

94

LAMPIRAN

Lampiran 1. Riwayat Hidup

RIWAYAT HIDUP

Made Donita Maharani lahir di Singaraja pada 5

Desember 2002. Penulis lahir dari pasangan suami

istri Bapak Alm. I Gede Sudirtha dan Ibu Nyoman

Kartini. Penulis berkebangsaan Indonesia dan

beragama Hindu. Kini penulis beralamat di BTN

Griya Permai Blok B/12, Baktiseraga, Kabupaten

Buleleng, Provinsi Bali. Penulis menyelesaikan

pendidikan dasar di SD Laboratorium Undiksha

Singaraja dan lulus tahun 2015. Kemudian penulis

melanjutkan pendidikan di SMP N 1 Singaraja dan lulus tahun 2018. Pada tahun

2021, penulis lulus dari SMA N 1 Singaraja jurusan Ilmu Pengetahuan Alam dan

melanjutkan ke studi (S1) di Universitas Pendidikan Ganesha dengan Program

Studi Sistem Informasi, Jurusan Teknik Informatika.

95

Lampiran 2. Surat Ketersediaan Pelabelan Data

96

Lampiran 3. Sertifikat Pendidik

97

Lampiran 4. Surat Keterangan Validasi

98

99

100

101

Lampiran 5. Dokumentasi bersama Validator

102

Lampiran 6. Proses Scraping Data di Aplikasi X

Masukkan Twitter Auth Token

twitter_auth_token = "TOKEN" # ganti dengan token masing-

masing

Install Node.js untuk tweet-harvest

!sudo apt-get update -y

!sudo apt-get install -y ca-certificates curl gnupg

!sudo mkdir -p /etc/apt/keyrings

!curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-

repo.gpg.key | sudo gpg --dearmor -o

/etc/apt/keyrings/nodesource.gpg

!NODE_MAJOR=20 && echo "deb [signed-

by=/etc/apt/keyrings/nodesource.gpg]

https://deb.nodesource.com/node_$NODE_MAJOR.x nodistro main"

| sudo tee /etc/apt/sources.list.d/nodesource.list

!sudo apt-get update -y

!sudo apt-get install -y nodejs

!node -v

filename = "bpjs.csv" # nama file hasil scraping

search_keyword = 'BPJS Kesehatan since:2021-01-01 until:2025-

07-31'

limit = 400 # jumlah maksimal tweet

103

Jalankan tweet-harvest

!npx -y tweet-harvest@2.6.1 -o "{filename}" -s

"{search_keyword}" --tab "LATEST" -l {limit} --token

{twitter_auth_token}

import pandas as pd

file_path = "/content/tweets-data/bpjs.csv" # path lengkap

df = pd.read_csv(file_path, delimiter=",")

print("Jumlah kolom awal:", df.shape[1])

print("Nama kolom tersedia:", df.columns.tolist())

=== Deteksi otomatis nama kolom teks ===

text_column = None

for col in ["full_text", "content", "text", "tweet"]:

 if col in df.columns:

 text_column = col

 break

if text_column is None:

 raise ValueError("⚠️ Tidak ditemukan kolom teks

(full_text/content/text/tweet) di CSV")

print("✅ Kolom teks terdeteksi:", text_column)

=== 0. Install & Import Library ===

!pip install transformers pandas

import pandas as pd

from transformers import pipeline

=== 1. Load model deteksi bahasa ===

detector = pipeline("text-classification",

model="alexneakameni/language_detection")

=== 2. Baca file CSV hasil scraping/bersih ===

file_path = "/content/tweets-data/bpjs.csv" # ganti sesuai

file

df = pd.read_csv(file_path)

104

print("Jumlah tweet awal:", len(df))

=== 3. Tentukan kolom teks (cek otomatis) ===

text_column = None

for col in ["full_text", "content", "text", "tweet"]:

 if col in df.columns:

 text_column = col

 break

if text_column is None:

 raise ValueError("⚠️ Tidak ditemukan kolom teks di CSV")

=== 4. Deteksi bahasa setiap tweet ===

def detect_lang(text):

 try:

 result = detector(str(text)[:500])[0] # batasi 500

karakter biar cepat

 return result["label"], result["score"]

 except:

 return "unknown", 0.0

df[["language", "lang_score"]] = df[text_column].apply(lambda

x: pd.Series(detect_lang(x)))

=== 5. Tampilkan distribusi bahasa ===

print("\nDistribusi bahasa yang terdeteksi:")

print(df["language"].value_counts())

=== 6. Filter hanya bahasa Indonesia ===

df_id = df[df["language"].str.contains("ind",

case=False)].copy()

print("\nJumlah tweet berbahasa Indonesia:", len(df_id))

✅ === 7. Pilih hanya kolom 'created_at' dan kolom teks ===

kolom_akhir = []

if "created_at" in df_id.columns:

 kolom_akhir.append("created_at")

kolom_akhir.append(text_column)

df_final = df_id[kolom_akhir + ["language",

"lang_score"]].copy()

105

✅ === 8. Simpan hasil filter ===

df_final.to_csv("bpjsk_clean_id.csv", index=False,

encoding="utf-8-sig")

print("\n✅ File akhir disimpan sebagai: buruk_clean_id.csv")

print("Kolom yang disimpan:", df_final.columns.tolist())

print("\nPreview 5 baris pertama:")

print(df_final.head())

=== 0. Import Library ===

import pandas as pd

import re

from transformers import pipeline

=== 1. Load CSV hasil deteksi bahasa ===

file_path = "/content/bpjsk_clean_id.csv"

df = pd.read_csv(file_path)

text_column = "full_text"

if text_column not in df.columns:

 raise ValueError(f"Kolom '{text_column}' tidak

ditemukan!")

