//deb.nodesource.com/node $NODE MAJOR.x nodistro main"

102

Jalankan tweet-harvest

'npx -y tweet-harvest@2.6.1 -o "{filename}" -s
"{search keyword}" --tab "LATEST" -1 {limit} --token
{twitter auth token}

import pandas as pd

file path = "/content/tweets-data/bpjs.csv" # path lengkap

df = pd.read csv(file path, delimiter=",")
print ("Jumlah kolom awal:", df.shape[l])

print ("Nama kolom tersedia:", df.columns.tolist())

=== Deteksi otomatis nama kolom teks ===
text column = None
for col in ["full text", "content", "text", "tweet"]:
if col in df.columns:
text column = col
break

if text column is None:

raise ValueError ("/A\ Tidak ditemukan kolom teks

(full text/content/text/tweet) di CSV")

print ("(4) Kolom teks terdeteksi:", text column)

=== 0. Install & Import Library ===

'pip install transformers pandas

import pandas as pd

from transformers import pipeline

=== 1. Load model deteksi bahasa ===
detector = pipeline("text-classification",

model="alexneakameni/language detection")

=== 2. Baca file CSV hasil scraping/bersih ===
file path = "/content/tweets-data/bpjs.csv" # ganti
file

df = pd.read csv(file path)

sesuai

103

print ("Jumlah tweet awal:", len(df))

=== 3. Tentukan kolom teks (cek otomatis) ===
text column = None
for col in ["full text", "content", "text", "tweet"]:
if col in df.columns:
text column = col
break

if text column is None:

raise ValueError ("A Tidak ditemukan kolom teks di CSV")

=== 4. Deteksi bahasa setiap tweet ===
def detect lang(text):
try:
result = detector (str(text) [:500]) [0] # batasi 500
karakter biar cepat

return result["label"], result["score"]

except:
return "unknown", 0.0
df [["language", "lang score"]] = df[text column].apply (lambda

x: pd.Series(detect lang(x)))

=== 5. Tampilkan distribusi bahasa ===
print ("\nDistribusi bahasa yang terdeteksi:")

print (df ["language"].value counts())

=== 6. Filter hanya bahasa Indonesia ===
df id = df[df["language"].str.contains ("ind",
case=False)] .copy()

print ("\nJumlah tweet berbahasa Indonesia:", len(df id))

=== 7. Pilih hanya kolom 'created_at' dan kolom teks ===
kolom akhir = []
if "created at" in df id.columns:

kolom akhir.append("created at")

kolom akhir.append(text column)

df final = df id[kolom akhir + ["language",

"lang score"]].copy ()

104

(V) === 8. Simpan hasil filter ===
df final.to csv("bpjsk clean id.csv", index=False,

encoding="utf-8-sig")
print ("\n[] File akhir disimpan sebagai: buruk_clean_id.csv")

(
print ("Kolom yang disimpan:", df final.columns.tolist())
print ("\nPreview 5 baris pertama:")

(

print (df final.head())

=== 0. Import Library ===
import pandas as pd
import re

from transformers import pipeline

=== 1. Load CSV hasil deteksi bahasa ===
file path = "/content/bpjsk clean id.csv"
df = pd.read csv(file path)

text column = "full text"
if text column not in df.columns:

raise ValueError (f"Kolom '{text column}' tidak

ditemukan!")
=== 2. Filter hanya Bahasa Indonesia ===
df id = df[df["language"].str.contains ("ind", case=False,

na=False)] .copy()
print ("(¥) Jumlah tweet bahasa Indonesia:", len (df _id))

=== 3. Preprocessing text ===
def preprocess text (text):
text = str(text).lower ()
text = re.sub(r"http\S+|www\S+|https\sS+", "", text) #
hapus link
text = re.sub(r"@\w+", "', text)
hapus mention
text = re.sub(r"["a-z\s]", "", text)
hapus simbol/angka

text = re.sub(r"\s+", , text).strip() #

normalisasi spasi

105

return text

df id[text column] =
df id[text column].apply (preprocess text)

=== 4. Filter RT dan reply ===
df id = df id[~df id[text column].str.startswith(("rt",),
na=False)].copy()

print (") Setelah filter RT/reply:", len(df id))

=== 5. Zero-shot classification ===

classifier = pipeline("zero-shot-classification™,
model="joeddav/xlm-roberta-large-xnli")

candidate labels = ["komentar masyarakat", "berita atau
promosi"]

batch size = 32

Keyword regex lebih spesifik
pattern berita =
r"\b (berita|pengumuman |dirut|official|jurnalis|promosi|press

release|siaran pers|diumumkan oleh) \b"

def cek keyword berita (tweet):

return bool (re.search (pattern berita, tweet))

Fungsi untuk label tweet
def label tweet (tweet, res):
max score = max(res["scores"])

max label = res["labels"][res["scores"].index (max_ score)]

Keyword kuat - otomatis berita/promosi
if cek keyword berita (tweet):
return "berita atau promosi"
Skor classifier sangat yakin & berita/promosi

elif max label == "berita atau promosi" and max_ score >=

return "berita atau promosi"
Tweet panjang (>30 kata) cenderung berita/promosi
elif len(tweet.split()) > 30 and max label == "komentar

masyarakat":

106

return "berita atau promosi"
else:

return "komentar masyarakat"

all labels = []
for 1 in range (0, len(df id), batch size):
batch = df id[text column].iloc[i:it+batch size].tolist()

results = classifier (batch, candidate labels)

for tweet, res in zip(batch, results):

all labels.append(label tweet (tweet, res))

df id["klasifikasi"] = all labels

=== 6. Pisahkan hasil ===

df komentar = df id[df id["klasifikasi"] == "komentar
masyarakat"]

df berita iklan = df id[df id["klasifikasi"] == "berita atau
promosi"]

=== 7. Simpan hasil akhir ===

df komentar.to csv("tweet komentar.csv'", index=False,
encoding="utf-8-sig")
df berita iklan.to csv("tweet berita iklan.csv", index=False,

encoding="utf-8-sig")

print ("\n HASIL AKHIR:")

print("C) Jumlah komentar masyarakat:", len(df komentar))
print (" Jumlah berita/promosi:", len(df berita iklan))
print ("\n File disimpan sebagai:")

print (" tweet_komentar.csv")

print (" tweet_berita_iklan.csv")

107

Lampiran 7. Proses Preprocessing

=== 1. Cleansing ===
import pandas as pd
import re

from google.colab import files

Upload file awal

print ("Silakan upload file labeled paling fix.xls...")
uploaded = files.upload()

file path = list (uploaded.keys()) [0]

df = pd.read excel(file path)

Fungsi cleansing

def cleansing(text):

text = str (text)

text = re.sub(r"http\S+|www\S+", "", text)
text = re.sub(r"["a-zA-Z\s]", " ", text)
text = re.sub(r"\s+", " ", text).strip()

return text
df['cleansing'] = df['ULASAN'].apply(cleansing)

Simpan hasil cleansing, tetap sertakan kolom label
df [['ULASAN', 'cleansing', '"LABEL']].to csv('/content/cleansing

.csv', index=False)

print ("(¥) Cleansing selesai. Hasil disimpan di cleansing.csv")

Tampilkan hasil
display(df[['ULASAN', 'cleansing']].head(5))

=== 2. Case Folding ===

import pandas as pd

1. Baca hasil cleansing

df = pd.read csv('/content/cleansing.csv')

2. Tambah kolom case folding

df['case folding'] = df['cleansing'].str.lower ()

108

3. Simpan hasil case folding (bawa cleansing + case folding
+ LABEL)
df[['cleansing', 'case folding', 'LABEL']].to csv('/content/cas

e folding.csv', index=False)
print ("[¥) Case folding selesai. Hasil disimpan di case_folding.csv")

Tampilkan hasil
display(df[['cleansing', 'case folding']].head(5))

=== 3. Tokenizing ===
import pandas as pd
import nltk

from nltk.tokenize import word tokenize

Download resource tokenizer NLTK
nltk.download ('punkt")
nltk.download ('punkt tab')

=== 1. Baca file case folding.csv ===

df = pd.read csv('/content/case folding.csv"')

=== 2. Tokenizing ===
df['tokenizing'] = df['case folding'].apply(lambda x:

word tokenize (str(x)))

=== 3. Simpan hasil tokenizing ===
df[['case folding', 'tokenizing',
'"LABEL']].to csv('/content/tokenizing.csv', index=False)

print ("(¥) Tokenizing selesai. Hasil disimpan di tokenizing.csv")

=== 4. Tampilkan hasil ===
df[['case folding', 'tokenizing']].head(5)
=== 4. Stopword Removal ===

import pandas as pd
from Sastrawi.StopWordRemover.StopWordRemoverFactory import
StopWordRemoverFactory

import ast

109

1. Baca hasil tokenizing

df = pd.read csv('/content/tokenizing.csv')

2. Pastikan kolom tokenizing berupa list

df['tokenizing'] = df['tokenizing'].apply(ast.literal eval)

3. Ambil daftar stopword dari Sastrawi
stop factory = StopWordRemoverFactory ()
stopwords = set(stop factory.get stop words())

4. Fungsi hapus stopword
def remove stopwords (tokens):

return [word for word in tokens if word not in stopwords]

5. Terapkan fungsi ke dataset
df ['stopword removal'] =

df['tokenizing'] .apply (remove stopwords)

6. Simpan hasil stopword removal (bawa tokenizing +
stopword removal + label)
df[['tokenizing', 'stopword removal', 'LABEL']].to csv('/conten

t/stopword_removal.csv', index=False)

print ("[¥) Stopword removal selesai. Hasil disimpan di stopword_removal.csv")

Tampilkan hasil (tanpa label, cukup 5 data)
display(df[['tokenizing', 'stopword removal']].head(5))

=== 5. NORMALISASI ===
import pandas as pd

import ast

1. Baca hasil STOPWORD REMOVAL (sudah ada kolom LABEL di
dalamnya)

df = pd.read csv('/content/stopword removal.csv')

df ['stopword removal'] =

df ['stopword removal'].apply(ast.literal eval)

2. Ambil kamus alay dari GitHub

url alay =

110

"https://raw.githubusercontent.com/nasalsabila/kamus-
alay/master/colloquial-indonesian-lexicon.csv"

alay df = pd.read csv(url alay)

3. Buat dictionary slang -> formal

slang dict = dict(zip(alay df['slang'], alay df['formal']))

4. Fungsi normalisasi
def normalize tokens (tokens):
return [slang dict.get(word.lower(), word) for word in

tokens]

5. Terapkan normalisasi ke dataset
df ['normalisasi'] =

df ['stopword removal'].apply(normalize tokens)

6. Simpan hasil normalisasi (tetap bawa kolom LABEL asli)
df[['stopword removal', 'normalisasi',

"LABEL']].to csv('/content/normalisasi.csv', index=False)

print (") NORMALISASI selesai. Hasil disimpan di normalisasi.csv")

Tampilkan hasil

display(df[['stopword removal', 'normalisasi']].head(5))

=== 6. STEMMING ===
import pandas as pd
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory

import ast

=== 1. Baca file hasil normalisasi (sudah ada kolom LABEL)
Pastikan file ada di path yang benar

df = pd.read csv('/content/normalisasi.csv')

Pastikan kolom 'normalisasi' berisi list (jika masih
string, ubah)
def convert to list(x):

try:

return ast.literal eval(x) if isinstance(x, str) else

111

except:
return []
df['normalisasi'] = df['normalisasi'].apply(convert to list)
=== 2. Buat stemmer ===
stemmer = StemmerFactory () .create stemmer ()
=== 3. Fungsi stemming ===

def stemming (tokens) :
return [stemmer.stem(word) for word in tokens if

isinstance (word, str)]

=== 4. Terapkan stemming pada setiap baris ===

df ['stemming'] = df['normalisasi'].apply (stemming)

=== 5. Simpan hasil stemming + LABEL ===
df[['normalisasi', 'stemming',

"LABEL']].to csv('/content/stemming.csv', index=False)

print (") Stemming selesai. Hasil akhir disimpan di 'stemming.csv™)

=== 6. Tampilkan hasil ===

df[['normalisasi’', 'stemming']].head(5)

112

Lampiran 8. Proses TF-IDF (Term Frequency—Inverse Document Frequency)

import pandas as pd
from google.colab import files

from sklearn.feature extraction.text import TfidfVectorizer

1. Upload file CSV hasil stemming

print ("Silakan upload file stemming.csv...")
uploaded = files.upload()

file path = list (uploaded.keys()) [0]

2. Baca file
df = pd.read csv(file path)

3. Gabungkan token hasil stemming jadi string
df['stemming joined'] = df['stemming'].apply(lambda x:

".join(eval (x)) 1f isinstance(x, str) else "")

4. TF-IDF Vectorizer
tfidf = TfidfVectorizer ()
tfidf matrix = tfidf.fit transform(df['stemming joined'])

5. Konversi hasil TF-IDF ke DataFrame
tfidf df = pd.DataFrame (tfidf matrix.toarray (),

columns=tfidf.get feature names out())