=== 2. Filter hanya Bahasa Indonesia ===

df_id = df[df["language"].str.contains("ind", case=False,

na=False)].copy()

print("✅ Jumlah tweet bahasa Indonesia:", len(df_id))

=== 3. Preprocessing text ===

def preprocess_text(text):

 text = str(text).lower()

 text = re.sub(r"http\S+|www\S+|https\S+", "", text) #

hapus link

 text = re.sub(r"@\w+", "", text) #

hapus mention

 text = re.sub(r"[^a-z\s]", "", text) #

hapus simbol/angka

 text = re.sub(r"\s+", " ", text).strip() #

normalisasi spasi

106

 return text

df_id[text_column] =

df_id[text_column].apply(preprocess_text)

=== 4. Filter RT dan reply ===

df_id = df_id[~df_id[text_column].str.startswith(("rt",),

na=False)].copy()

print("✅ Setelah filter RT/reply:", len(df_id))

=== 5. Zero-shot classification ===

classifier = pipeline("zero-shot-classification",

model="joeddav/xlm-roberta-large-xnli")

candidate_labels = ["komentar masyarakat", "berita atau

promosi"]

batch_size = 32

Keyword regex lebih spesifik

pattern_berita =

r"\b(berita|pengumuman|dirut|official|jurnalis|promosi|press

release|siaran pers|diumumkan oleh)\b"

def cek_keyword_berita(tweet):

 return bool(re.search(pattern_berita, tweet))

Fungsi untuk label tweet

def label_tweet(tweet, res):

 max_score = max(res["scores"])

 max_label = res["labels"][res["scores"].index(max_score)]

 # Keyword kuat → otomatis berita/promosi

 if cek_keyword_berita(tweet):

 return "berita atau promosi"

 # Skor classifier sangat yakin → berita/promosi

 elif max_label == "berita atau promosi" and max_score >=

0.85:

 return "berita atau promosi"

 # Tweet panjang (>30 kata) cenderung berita/promosi

 elif len(tweet.split()) > 30 and max_label == "komentar

masyarakat":

107

 return "berita atau promosi"

 else:

 return "komentar masyarakat"

all_labels = []

for i in range(0, len(df_id), batch_size):

 batch = df_id[text_column].iloc[i:i+batch_size].tolist()

 results = classifier(batch, candidate_labels)

 for tweet, res in zip(batch, results):

 all_labels.append(label_tweet(tweet, res))

df_id["klasifikasi"] = all_labels

=== 6. Pisahkan hasil ===

df_komentar = df_id[df_id["klasifikasi"] == "komentar

masyarakat"]

df_berita_iklan = df_id[df_id["klasifikasi"] == "berita atau

promosi"]

=== 7. Simpan hasil akhir ===

df_komentar.to_csv("tweet_komentar.csv", index=False,

encoding="utf-8-sig")

df_berita_iklan.to_csv("tweet_berita_iklan.csv", index=False,

encoding="utf-8-sig")

print("\n✅ HASIL AKHIR:")

print("💬 Jumlah komentar masyarakat:", len(df_komentar))

print("📰 Jumlah berita/promosi:", len(df_berita_iklan))

print("\n➡️ File disimpan sebagai:")

print(" ✅ tweet_komentar.csv")

print(" ✅ tweet_berita_iklan.csv")

108

Lampiran 7. Proses Preprocessing

=== 1. Cleansing ===

import pandas as pd

import re

from google.colab import files

Upload file awal

print("Silakan upload file labeled_paling_fix.xls...")

uploaded = files.upload()

file_path = list(uploaded.keys())[0]

df = pd.read_excel(file_path)

Fungsi cleansing

def cleansing(text):

 text = str(text)

 text = re.sub(r"http\S+|www\S+", "", text)

 text = re.sub(r"[^a-zA-Z\s]", " ", text)

 text = re.sub(r"\s+", " ", text).strip()

 return text

df['cleansing'] = df['ULASAN'].apply(cleansing)

Simpan hasil cleansing, tetap sertakan kolom label

df[['ULASAN','cleansing','LABEL']].to_csv('/content/cleansing

.csv', index=False)

print("✅ Cleansing selesai. Hasil disimpan di cleansing.csv")

Tampilkan hasil

display(df[['ULASAN', 'cleansing']].head(5))

=== 2. Case Folding ===

import pandas as pd

1. Baca hasil cleansing

df = pd.read_csv('/content/cleansing.csv')

2. Tambah kolom case folding

df['case_folding'] = df['cleansing'].str.lower()

109

3. Simpan hasil case folding (bawa cleansing + case_folding

+ LABEL)

df[['cleansing','case_folding','LABEL']].to_csv('/content/cas

e_folding.csv', index=False)

print("✅ Case folding selesai. Hasil disimpan di case_folding.csv")

Tampilkan hasil

display(df[['cleansing', 'case_folding']].head(5))

=== 3. Tokenizing ===

import pandas as pd

import nltk

from nltk.tokenize import word_tokenize

✅ Download resource tokenizer NLTK

nltk.download('punkt')

nltk.download('punkt_tab')

=== 1. Baca file case_folding.csv ===

df = pd.read_csv('/content/case_folding.csv')

=== 2. Tokenizing ===

df['tokenizing'] = df['case_folding'].apply(lambda x:

word_tokenize(str(x)))