6. Gabungkan dengan kolom label
tfidf labeled = pd.concat([df[['LABEL']], tfidf df], axis=1)

7. Simpan ke CSV
tfidf labeled.to csv("hasil tfidf.csv", index=False)

print ("(¢) TF-IDF berhasil disimpan ke 'hasil_tfidf.csv")

8. Tampilkan 10 kata dengan rata-rata TF-IDF tertinggi
mean tfidf = tfidf df.mean(axis=0)

top tfidf = mean tfidf.sort values(ascending=False)
print ("\n1l0 kata dengan rata-rata TF-IDF tertinggi:")
print (top tfidf.head(10))

113

Lampiran 9. Proses BoW (Bag of Words)

import pandas as pd

from google.colab import files

1. Upload file CSV hasil stemming

print ("Silakan upload file stemming.csv...")
uploaded = files.upload()

file path = list (uploaded.keys()) [0]

2. Baca file
df = pd.read csv(file path)

3. Gabungkan token hasil stemming jadi string
".join(eval(x)) if isinstance(x, str) else "")

4. Inisialisasi BoW (CountVectorizer)

bow = CountVectorizer ()

bow matrix = bow.fit transform(df['stemming joined'])
5. Konversi hasil BoW ke DataFrame

columns=bow.get feature names out())

6. Gabungkan dengan kolom label
bow labeled = pd.concat ([df[['LABEL']], bow df], axis=l)

7. Simpan ke CSV

bow labeled.to csv("/content/hasil bow.csv", index=False)

print ("(¢) BoW berhasil disimpan ke 'hasil_bow.csv")

8. Download file hasil

files.download (" /content/hasil bow.csv")
9. Tampilkan 10 kata yang paling sering muncul

print ("\nl1l0 kata yang paling sering muncul (BoW):")

print (word freqg.head(10))

from sklearn.feature extraction.text import CountVectorizer

df ['stemming joined'] = df['stemming'].apply(lambda x:

word freq = bow df.sum(axis=0) .sort values (ascending=False)

bow df = pd.DataFrame (bow matrix.toarray(),

114

Lampiran 10. Proses XGBoost + TF-IDF/BoW + scale post weight

=== 1. Import Library ===

import pandas as pd

import numpy as np

from sklearn.model selection import RandomizedSearchCV,
KFold, cross val predict

from sklearn.metrics import classification report,
confusion matrix, accuracy score, precision score,
recall score, fl score

from sklearn.preprocessing import LabelEncoder
import xgboost as xgb

import joblib

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

import random, os

=== 1A. Set seed agar hasil stabil ===
SEED = 42

np.random. seed (SEED)

random. seed (SEED)

os.environ['PYTHONHASHSEED'] = str (SEED)
=== 2. Load Data ===
df = pd.read csv("hasil tfidf.csv") # sesuaikan nama file

X = df.drop(columns=["'LABEL'])
y = df ['LABEL']

=== 3. Encode Label ===
le = LabelEncoder ()

y_encoded = le.fit transform(y)

=== 4. Hitung rasio kelas ===

neg = np.sum(y encoded == 0)

pos np.sum(y encoded == 1)

scale pos weight = neg / pos

print (f"Rasio kelas (negatif:positif) = {neg}:{pos}")
print (f"scale pos weight = {scale pos weight:.2f}")

=== 5. Definisi model dasar XGBoost ===

115

model = xgb.XGBClassifier(
objective="'binary:logistic',
eval metric='logloss',
random_ state=SEED,
use label encoder=False,

tree method='hist'

=== 6. Parameter untuk RandomizedSearch ===
param dist = {

'n estimators': [200, 300, 400],

'learning rate': [0.05, 0.08, 0.1],

'max _depth': [5, 7, 9],

'min child weight': [1, 3],

'gamma': [0, 0.05, 0.17,

'subsample': [0.8, 1.07,

'colsample bytree': [0.8, 1.0],

'scale pos weight': [scale pos weight, scale pos weight
1.1, scale pos weight * 0.9]
}

=== 7. Definisi 10-Fold Cross Validation ===
cv = KFold(n_splits=10, shuffle=True, random state=SEED)

=== 8. RandomizedSearchCV ===
rand search = RandomizedSearchCV (
estimator=model,
param distributions=param dist,
n iter=15,
scoring='f1l",
cv=cv,
n_jobs=-1,
verbose=2,

random_ state=SEED

=== 9. Jalankan pencarian parameter terbaik ===

print("\né7 Mulai proses tuning dengan 10-Fold Cross
Validation ...")

116

rand search.fit (X, y encoded)

print (") Selesai tuning.\n")

=== 10. Hasil parameter terbaik ===
print ("=== Parameter Terbaik dari RandomizedSearchCV ===")
print (rand search.best params)

print (f"Fl1-Score rata-rata CV terbaik:

{rand search.best score :.4f}")
=== 11. Evaluasi model dengan 10-Fold Cross Validation ===
best model = rand search.best estimator

y pred cv = cross_val predict(best model, X, y encoded,

cv=cv, n_jobs=-1)

cm = confusion matrix(y encoded, y pred cv)

tn, fp, fn, tp = cm.ravel ()

accuracy = accuracy score(y encoded, y pred cv)

precision = precision score(y encoded, y pred cv)

recall = recall score(y encoded, y pred cv)
fl = f1 score(y encoded, y pred cv)
print ("\n=== Hasil Evaluasi Model XGBoost (10-Fold CV) ===")
print (£f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")
print (f"Akurasi : {accuracy:.4f}")
print (f"Presisi : {precision:.4f}")
print (f"Recall : {recall:.4f}")
(

print (f"F1-Score: {fl:.4f}")

print ("\nClassification Report:")
print (classification report (y encoded, y pred cv,

target names=le.classes , digits=4))

=== 12. Visualisasi Confusion Matrix ===
plt.figure(figsize=(6,5))
sns.heatmap (cm, annot=True, fmt='d', cmap='Blues',
xticklabels=["Prediksi Negatif","Prediksi
Positif"],
yticklabels=["Aktual Negatif","Aktual Positif"])
plt.xlabel ("Prediksi")

117

plt.ylabel ("Aktual")

plt.title("Confusion Matrix - XGBoost (10-Fold Cross
Validation)")

plt.show ()