=== 3. Simpan hasil tokenizing ===

df[['case_folding', 'tokenizing',

'LABEL']].to_csv('/content/tokenizing.csv', index=False)

print("✅ Tokenizing selesai. Hasil disimpan di tokenizing.csv")

=== 4. Tampilkan hasil ===

df[['case_folding', 'tokenizing']].head(5)

=== 4. Stopword Removal ===

import pandas as pd

from Sastrawi.StopWordRemover.StopWordRemoverFactory import

StopWordRemoverFactory

import ast

110

1. Baca hasil tokenizing

df = pd.read_csv('/content/tokenizing.csv')

2. Pastikan kolom tokenizing berupa list

df['tokenizing'] = df['tokenizing'].apply(ast.literal_eval)

3. Ambil daftar stopword dari Sastrawi

stop_factory = StopWordRemoverFactory()

stopwords = set(stop_factory.get_stop_words())

4. Fungsi hapus stopword

def remove_stopwords(tokens):

 return [word for word in tokens if word not in stopwords]

5. Terapkan fungsi ke dataset

df['stopword_removal'] =

df['tokenizing'].apply(remove_stopwords)

6. Simpan hasil stopword removal (bawa tokenizing +

stopword_removal + label)

df[['tokenizing','stopword_removal','LABEL']].to_csv('/conten

t/stopword_removal.csv', index=False)

print("✅ Stopword removal selesai. Hasil disimpan di stopword_removal.csv")

Tampilkan hasil (tanpa label, cukup 5 data)

display(df[['tokenizing', 'stopword_removal']].head(5))

=== 5. NORMALISASI ===

import pandas as pd

import ast

1. Baca hasil STOPWORD REMOVAL (sudah ada kolom LABEL di

dalamnya)

df = pd.read_csv('/content/stopword_removal.csv')

df['stopword_removal'] =

df['stopword_removal'].apply(ast.literal_eval)

2. Ambil kamus alay dari GitHub

url_alay =

111

"https://raw.githubusercontent.com/nasalsabila/kamus-

alay/master/colloquial-indonesian-lexicon.csv"

alay_df = pd.read_csv(url_alay)

3. Buat dictionary slang -> formal

slang_dict = dict(zip(alay_df['slang'], alay_df['formal']))

4. Fungsi normalisasi

def normalize_tokens(tokens):

 return [slang_dict.get(word.lower(), word) for word in

tokens]

5. Terapkan normalisasi ke dataset

df['normalisasi'] =

df['stopword_removal'].apply(normalize_tokens)

6. Simpan hasil normalisasi (tetap bawa kolom LABEL asli)

df[['stopword_removal', 'normalisasi',

'LABEL']].to_csv('/content/normalisasi.csv', index=False)

print("✅ NORMALISASI selesai. Hasil disimpan di normalisasi.csv")

Tampilkan hasil

display(df[['stopword_removal', 'normalisasi']].head(5))

=== 6. STEMMING ===

import pandas as pd

from Sastrawi.Stemmer.StemmerFactory import StemmerFactory

import ast

=== 1. Baca file hasil normalisasi (sudah ada kolom LABEL)

===

Pastikan file ada di path yang benar

df = pd.read_csv('/content/normalisasi.csv')

Pastikan kolom 'normalisasi' berisi list (jika masih

string, ubah)

def convert_to_list(x):

 try:

 return ast.literal_eval(x) if isinstance(x, str) else

112

x

 except:

 return []

df['normalisasi'] = df['normalisasi'].apply(convert_to_list)

=== 2. Buat stemmer ===

stemmer = StemmerFactory().create_stemmer()

=== 3. Fungsi stemming ===

def stemming(tokens):

 return [stemmer.stem(word) for word in tokens if

isinstance(word, str)]

=== 4. Terapkan stemming pada setiap baris ===

df['stemming'] = df['normalisasi'].apply(stemming)

=== 5. Simpan hasil stemming + LABEL ===

df[['normalisasi', 'stemming',

'LABEL']].to_csv('/content/stemming.csv', index=False)

print("✅ Stemming selesai. Hasil akhir disimpan di 'stemming.csv'")

=== 6. Tampilkan hasil ===

df[['normalisasi', 'stemming']].head(5)

113

Lampiran 8. Proses TF-IDF (Term Frequency–Inverse Document Frequency)

import pandas as pd

from google.colab import files

from sklearn.feature_extraction.text import TfidfVectorizer

1. Upload file CSV hasil stemming

print("Silakan upload file stemming.csv...")

uploaded = files.upload()

file_path = list(uploaded.keys())[0]

2. Baca file

df = pd.read_csv(file_path)

3. Gabungkan token hasil stemming jadi string

df['stemming_joined'] = df['stemming'].apply(lambda x: "

".join(eval(x)) if isinstance(x, str) else "")

4. TF-IDF Vectorizer

tfidf = TfidfVectorizer()

tfidf_matrix = tfidf.fit_transform(df['stemming_joined'])

5. Konversi hasil TF-IDF ke DataFrame

tfidf_df = pd.DataFrame(tfidf_matrix.toarray(),

columns=tfidf.get_feature_names_out())

6. Gabungkan dengan kolom label

tfidf_labeled = pd.concat([df[['LABEL']], tfidf_df], axis=1)

7. Simpan ke CSV

tfidf_labeled.to_csv("hasil_tfidf.csv", index=False)

print("✅ TF-IDF berhasil disimpan ke 'hasil_tfidf.csv'")

8. Tampilkan 10 kata dengan rata-rata TF-IDF tertinggi

mean_tfidf = tfidf_df.mean(axis=0)

top_tfidf = mean_tfidf.sort_values(ascending=False)

print("\n10 kata dengan rata-rata TF-IDF tertinggi:")

print(top_tfidf.head(10))

114

Lampiran 9. Proses BoW (Bag of Words)

 import pandas as pd

from google.colab import files

from sklearn.feature_extraction.text import CountVectorizer

1. Upload file CSV hasil stemming

print("Silakan upload file stemming.csv...")

uploaded = files.upload()

file_path = list(uploaded.keys())[0]

2. Baca file

df = pd.read_csv(file_path)

3. Gabungkan token hasil stemming jadi string

df['stemming_joined'] = df['stemming'].apply(lambda x: "

".join(eval(x)) if isinstance(x, str) else "")

4. Inisialisasi BoW (CountVectorizer)

bow = CountVectorizer()

bow_matrix = bow.fit_transform(df['stemming_joined'])

5. Konversi hasil BoW ke DataFrame

bow_df = pd.DataFrame(bow_matrix.toarray(),

columns=bow.get_feature_names_out())

6. Gabungkan dengan kolom label

bow_labeled = pd.concat([df[['LABEL']], bow_df], axis=1)

7. Simpan ke CSV

bow_labeled.to_csv("/content/hasil_bow.csv", index=False)

print("✅ BoW berhasil disimpan ke 'hasil_bow.csv'")

8. Download file hasil

files.download("/content/hasil_bow.csv")

9. Tampilkan 10 kata yang paling sering muncul

word_freq = bow_df.sum(axis=0).sort_values(ascending=False)

print("\n10 kata yang paling sering muncul (BoW):")

print(word_freq.head(10))

115

Lampiran 10. Proses XGBoost + TF-IDF/BoW + scale_post_weight

=== 1. Import Library ===

import pandas as pd

import numpy as np

from sklearn.model_selection import RandomizedSearchCV,

KFold, cross_val_predict

from sklearn.metrics import classification_report,

confusion_matrix, accuracy_score, precision_score,

recall_score, f1_score

from sklearn.preprocessing import LabelEncoder

import xgboost as xgb

import joblib

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

import random, os

=== 1A. Set seed agar hasil stabil ===

SEED = 42

np.random.seed(SEED)

random.seed(SEED)

os.environ['PYTHONHASHSEED'] = str(SEED)

=== 2. Load Data ===

df = pd.read_csv("hasil_tfidf.csv") # sesuaikan nama file

X = df.drop(columns=['LABEL'])

y = df['LABEL']

=== 3. Encode Label ===

le = LabelEncoder()

y_encoded = le.fit_transform(y)

=== 4. Hitung rasio kelas ===

neg = np.sum(y_encoded == 0)

pos = np.sum(y_encoded == 1)

scale_pos_weight = neg / pos

print(f"Rasio kelas (negatif:positif) = {neg}:{pos}")

print(f"scale_pos_weight = {scale_pos_weight:.2f}")

=== 5. Definisi model dasar XGBoost ===

116

model = xgb.XGBClassifier(

 objective='binary:logistic',

 eval_metric='logloss',

 random_state=SEED,

 use_label_encoder=False,

 tree_method='hist'

)

=== 6. Parameter untuk RandomizedSearch ===

param_dist = {

 'n_estimators': [200, 300, 400],

 'learning_rate': [0.05, 0.08, 0.1],

 'max_depth': [5, 7, 9],

 'min_child_weight': [1, 3],

 'gamma': [0, 0.05, 0.1],

 'subsample': [0.8, 1.0],

 'colsample_bytree': [0.8, 1.0],

 'scale_pos_weight': [scale_pos_weight, scale_pos_weight *

1.1, scale_pos_weight * 0.9]

}

=== 7. Definisi 10-Fold Cross Validation ===

cv = KFold(n_splits=10, shuffle=True, random_state=SEED)

=== 8. RandomizedSearchCV ===

rand_search = RandomizedSearchCV(

 estimator=model,

 param_distributions=param_dist,

 n_iter=15,

 scoring='f1',

 cv=cv,

 n_jobs=-1,

 verbose=2,

 random_state=SEED

)

=== 9. Jalankan pencarian parameter terbaik ===

print("\n🚀 Mulai proses tuning dengan 10-Fold Cross

Validation ...")

117

rand_search.fit(X, y_encoded)

print("✅ Selesai tuning.\n")

=== 10. Hasil parameter terbaik ===

print("=== Parameter Terbaik dari RandomizedSearchCV ===")

print(rand_search.best_params_)

print(f"F1-Score rata-rata CV terbaik:

{rand_search.best_score_:.4f}")

=== 11. Evaluasi model dengan 10-Fold Cross Validation ===

best_model = rand_search.best_estimator_

y_pred_cv = cross_val_predict(best_model, X, y_encoded,

cv=cv, n_jobs=-1)

cm = confusion_matrix(y_encoded, y_pred_cv)

tn, fp, fn, tp = cm.ravel()

accuracy = accuracy_score(y_encoded, y_pred_cv)

precision = precision_score(y_encoded, y_pred_cv)

recall = recall_score(y_encoded, y_pred_cv)

f1 = f1_score(y_encoded, y_pred_cv)

print("\n=== Hasil Evaluasi Model XGBoost (10-Fold CV) ===")