Lampiran 11. Proses XGBoost + TF-IDF/BoW + sample weight

=== 1. Import Library ===

import pandas as pd

import numpy as np

from sklearn.model selection import RandomizedSearchCV, KFold
from sklearn.metrics import classification report,
confusion matrix, accuracy score, precision score,
recall score, fl score

from sklearn.preprocessing import LabelEncoder
import xgboost as xgb

import joblib

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

import random, os

=== 1A. Set seed agar hasil stabil ===
SEED = 42

np.random. seed (SEED)

random. seed (SEED)

os.environ['PYTHONHASHSEED'] = str (SEED)
=== 2. Load Data ===
df = pd.read csv("hasil bow.csv") # sesuaikan nama file

X = df.drop(columns=['LABEL'])
y = df ['LABEL']

=== 3. Encode Label ===
le = LabelEncoder ()

y _encoded = le.fit transform(y)

=== 4. Hitung rasio kelas ===

neg = np.sum(y encoded == 0)

118

pos = np.sum(y_ encoded == 1)
ratio = neg / pos

print (f"Rasio kelas (negatif:positif) = {neg}:{pos}")

=== 5. Buat sample weight untuk tiap instance ===
Bobot kelas mayoritas = 1, minoritas = rasio
class weights = {0: 1, 1: ratio}

sample weights = np.array([class weights[class id] for

class id in y encoded])

=== 6. Definisi model dasar XGBoost ===
model = xgb.XGBClassifier (
objective='binary:logistic',
eval metric='logloss',
random_ state=SEED,
use label encoder=False,

tree method="hist'

=== 7. Parameter untuk RandomizedSearch ===
param dist = {
'n estimators': [200, 300, 400],
'learning rate': [0.05, 0.08, 0.1],
'max_depth': [5, 7, 9],
'min child weight': [1, 3],
'gamma': [0, 0.05, 0.17,
'subsample': [0.8, 1.0],
'colsample bytree': [0.8, 1.0]
}
=== 8. Definisi 10-Fold Cross Validation ===

cv = KFold(n_splits=10, shuffle=True, random state=SEED)

=== 9. RandomizedSearchCV dengan sample weight ===
rand search = RandomizedSearchCV (

estimator=model,

param distributions=param dist,

n_iter=15,

scoring='f1l",

cv=cv,

119

n_jobs=-1,
verbose=2,
random_ state=SEED

=== 10. Jalankan pencarian parameter terbaik ===

print("\nﬁ? Mulai proses tuning dengan 10-Fold Cross
Validation ...")

rand search.fit (X, y encoded, sample weight=sample weights)

print ("(¥) Selesai tuning.\n")

=== 11. Hasil parameter terbaik ===

print ("=== Parameter Terbaik dari RandomizedSearchCV ===")
print (rand search.best params)

print (f"F1-Score rata-rata CV terbaik:

{rand search.best score :.4f}")

=== 12. Evaluasi model dengan 10-Fold Cross Validation
(manual, support sample weight) ===

best model = rand search.best estimator

y pred cv = np.zeros_ like(y encoded)

print ("\n&’ Mulai evaluasi dengan 10-Fold Cross Validation
(manual)...")
for fold, (train idx, test idx) in enumerate(cv.split(X), 1):

X train, X test

X.iloc[train idx], X.iloc[test idx]
y train, y test = y encoded[train idx],
y_encoded[test idx]

sample weight train = sample weights[train idx]
best model.fit (X train, y train,

sample weight=sample weight train)
y pred cv[test idx] = best model.predict (X test)
print (f"Fold {fold} selesai (¥]")

print (") Evaluasi selesai.\n")

=== 13. Hitung metrik evaluasi ===

120

cm = confusion matrix(y encoded, y pred cv)

tn, fp, fn, tp = cm.ravel ()

accuracy = accuracy score(y encoded, y pred cv)

precision = precision score(y encoded, y pred cv)

recall = recall score(y encoded, y pred cv)
fl = f1 score(y encoded, y pred cv)
print ("=== Hasil Evaluasi Model XGBoost (10-Fold CV dengan

sample weight) ===")
print (f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

print (£f"Akurasi : {accuracy:.4f}")
print (f"Recall : {recall:.4f}"™)

(
(
print (f"Presisi : {precision:.4f}")
(
print (f"Fl1-Score: {fl:.4f}")

print ("\n" + classification report(y encoded, y pred cv,

target names=le.classes , digits=4))

=== 14. Visualisasi Confusion Matrix ===
plt.figure (figsize=(6,5))
sns.heatmap (cm, annot=True, fmt='d', cmap='Blues',
xticklabels=["Prediksi Negatif","Prediksi
Positif"],
yticklabels=["Aktual Negatif","Aktual Positif"])
plt.xlabel ("Prediksi")
plt.ylabel ("Aktual")
plt.title("Confusion Matrix - XGBoost (10-Fold CV,
sample weight)")
plt.show ()

Lampiran 12. Proses XGBoost + TF-IDF/BoW + sample weight + SMOTE

=== 1. Import Library ===
import pandas as pd
import numpy as np
from sklearn.model selection import RandomizedSearchCV,

StratifiedKFold

121

from sklearn.metrics import classification report,
confusion matrix, accuracy score, precision score,
recall score, fl score

from sklearn.preprocessing import LabelEncoder
from imblearn.over sampling import SMOTE

import xgboost as xgb

import joblib

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

import random, os

=== 1A. Set seed untuk reproduktifitas ===
SEED = 42

np.random. seed (SEED)
random. seed (SEED) :

os.environ['PYTHOL

hasil bow.csv
X = df.drop(colﬁ
df ['LABEL']

y

=== 3. Encode Labe
le = LabelEncoder ()

y_encoded = le.fit transform(y)

=== 4., Hitung rasio kelas sebelum SMOTE ===
neg = np.sum(y encoded == 0)
pos = np.sum(y encoded == 1)
ratio = neg / pos
print (f"Rasio kelas (negatif:positif) sebelum SMOTE =
{neg}:{pos}")

=== 5. Terapkan SMOTE untuk penyeimbangan data ===
smote = SMOTE (random state=SEED)

122

X res, y res = smote.fit resample (X, y encoded)

print (f"Setelah SMOTE: {np.bincount(y res)} (Seimbang v B!