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

print(f"Akurasi : {accuracy:.4f}")

print(f"Presisi : {precision:.4f}")

print(f"Recall : {recall:.4f}")

print(f"F1-Score: {f1:.4f}")

print("\nClassification Report:")

print(classification_report(y_encoded, y_pred_cv,

target_names=le.classes_, digits=4))

=== 12. Visualisasi Confusion Matrix ===

plt.figure(figsize=(6,5))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

 xticklabels=["Prediksi Negatif","Prediksi

Positif"],

 yticklabels=["Aktual Negatif","Aktual Positif"])

plt.xlabel("Prediksi")

118

plt.ylabel("Aktual")

plt.title("Confusion Matrix - XGBoost (10-Fold Cross

Validation)")

plt.show()

Lampiran 11. Proses XGBoost + TF-IDF/BoW + sample_weight

=== 1. Import Library ===

import pandas as pd

import numpy as np

from sklearn.model_selection import RandomizedSearchCV, KFold

from sklearn.metrics import classification_report,

confusion_matrix, accuracy_score, precision_score,

recall_score, f1_score

from sklearn.preprocessing import LabelEncoder

import xgboost as xgb

import joblib

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

import random, os

=== 1A. Set seed agar hasil stabil ===

SEED = 42

np.random.seed(SEED)

random.seed(SEED)

os.environ['PYTHONHASHSEED'] = str(SEED)

=== 2. Load Data ===

df = pd.read_csv("hasil_bow.csv") # sesuaikan nama file

X = df.drop(columns=['LABEL'])

y = df['LABEL']

=== 3. Encode Label ===

le = LabelEncoder()

y_encoded = le.fit_transform(y)

=== 4. Hitung rasio kelas ===

neg = np.sum(y_encoded == 0)

119

pos = np.sum(y_encoded == 1)

ratio = neg / pos

print(f"Rasio kelas (negatif:positif) = {neg}:{pos}")

=== 5. Buat sample_weight untuk tiap instance ===

Bobot kelas mayoritas = 1, minoritas = rasio

class_weights = {0: 1, 1: ratio}

sample_weights = np.array([class_weights[class_id] for

class_id in y_encoded])

=== 6. Definisi model dasar XGBoost ===

model = xgb.XGBClassifier(

 objective='binary:logistic',

 eval_metric='logloss',

 random_state=SEED,

 use_label_encoder=False,

 tree_method='hist'

)

=== 7. Parameter untuk RandomizedSearch ===

param_dist = {

 'n_estimators': [200, 300, 400],

 'learning_rate': [0.05, 0.08, 0.1],

 'max_depth': [5, 7, 9],

 'min_child_weight': [1, 3],

 'gamma': [0, 0.05, 0.1],

 'subsample': [0.8, 1.0],

 'colsample_bytree': [0.8, 1.0]

}

=== 8. Definisi 10-Fold Cross Validation ===

cv = KFold(n_splits=10, shuffle=True, random_state=SEED)

=== 9. RandomizedSearchCV dengan sample_weight ===

rand_search = RandomizedSearchCV(

 estimator=model,

 param_distributions=param_dist,

 n_iter=15,

 scoring='f1',

 cv=cv,

120

 n_jobs=-1,

 verbose=2,

 random_state=SEED

)

=== 10. Jalankan pencarian parameter terbaik ===

print("\n🚀 Mulai proses tuning dengan 10-Fold Cross

Validation ...")

rand_search.fit(X, y_encoded, sample_weight=sample_weights)

print("✅ Selesai tuning.\n")

=== 11. Hasil parameter terbaik ===

print("=== Parameter Terbaik dari RandomizedSearchCV ===")

print(rand_search.best_params_)

print(f"F1-Score rata-rata CV terbaik:

{rand_search.best_score_:.4f}")

=== 12. Evaluasi model dengan 10-Fold Cross Validation

(manual, support sample_weight) ===

best_model = rand_search.best_estimator_

y_pred_cv = np.zeros_like(y_encoded)

print("\n🚀 Mulai evaluasi dengan 10-Fold Cross Validation

(manual)...")

for fold, (train_idx, test_idx) in enumerate(cv.split(X), 1):

 X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]

 y_train, y_test = y_encoded[train_idx],

y_encoded[test_idx]

 sample_weight_train = sample_weights[train_idx]

 best_model.fit(X_train, y_train,

sample_weight=sample_weight_train)

 y_pred_cv[test_idx] = best_model.predict(X_test)

 print(f"Fold {fold} selesai ✅")

print("✅ Evaluasi selesai.\n")

=== 13. Hitung metrik evaluasi ===

121

cm = confusion_matrix(y_encoded, y_pred_cv)

tn, fp, fn, tp = cm.ravel()

accuracy = accuracy_score(y_encoded, y_pred_cv)

precision = precision_score(y_encoded, y_pred_cv)

recall = recall_score(y_encoded, y_pred_cv)

f1 = f1_score(y_encoded, y_pred_cv)

print("=== Hasil Evaluasi Model XGBoost (10-Fold CV dengan

sample_weight) ===")

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

print(f"Akurasi : {accuracy:.4f}")

print(f"Presisi : {precision:.4f}")

print(f"Recall : {recall:.4f}")

print(f"F1-Score: {f1:.4f}")

print("\n" + classification_report(y_encoded, y_pred_cv,

target_names=le.classes_, digits=4))

=== 14. Visualisasi Confusion Matrix ===

plt.figure(figsize=(6,5))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

 xticklabels=["Prediksi Negatif","Prediksi

Positif"],

 yticklabels=["Aktual Negatif","Aktual Positif"])

plt.xlabel("Prediksi")

plt.ylabel("Aktual")

plt.title("Confusion Matrix - XGBoost (10-Fold CV,

sample_weight)")

plt.show()