=== 6. Buat sample weight ===
class weights = {0: 1, 1: ratio} # meskipun sudah seimbang,
tetap untuk stabilitas

sample weights = np.array([class weights[c] for ¢ in y res])

=== 7. Definisi model dasar XGBoost ===
model = xgb.XGBClassifier (
objective='binary:logistic',
eval metric='logloss',
random state=SEED,

use label encoder=False

=== 8. Parame
param dist = {;
'n_estimato
'learning rat
'max_depth';

'min_child_wél

'gamma': [0, 0.0 é
'subsample’: [0;87) :
'colsample bytree': [0.8, 1.0]

}

=== 9. 10-Fold Cross Validation ===

cv = StratifiedKFold(n splits=10, shuffle=True,
random state=SEED)

=== 10. RandomizedSearchCV dengan sample weight ===
rand search = RandomizedSearchCV (

estimator=model,

param distributions=param dist,

n iter=15,

123

scoring="fl",
cv=cv,
n_jobs=-1,
verbose=2,

random_ state=SEED

print("\n£7 Mulai RandomizedSearchCV (10-Fold CV, SMOTE +
sample weight)...")
rand search.fit (X res, y res, sample weight=sample weights)

print ("84 Selesai tuning.\n")

=== 11. Ambil best model ===
best model = rand search.bes
print ("=== Parameter Te

print (rand search.k

=== 12. Evalu dengan 10-] ual ===

y _pred cv = np.ze

?t'.&.‘\" iy
st aleb:g Fhlial en

for fold, (train_

y res), 1):
X_train, X test
X res.iloc[test idx]
y train, y test = y res[train idx], y res[test idx]

sample weight train = sample weights[train idx]

best model.fit (X train, y train,
sample weight=sample weight train)
y pred cv[test idx] = best model.predict (X test)

print (f"Fold {fold} selesai ")

=== 13. Hitung metrik evaluasi ===
cm = confusion matrix(y res, y pred cv)

tn, fp, fn, tp = cm.ravel()

124

accuracy = accuracy score(y res, y pred cv)

precision = precision_ score(y res, y pred cv)

recall = recall score(y res, y pred cv)
fl1 = f1 score(y res, y pred cv)
print ("\n=== Hasil Evaluasi XGBoost (10-Fold CV, SMOTE +

sample weight) ===")
print (f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

print (f"Akurasi : {accuracy:.4f}")
print (f"Presisi : {precision:.4f}")
print (f"Recall : {recall:.4f}")

print (f"Fl-Score: {fl:.4f}")
print(classification report(y res, y pred cv,

target names=le.classes , digits=4))

=== 14. Visualisasi Confusion Matrix ===
plt.figure(figsize=(6,5))
sns.heatmap (cm, annot=True, fmt='d', cmap='Blues',
xticklabels=["Prediksi Negatif","Prediksi
Positif"],
yticklabels=["Aktual Negatif", "Aktual Positif"])
plt.xlabel ("Prediksi")
plt.ylabel ("Aktual")
plt.title("Confusion Matrix - XGBoost (10-Fold CV, SMOTE +
sample weight)")
plt.show ()

=== 15. Simpan model ===

joblib.dump (best model, 'model xgb best SMOTE.pkl'")
files.download('model xgb best SMOTE.pkl')

print ("\n Model akhir berhasil disimpan!")

Lampiran 13. Proses XGBoost + TF-IDF/BoW

=== 1. Import Library ===

125

import pandas as pd

import numpy as np

from sklearn.model selection import KFold

from sklearn.metrics import classification report,
confusion matrix, accuracy score, precision score,
recall score, fl score

from sklearn.preprocessing import LabelEncoder
import xgboost as xgb

import joblib

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

import random, os

===]A. Set seed agar hasil stabil ===
SEED = 42
np.random. seed (SEED)
random. seed (SEED)

os.environ['PYTHONHASHSEED'] = str (SEED)

=== 2. Load Data TFIDF ===

df = pd.read csv("hasil tfidf.csv") # sesuaikan nama file
= df.drop(columns=["'LABEL'])
= df['LABREL']

=== 3. Encode Label ===

le = LabelEncoder ()

y_encoded = le.fit transform(y)

=== 4. Tampilkan rasio kelas ===

neg = np.sum(y encoded == 0)

pos = np.sum(y encoded == 1)

print (f"Rasio kelas (negatif:positif) = {neg}:{pos}")

=== 5. Definisi Model XGBoost (PARAMETER DEFAULT RESMI)

model = xgb.XGBClassifier()

=== 6. Definisi 10-Fold Cross Validation ===

cv = KFold(n_splits=10, shuffle=True, random state=SEED)

126

=== 7.
y_pred cv

print ("\n
resmi XGB
for fold,

X tra
y tra

y_encoded

model
y _pre
print

print ("~

I

Jalankan 10-Fold CV ===

= np.zeros_ like(y encoded)

£7 Mulai evaluasi 10-Fold Cross Validation (default

oost)...")

(train_ idx, test idx) in enumerate(cv.split(X), 1):
in, X test = X.iloc[train idx], X.iloc[test idx]
in, y test = y encoded[train idx],

[test idx]
.fit (X train, y train)

d cv[test idx] = model.predict (X test)
(f"Fold {fold} selesai (V]")

Evaluasi selesai.\n")

Hitung metrik evaluasi ===

cm = confusion matrix(y encoded, y pred cv)

tn, fp, fn, tp = cm.ravel ()

accuracy
precision
recall =
fl1 = f1 s

= accuracy score(y encoded, y pred cv)

= precision score(y encoded, y pred cv)
recall score(y encoded, y pred cv)

core (y encoded, y pred cv)

print ("=== Hasil Evaluasi Model XGBoost (10-Fold CV, Default

Resmi) ===")

print (£"T
print (£f"A

P: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")
kurasi : {accuracy:.4f}")

resisi : {precision:.4f}")

print (f"Recall : {recall:.4f}")

(

(
print (£"P

(
print (£"F

print (cla

1-Score: {fl:.4f}\n")

ssification report (y encoded, y pred cv,

target names=le.classes , digits=4))

=== 9. Visualisasi Confusion Matrix ===

plt.figure(figsize=(6,5))

sns.heatmap (cm, annot=True, fmt='d', cmap='Blues',

127

xticklabels=["Prediksi Negatif","Prediksi
Positif"],

yticklabels=["Aktual Negatif","Aktual Positif"])
plt.xlabel ("Prediksi")
plt.ylabel ("Aktual")
plt.title("Confusion Matrix - XGBoost (10-Fold CV, Default
Resmi) ")

plt.show ()

Lampiran 14. Proses XGBoost + TF-IDF/BoW + scale post weight (split data
80:20)

=== 1. Import Library ===
import pandas as pd
import numpy as np
from sklearn.model selection import train test split, KFold,
RandomizedSearchCV
from sklearn.metrics import (
classification report, confusion matrix,
accuracy score, precision score, recall score, fl score
)
from sklearn.preprocessing import LabelEncoder
import xgboost as xgb
import seaborn as sns
import matplotlib.pyplot as plt
import joblib

import random, os

=== 1A. Set seed ===
SEED = 42
np.random. seed (SEED)
random. seed (SEED)

os.environ['PYTHONHASHSEED'] = str (SEED)
=== 2. Load Data ===
df = pd.read csv("hasil tfidf.csv") # sesuaikan nama file

X = df.drop(columns=["'LABEL'])
y = df ['LABEL']

=== 3. Encode Label ===

128

le = LabelEncoder ()

y_encoded = le.fit transform(y)

=== 4. Split Data (80% train, 20% test) ===

X train, X test, y train, y test = train test split(
X, y _encoded, test size=0.2, stratify=y encoded,

random state=SEED

)

=== 5. Hitung scale pos weight ===
neg = np.sum(y train == 0)
pos = np.sum(y train == 1)

scale pos weight = neg / pos
print (f"Rasio kelas (negatif:positif) = {neg}:{pos}")
print (f"scale pos weight = {scale pos weight:.2f}")

=== 6. Model dasar ===

model = xgb.XGBClassifier (
objective='binary:logistic',
eval metric='logloss',
use label encoder=False,

random_ state=SEED

=== 7. Parameter untuk RandomizedSearchCV ===
param dist = {

'n estimators': [200, 300, 400],

'learning rate': [0.05, 0.08, 0.1],

'max _depth': [5, 7, 9],

'min child weight': [1, 3],

'gamma': [0, 0.05, 0.17,

'subsample': [0.8, 1.07],

'colsample bytree': [0.8, 1.0],

'scale pos weight': [scale pos weight, scale pos weight *

1.1]

=== 8. Inner CV: 10-fold pada data training ===
inner cv = KFold(n splits=10, shuffle=True,
random state=SEED)

129

rand search = RandomizedSearchCV (
estimator=model,
param distributions=param dist,
n_iter=15,
scoring='f1l",
cv=inner cv,
n_jobs=-1,
verbose=2,
random_ state=SEED

=== 9. Jalankan RandomizedSearch pada 80% data training ===

rand search.fit (X train, y train)

=== 10. Dapatkan best model ===

best model = rand search.best estimator

print ("\n=== Parameter Terbaik dari RandomizedSearchCV (Inner
10-Fold) ===")

print (rand search.best params)

print (f"F1-Score terbaik (cross-val):

{rand search.best score :.4f}")
=== 11. Latih ulang best model pada seluruh data training
(80%) ===

best model.fit (X train, y train)

=== 12. Prediksi pada data uji (20%) ===
y _pred = best model.predict (X test)

=== 13. Evaluasi Model di Data Uji ===
print ("\n=== Laporan Kinerja Model di Data Uji (20%) ===")
print (classification report(y test, y pred, digits=4))

=== 14. Metrik tambahan ===
cm = confusion matrix(y test, y pred)

tn, fp, fn, tp = cm.ravel ()

print ("\n=== Hasil Evaluasi Model di Data Uji ===")
print (£f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

130

print (f"Akurasi : {accuracy score(y test, y pred):.4f}")
print (f"Presisi : {precision score(y test, y pred):.4f}")
print (f"Recall : {recall score(y test, y pred):.4f}")
print (f"Fl1-Score: {fl score(y test, y pred):.4£f}")

=== 15. Visualisasi Confusion Matrix ===
plt.figure(figsize=(6,5))
sns.heatmap (cm, annot=True, fmt='d', cmap='Blues',
xticklabels=["Prediksi Negatif","Prediksi
Positif"],
yticklabels=["Aktual Negatif","Aktual Positif"])
plt.xlabel ("Prediksi")
plt.ylabel ("Aktual")
plt.title("Confusion Matrix - XGBoost (Data Uji 20%)")
plt.show ()

Lampiran 15. XGBoost + TE-IDF/BoW + sample weight (split data 80:20)

=== 1. Import Library ===
import pandas as pd
import numpy as np
from sklearn.model selection import train test split, KFold,
RandomizedSearchCV
from sklearn.metrics import (
classification report, confusion matrix,
accuracy_ score, precision score, recall score, fl score
)
from sklearn.preprocessing import LabelEncoder
import xgboost as xgb
import seaborn as sns
import matplotlib.pyplot as plt
import joblib

import random, os

=== 1A. Set seed ===

SEED = 42

np.random. seed (SEED)

random. seed (SEED)
os.environ['PYTHONHASHSEED'] = str (SEED)

131

=== 2. Load Data ===

df = pd.read csv("hasil bow.csv") # sesuaikan nama
X = df.drop(columns=["'LABEL'])

y = df ['LABEL']

=== 3. Encode Label ===
le = LabelEncoder ()

y_encoded = le.fit transform(y)

=== 4. Split Data (80% train, 20% test) ===

X train, X test, y train, y test = train test split(
X, y encoded, test size=0.2, stratify=y encoded,

random state=SEED

)

=== 5. Buat Sample Weight ===
neg = np.sum(y train == 0)
pos = np.sum(y train == 1)

bobot kebalikan proporsi kelas
weight pos = neg / pos
1

weight neg

sample weight train = np.array([weight pos if label

weight neg for label in y train])

print (f"Jumlah data kelas negatif = {neg}")
{pos}™)

file

== 1 else

print (f"Bobot sample weight positif = {weight pos:.2f}")

(

print (f"Jumlah data kelas positif
(
(

print (f"Bobot sample weight negatif {weight neg}")
=== 6. Model dasar (tanpa scale pos weight) ===
model = xgb.XGBClassifier(

objective="'binary:logistic',

eval metric='logloss',

use label encoder=False,

random state=SEED

132

=== 7. Parameter RandomizedSearchCV ===

param dist = {
'n estimators': [200, 300, 400],
'learning rate': [0.05, 0.08, 0.1],
'max depth': [5, 7, 9],
'min child weight': [1, 3],
'gamma': [0, 0.05, 0.17,
'subsample': [0.8, 1.0],
'colsample bytree': [0.8, 1.0]
}
=== 8. Inner CV: 10-fold pada data training ===

inner cv = KFold(n splits=10, shuffle=True,
random state=SEED)

rand search = RandomizedSearchCV (
estimator=model,
param distributions=param dist,
n iter=15,
scoring="f1l"',
cv=inner cv,
n_jobs=-1,
verbose=2,
random_ state=SEED

=== 9. Jalankan RandomizedSearch (dengan sample weight) ===
rand search.fit (X train, y train,

sample weight=sample weight train)

=== 10. Dapatkan best model ===

best model = rand search.best estimator

print ("\n=== Parameter Terbaik dari RandomizedSearchCV (Inner
10-Fold) ===")

print (rand search.best params)
print (f"Fl1-Score terbaik (cross-val):