Lampiran 12. Proses XGBoost + TF-IDF/BoW + sample_weight + SMOTE

=== 1. Import Library ===

import pandas as pd

import numpy as np

from sklearn.model_selection import RandomizedSearchCV,

StratifiedKFold

122

from sklearn.metrics import classification_report,

confusion_matrix, accuracy_score, precision_score,

recall_score, f1_score

from sklearn.preprocessing import LabelEncoder

from imblearn.over_sampling import SMOTE

import xgboost as xgb

import joblib

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

import random, os

=== 1A. Set seed untuk reproduktifitas ===

SEED = 42

np.random.seed(SEED)

random.seed(SEED)

os.environ['PYTHONHASHSEED'] = str(SEED)

=== 2. Load Data ===

df = pd.read_csv("hasil_tfidf.csv") # bisa diganti ke

hasil_bow.csv

X = df.drop(columns=['LABEL'])

y = df['LABEL']

=== 3. Encode Label ===

le = LabelEncoder()

y_encoded = le.fit_transform(y)

=== 4. Hitung rasio kelas sebelum SMOTE ===

neg = np.sum(y_encoded == 0)

pos = np.sum(y_encoded == 1)

ratio = neg / pos

print(f"Rasio kelas (negatif:positif) sebelum SMOTE =

{neg}:{pos}")

=== 5. Terapkan SMOTE untuk penyeimbangan data ===

smote = SMOTE(random_state=SEED)

123

X_res, y_res = smote.fit_resample(X, y_encoded)

print(f"Setelah SMOTE: {np.bincount(y_res)} (Seimbang)")

=== 6. Buat sample_weight ===

class_weights = {0: 1, 1: ratio} # meskipun sudah seimbang,

tetap untuk stabilitas

sample_weights = np.array([class_weights[c] for c in y_res])

=== 7. Definisi model dasar XGBoost ===

model = xgb.XGBClassifier(

 objective='binary:logistic',

 eval_metric='logloss',

 random_state=SEED,

 use_label_encoder=False,

 tree_method='hist'

)

=== 8. Parameter RandomizedSearchCV ===

param_dist = {

 'n_estimators': [200, 300, 400],

 'learning_rate': [0.05, 0.08, 0.1],

 'max_depth': [5, 7, 9],

 'min_child_weight': [1, 3],

 'gamma': [0, 0.05, 0.1],

 'subsample': [0.8, 1.0],

 'colsample_bytree': [0.8, 1.0]

}

=== 9. 10-Fold Cross Validation ===

cv = StratifiedKFold(n_splits=10, shuffle=True,

random_state=SEED)

=== 10. RandomizedSearchCV dengan sample_weight ===

rand_search = RandomizedSearchCV(

 estimator=model,

 param_distributions=param_dist,

 n_iter=15,

124

 scoring='f1',

 cv=cv,

 n_jobs=-1,

 verbose=2,

 random_state=SEED

)

print("\n Mulai RandomizedSearchCV (10-Fold CV, SMOTE +

sample_weight)...")

rand_search.fit(X_res, y_res, sample_weight=sample_weights)

print(" Selesai tuning.\n")

=== 11. Ambil best model ===

best_model = rand_search.best_estimator_

print("=== Parameter Terbaik ===")

print(rand_search.best_params_)

print(f"F1-Score rata-rata CV terbaik:

{rand_search.best_score_:.4f}")

=== 12. Evaluasi model dengan 10-Fold CV manual ===

y_pred_cv = np.zeros_like(y_res)

for fold, (train_idx, test_idx) in enumerate(cv.split(X_res,

y_res), 1):

 X_train, X_test = X_res.iloc[train_idx],

X_res.iloc[test_idx]

 y_train, y_test = y_res[train_idx], y_res[test_idx]

 sample_weight_train = sample_weights[train_idx]

 best_model.fit(X_train, y_train,

sample_weight=sample_weight_train)

 y_pred_cv[test_idx] = best_model.predict(X_test)

 print(f"Fold {fold} selesai ")

=== 13. Hitung metrik evaluasi ===

cm = confusion_matrix(y_res, y_pred_cv)

tn, fp, fn, tp = cm.ravel()

125

accuracy = accuracy_score(y_res, y_pred_cv)

precision = precision_score(y_res, y_pred_cv)

recall = recall_score(y_res, y_pred_cv)

f1 = f1_score(y_res, y_pred_cv)

print("\n=== Hasil Evaluasi XGBoost (10-Fold CV, SMOTE +

sample_weight) ===")

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

print(f"Akurasi : {accuracy:.4f}")

print(f"Presisi : {precision:.4f}")

print(f"Recall : {recall:.4f}")

print(f"F1-Score: {f1:.4f}")

print(classification_report(y_res, y_pred_cv,

target_names=le.classes_, digits=4))

=== 14. Visualisasi Confusion Matrix ===

plt.figure(figsize=(6,5))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

 xticklabels=["Prediksi Negatif","Prediksi

Positif"],

 yticklabels=["Aktual Negatif","Aktual Positif"])

plt.xlabel("Prediksi")

plt.ylabel("Aktual")

plt.title("Confusion Matrix - XGBoost (10-Fold CV, SMOTE +

sample_weight)")

plt.show()

=== 15. Simpan model ===

joblib.dump(best_model, 'model_xgb_best_SMOTE.pkl')

files.download('model_xgb_best_SMOTE.pkl')

print("\n Model akhir berhasil disimpan!")