{rand search.best score :.4f}")

=== 11. Latih ulang best model pada seluruh data training

(dengan sample weight) ===

133

best model.fit (X train, y train,

sample weight=sample weight train)

=== 12. Prediksi pada data uji (20%) ===
y_pred = best model.predict (X test)

=== 13. Laporan Kinerja Model di Data Uji ===
print ("\n=== Laporan Kinerja Model di Data Uji (20%) ===")
print (classification report(y test, y pred, digits=4))

=== 14. Metrik tambahan ===
cm = confusion matrix(y test, y pred)

tn, fp, fn, tp = cm.ravel()

print ("\n=== Hasil Evaluasi Model di Data Uji ===")
print (£"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")
print (f"Akurasi : {accuracy score(y test, y pred):.4f}")
print (f"Presisi : {precision score(y test, y pred):.4f}")
print (f"Recall : {recall score(y test, y pred):.4f}")

(

print (f"Fl1-Score: {fl score(y test, y pred):.4£f}")

=== 15. Visualisasi Confusion Matrix ===
plt.figure(figsize=(6,5))
sns.heatmap (cm, annot=True, fmt='d', cmap='Blues',
xticklabels=["Prediksi Negatif","Prediksi
Positif"],
yticklabels=["Aktual Negatif","Aktual Positif"])
plt.xlabel ("Prediksi")
plt.ylabel ("Aktual")
plt.title("Confusion Matrix - XGBoost (Sample Weight, Data
Uji 20%)™)
plt.show ()

Lampiran 16. XGBoost + TF-IDF/BoW+ sample weight + SMOTE (split data
80:20)

134

=== 1. Import Library ===
import pandas as pd
import numpy as np
from sklearn.model selection import train test split, KFold,
RandomizedSearchCV
from sklearn.metrics import (
classification report, confusion matrix,
accuracy score, precision score, recall score, fl score
)
from sklearn.preprocessing import LabelEncoder
from imblearn.over sampling import SMOTE
from sklearn.utils.class weight import compute sample weight
import xgboost as xgb
import seaborn as sns
import matplotlib.pyplot as plt
import joblib
import random, os

from google.colab import files

=== 1A. Set seed untuk hasil konsisten ===
SEED = 42

np.random. seed (SEED)

random. seed (SEED)

os.environ['PYTHONHASHSEED'] = str (SEED)
=== 2. Load Data ===
df = pd.read csv("hasil tfidf.csv") # sesuaikan nama file
X = df.drop(columns=["'LABEL'])
= df['LABEL']
=== 3. Encode Label ===

le = LabelEncoder ()

y_encoded = le.fit transform(y)

=== 4. Split Data (80% train, 20% test) ===

X train, X test, y train, y test = train test split(
X, y encoded, test size=0.2, stratify=y encoded,

random_ state=SEED

)

print (f" Data latih: {X train.shape}, Data uji: {X test.shape}")

135

=== 5. Terapkan SMOTE pada data training saja ===
print("\n[j Melakukan oversampling SMOTE pada data
training...")

smote = SMOTE (random_ state=SEED)

X train res, y train res = smote.fit resample (X train,
y _train)

print (f"Sebelum SMOTE: {np.bincount(y train)}")

print (f"Sesudah SMOTE: {np.bincount(y train res)}")

=== 6. Hitung sample weights (agar memperhatikan distribusi
asli) ===
sample weights =

compute sample weight (class weight='balanced', y=y train res)

=== 7. Definisi model dasar ===
model = xgb.XGBClassifier(
objective="'binary:logistic',
eval metric='logloss',
use label encoder=False,
random state=SEED

=== 8. Parameter untuk RandomizedSearchCV ===
param dist = {
'n _estimators': [200, 300, 400],
'learning rate': [0.05, 0.08, 0.1],
'max _depth': [5, 7, 9],
'min child weight': [1, 3],
'gamma': [0, 0.05, 0.1],
'subsample': [0.8, 1.0],
'colsample bytree': [0.8, 1.0]
}
=== 9. Inner CV: 10-fold pada data training hasil SMOTE ===

inner cv = KFold(n splits=10, shuffle=True,
random_ state=SEED)

rand search = RandomizedSearchCV (

estimator=model,

136

param distributions=param dist,
n iter=15,

scoring='f1l",

cv=inner cv,

n_jobs=-1,

verbose=2,

random_ state=SEED

=== 10. Jalankan RandomizedSearchCV dengan sample weight +
SMOTE data ===

print("\nﬁ7 Menjalankan RandomizedSearchCV (10-fold)...")
rand search.fit (X train res, y train res,

sample weight=sample weights)

=== 11. Dapatkan best model ===

best model = rand search.best estimator

print ("\n=== Parameter Terbaik dari RandomizedSearchCV (Inner
10-Fold) ===")

print (rand search.best params)
print (f"F1-Score terbaik (cross-val):

{rand search.best score :.4f}")

=== 12. Latih ulang best model pada seluruh data training
hasil SMOTE ===
best model.fit(X train res, y train res,

sample weight=sample weights)

=== 13. Prediksi pada data uji (20%) ===
y _pred = best model.predict (X test)

=== 14. Evaluasi Model di Data Uji ===
print ("\n=== Laporan Kinerja Model di Data Uji (20%) ===")
print (classification report(y test, y pred, digits=4))

=== 15. Metrik tambahan ===
cm = confusion matrix(y test, y pred)

tn, fp, fn, tp = cm.ravel ()

print ("\n=== Hasil Evaluasi Model di Data Uji ===")

137

print (f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

print (f"Akurasi : {accuracy score(y test, y pred):.4f}")
print (f"Recall : {recall score(y test, y pred):.4f}")

(
(
print (f"Presisi : {precision score(y test, y pred):.4f}")
(
print (f"Fl1-Score: {fl score(y test, y pred):.4f}")

=== 16. Visualisasi Confusion Matrix ===
plt.figure(figsize=(6,5))
sns.heatmap (cm, annot=True, fmt='d', cmap='Blues',
xticklabels=["Prediksi Negatif","Prediksi
Positif"],
yticklabels=["Aktual Negatif","Aktual Positif"])
plt.xlabel ("Prediksi")
plt.ylabel ("Aktual")
plt.title("Confusion Matrix - XGBoost (SMOTE + Sample Weight,
Data Uji 20%)™)
plt.show ()

Lampiran 17. UI (User Interface)

import streamlit as st

import pandas as pd

import numpy as np

import re

import matplotlib.pyplot as plt

from wordcloud import WordCloud

from sklearn.feature extraction.text import
CountVectorizer, TfidfVectorizer
from sklearn.model selection import train test split

from xgboost import XGBClassifier

from Sastrawi.StopWordRemover.StopWordRemoverFactory
import StopWordRemoverFactory
from Sastrawi.Stemmer.StemmerFactory import

StemmerFactory

138

from nltk.tokenize import word tokenize
import nltk
nltk.download ('punkt')

Page Config
st.set page config(page title="Analisis Sentimen
BPJS", layout="wide")
Header
st.markdown ("""
<div style="background-
color:#2E3A87;color:white;padding:60px 0 30px 0;
text-align:center; font-size:32px; font-weight:700; ">
APLIKASI ANALISIS SENTIMEN BPJS KESEHATAN
</div>
""", unsafe allow html=True)
Tabs
tabl, tab2, tab3 = st.tabs (]
"Dataset & Preprocessing",
"Fitur Ekstraksi",
"Analisis Sentimen"
1)
#Tab 1: Dataset & Preprocessing
with tabl:
st.subheader ("Upload Dataset & Preprocessing")
uploaded = st.file uploader ("Upload CSV/XLSX",

type=["csv", "xlsx"])

if uploaded:
df = pd.read csv(uploaded) if
uploaded.name.endswith (".csv") else

pd.read excel (uploaded)

139

if "ULASAN" not in df.columns or "LABEL" not
in df.columns:
st.error ("Dataset harus memiliki kolom
ULASAN dan LABEL")

st.stop ()

df = df[["ULASAN", "LABEL"]].copy()

st.success ("Dataset berhasil dimuat")

Cleansing & Case Folding
def cleansing (text) :

text

I
o)
o
=

text \S+ | www\S+", "",

text)

¥ 1xs®?
Tokenizing ; -

df ["Tokenizing"] =
df ["Cleansing"] .apply (word tokenize)

Normalisasi
slang = pd.read csv(
"https://raw.githubusercontent.com/nasals
abila/kamus-alay/master/colloquial-indonesian-
lexicon.csv"

)

140

slang dict =
dict(zip(slang["slang"].str.lower (),
slang["formal”].str.lower()))

df ["Normalisasi"] =
df ["Tokenizing"].apply (lambda x: [slang dict.get (w,

w) for w in x])

Stopword Removal
stopwords =
set (StopWordRemoverFactory () .get stop words())
df ["Stopword Removal"] =
df ["Normalisasi"].apply(lambda x: [w for w in x if w

not in stopwords])

Stemming
stemmer = StemmerFactory () .create stemmer ()
df ["Stemming"] =

df ["Stopword Removal"].apply(lambda x:

[stemmer.stem(w) for w in x])

Label Encoding
label map = {"negatif": 0, "positif": 1}
df ["LABEL NUM"] = df["LABEL"].map (label map)

st.subheader ("Hasil Lengkap Preprocessing")
st.dataframe (df [[

"ULASAN",

"Cleansing",

"Tokenizing",

"Normalisasi",

"Stopword Removal",

"Stemming",

141

"LABEL"

11.head())
st.session state["preprocessed"] = df
st.session state["ekstraksi selesai"] = False

Tab 2 : Fitur Ekstraksi
with tab2:
st.subheader ("Fitur Ekstraksi")

if "preprocessed" not in st.session state:

st.warning ("Jalankan Tab 1 terlebih dahulu")

st.stop()
df = st.session state["preprocessed"]
df ["JOINED"] = df["Stemming"].apply(lambda x: "
".Jjoin(x))
metode = st.radio("Pilih metode ekstraksi:",

["TF-IDEF", "BoW"], horizontal=True)

if st.button("Mulai Ekstraksi") :
if metode == "TF-IDF":
vectorizer =
TfidfVectorizer (max features=5000)
else:
vectorizer =

CountVectorizer (max features=5000)

X = vectorizer.fit transform(df["JOINED"])

st.session state["X"] = X

142

Tab

3

st.session state["y"] = df ["LABEL NUM"]
st.session state["vectorizer"] = vectorizer

st.session state["ekstraksi selesai"] = True
st.success (f"Ekstraksi {metode} selesai")
Preview Hasil Ekstraksi
preview df = pd.DataFrame (
X.toarray (),
columns=vectorizer.get feature names out (

) .head ()

st.subheader ("Preview Hasil Ekstraksi")

st.dataframe (preview df)

Analisis Sentimen

with tab3:

st.subheader ("Analisis Sentimen")

if not st.session state.get ("ekstraksi selesai,

False) :

st.info ("Lakukan ekstraksi fitur di Tab 2

terlebih dahulu")

X

y

df

st.stop ()

st.session state["X"]
st.session state["y"]

= st.session state["preprocessed"].copy ()

Train Model

model = XGBClassifier (

143

"Negatif", 1:

objective='binary:logistic',
eval metric='logloss',
random state=42,
subsample=1.0,

n estimators=400,

min child weight=1,
max depth=9,

learning rate=0.08,
gamma=0.1,

colsample bytree=0.8,
tree method='hist',

use label encoder=False

Prediks
y pred al :
df ["Predik ; (y 311) .map ({0:

st.subheader ("H

-

st.dataframe (df [["ULASAN", "Prediksi"]].head(10))

Diagram Batang
st.subheader ("Distribusi Sentimen")

counts = df["Prediksi"].value counts ()

fig, ax = plt.subplots()
ax.bar (
counts.index,

counts.values,

144

color=["red", "green"]
)
ax.set xlabel ("Sentimen")
ax.set ylabel ("Jumlah")

st.pyplot (fig)

#WordCloud

st.subheader ("WordCloud Sentimen")

coll, col2 = st.columns (2)

with coll:

st.markdown ("WordCloud Positif")

text pos =" ".join([" ".Jjoin(x) for x in
df [df ["Prediksi"] == "Positif"]["Stemming"]]) or
"positif"

wc_pos = WordCloud (width=400, height=300,
background color="white",
colormap="Greens") .generate (text pos)

fig, ax = plt.subplots()

ax.imshow (wc pos)

ax.axis ("off™)

st.pyplot (fig)

with col2:
st.markdown ("WordCloud Negatif")
text neg = " ".join([" ".join(x) for x in
df [df ["Prediksi"] == "Negatif"]["Stemming"]]) or
"negatif"
wc_neg = WordCloud (width=400, height=300,
background color="white",

colormap="Reds") .generate (text negq)

145

fig, ax = plt.subplots()
ax.imshow (wc_neq)
ax.axis ("off")

st.pyplot (fig)

146