Lampiran 13. Proses XGBoost + TF-IDF/BoW

=== 1. Import Library ===

126

import pandas as pd

import numpy as np

from sklearn.model_selection import KFold

from sklearn.metrics import classification_report,

confusion_matrix, accuracy_score, precision_score,

recall_score, f1_score

from sklearn.preprocessing import LabelEncoder

import xgboost as xgb

import joblib

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

import random, os

=== 1A. Set seed agar hasil stabil ===

SEED = 42

np.random.seed(SEED)

random.seed(SEED)

os.environ['PYTHONHASHSEED'] = str(SEED)

=== 2. Load Data TFIDF ===

df = pd.read_csv("hasil_tfidf.csv") # sesuaikan nama file

X = df.drop(columns=['LABEL'])

y = df['LABEL']

=== 3. Encode Label ===

le = LabelEncoder()

y_encoded = le.fit_transform(y)

=== 4. Tampilkan rasio kelas ===

neg = np.sum(y_encoded == 0)

pos = np.sum(y_encoded == 1)

print(f"Rasio kelas (negatif:positif) = {neg}:{pos}")

=== 5. Definisi Model XGBoost (PARAMETER DEFAULT RESMI)

model = xgb.XGBClassifier()

=== 6. Definisi 10-Fold Cross Validation ===

cv = KFold(n_splits=10, shuffle=True, random_state=SEED)

127

=== 7. Jalankan 10-Fold CV ===

y_pred_cv = np.zeros_like(y_encoded)

print("\n🚀 Mulai evaluasi 10-Fold Cross Validation (default

resmi XGBoost)...")

for fold, (train_idx, test_idx) in enumerate(cv.split(X), 1):

 X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]

 y_train, y_test = y_encoded[train_idx],

y_encoded[test_idx]

 model.fit(X_train, y_train)

 y_pred_cv[test_idx] = model.predict(X_test)

 print(f"Fold {fold} selesai ✅")

print("✅ Evaluasi selesai.\n")

=== 8. Hitung metrik evaluasi ===

cm = confusion_matrix(y_encoded, y_pred_cv)

tn, fp, fn, tp = cm.ravel()

accuracy = accuracy_score(y_encoded, y_pred_cv)

precision = precision_score(y_encoded, y_pred_cv)

recall = recall_score(y_encoded, y_pred_cv)

f1 = f1_score(y_encoded, y_pred_cv)

print("=== Hasil Evaluasi Model XGBoost (10-Fold CV, Default

Resmi) ===")

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

print(f"Akurasi : {accuracy:.4f}")

print(f"Presisi : {precision:.4f}")

print(f"Recall : {recall:.4f}")

print(f"F1-Score: {f1:.4f}\n")

print(classification_report(y_encoded, y_pred_cv,

target_names=le.classes_, digits=4))

=== 9. Visualisasi Confusion Matrix ===

plt.figure(figsize=(6,5))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

128

 xticklabels=["Prediksi Negatif","Prediksi

Positif"],

 yticklabels=["Aktual Negatif","Aktual Positif"])

plt.xlabel("Prediksi")

plt.ylabel("Aktual")

plt.title("Confusion Matrix - XGBoost (10-Fold CV, Default

Resmi)")

plt.show()

Lampiran 14. Proses XGBoost + TF-IDF/BoW + scale_post_weight (split data

80:20)

=== 1. Import Library ===

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split, KFold,

RandomizedSearchCV

from sklearn.metrics import (

 classification_report, confusion_matrix,

 accuracy_score, precision_score, recall_score, f1_score

)

from sklearn.preprocessing import LabelEncoder

import xgboost as xgb

import seaborn as sns

import matplotlib.pyplot as plt

import joblib

import random, os

=== 1A. Set seed ===

SEED = 42

np.random.seed(SEED)

random.seed(SEED)

os.environ['PYTHONHASHSEED'] = str(SEED)

=== 2. Load Data ===

df = pd.read_csv("hasil_tfidf.csv") # sesuaikan nama file

X = df.drop(columns=['LABEL'])

y = df['LABEL']

=== 3. Encode Label ===

129

le = LabelEncoder()

y_encoded = le.fit_transform(y)

=== 4. Split Data (80% train, 20% test) ===

X_train, X_test, y_train, y_test = train_test_split(

 X, y_encoded, test_size=0.2, stratify=y_encoded,

random_state=SEED

)

=== 5. Hitung scale_pos_weight ===

neg = np.sum(y_train == 0)

pos = np.sum(y_train == 1)

scale_pos_weight = neg / pos

print(f"Rasio kelas (negatif:positif) = {neg}:{pos}")

print(f"scale_pos_weight = {scale_pos_weight:.2f}")

=== 6. Model dasar ===

model = xgb.XGBClassifier(

 objective='binary:logistic',

 eval_metric='logloss',

 use_label_encoder=False,

 random_state=SEED

)

=== 7. Parameter untuk RandomizedSearchCV ===

param_dist = {

 'n_estimators': [200, 300, 400],

 'learning_rate': [0.05, 0.08, 0.1],

 'max_depth': [5, 7, 9],

 'min_child_weight': [1, 3],

 'gamma': [0, 0.05, 0.1],

 'subsample': [0.8, 1.0],

 'colsample_bytree': [0.8, 1.0],

 'scale_pos_weight': [scale_pos_weight, scale_pos_weight *

1.1]

}

=== 8. Inner CV: 10-fold pada data training ===

inner_cv = KFold(n_splits=10, shuffle=True,

random_state=SEED)

130

rand_search = RandomizedSearchCV(

 estimator=model,

 param_distributions=param_dist,

 n_iter=15,

 scoring='f1',

 cv=inner_cv,

 n_jobs=-1,

 verbose=2,

 random_state=SEED

)

=== 9. Jalankan RandomizedSearch pada 80% data training ===

rand_search.fit(X_train, y_train)

=== 10. Dapatkan best model ===

best_model = rand_search.best_estimator_

print("\n=== Parameter Terbaik dari RandomizedSearchCV (Inner

10-Fold) ===")

print(rand_search.best_params_)

print(f"F1-Score terbaik (cross-val):

{rand_search.best_score_:.4f}")

=== 11. Latih ulang best model pada seluruh data training

(80%) ===

best_model.fit(X_train, y_train)

=== 12. Prediksi pada data uji (20%) ===

y_pred = best_model.predict(X_test)

=== 13. Evaluasi Model di Data Uji ===

print("\n=== Laporan Kinerja Model di Data Uji (20%) ===")

print(classification_report(y_test, y_pred, digits=4))

=== 14. Metrik tambahan ===

cm = confusion_matrix(y_test, y_pred)

tn, fp, fn, tp = cm.ravel()

print("\n=== Hasil Evaluasi Model di Data Uji ===")

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

131

print(f"Akurasi : {accuracy_score(y_test, y_pred):.4f}")

print(f"Presisi : {precision_score(y_test, y_pred):.4f}")

print(f"Recall : {recall_score(y_test, y_pred):.4f}")

print(f"F1-Score: {f1_score(y_test, y_pred):.4f}")

=== 15. Visualisasi Confusion Matrix ===

plt.figure(figsize=(6,5))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

 xticklabels=["Prediksi Negatif","Prediksi

Positif"],

 yticklabels=["Aktual Negatif","Aktual Positif"])

plt.xlabel("Prediksi")

plt.ylabel("Aktual")

plt.title("Confusion Matrix - XGBoost (Data Uji 20%)")

plt.show()

Lampiran 15. XGBoost + TF-IDF/BoW + sample_weight (split data 80:20)

=== 1. Import Library ===

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split, KFold,

RandomizedSearchCV

from sklearn.metrics import (

 classification_report, confusion_matrix,

 accuracy_score, precision_score, recall_score, f1_score

)

from sklearn.preprocessing import LabelEncoder

import xgboost as xgb

import seaborn as sns

import matplotlib.pyplot as plt

import joblib

import random, os

=== 1A. Set seed ===

SEED = 42

np.random.seed(SEED)

random.seed(SEED)

os.environ['PYTHONHASHSEED'] = str(SEED)

132

=== 2. Load Data ===

df = pd.read_csv("hasil_bow.csv") # sesuaikan nama file

X = df.drop(columns=['LABEL'])

y = df['LABEL']

=== 3. Encode Label ===

le = LabelEncoder()

y_encoded = le.fit_transform(y)

=== 4. Split Data (80% train, 20% test) ===

X_train, X_test, y_train, y_test = train_test_split(

 X, y_encoded, test_size=0.2, stratify=y_encoded,

random_state=SEED

)

=== 5. Buat Sample Weight ===

neg = np.sum(y_train == 0)

pos = np.sum(y_train == 1)

bobot kebalikan proporsi kelas

weight_pos = neg / pos

weight_neg = 1

sample_weight_train = np.array([weight_pos if label == 1 else

weight_neg for label in y_train])

print(f"Jumlah data kelas negatif = {neg}")

print(f"Jumlah data kelas positif = {pos}")

print(f"Bobot sample weight positif = {weight_pos:.2f}")

print(f"Bobot sample weight negatif = {weight_neg}")

=== 6. Model dasar (tanpa scale_pos_weight) ===

model = xgb.XGBClassifier(

 objective='binary:logistic',

 eval_metric='logloss',

 use_label_encoder=False,

 random_state=SEED

)

133

=== 7. Parameter RandomizedSearchCV ===

param_dist = {

 'n_estimators': [200, 300, 400],

 'learning_rate': [0.05, 0.08, 0.1],

 'max_depth': [5, 7, 9],

 'min_child_weight': [1, 3],

 'gamma': [0, 0.05, 0.1],

 'subsample': [0.8, 1.0],

 'colsample_bytree': [0.8, 1.0]

}

=== 8. Inner CV: 10-fold pada data training ===

inner_cv = KFold(n_splits=10, shuffle=True,

random_state=SEED)

rand_search = RandomizedSearchCV(

 estimator=model,

 param_distributions=param_dist,

 n_iter=15,

 scoring='f1',

 cv=inner_cv,

 n_jobs=-1,

 verbose=2,

 random_state=SEED

)

=== 9. Jalankan RandomizedSearch (dengan sample_weight) ===

rand_search.fit(X_train, y_train,

sample_weight=sample_weight_train)

=== 10. Dapatkan best model ===

best_model = rand_search.best_estimator_

print("\n=== Parameter Terbaik dari RandomizedSearchCV (Inner

10-Fold) ===")

print(rand_search.best_params_)

print(f"F1-Score terbaik (cross-val):

{rand_search.best_score_:.4f}")

=== 11. Latih ulang best model pada seluruh data training

(dengan sample_weight) ===

134

best_model.fit(X_train, y_train,

sample_weight=sample_weight_train)

=== 12. Prediksi pada data uji (20%) ===

y_pred = best_model.predict(X_test)

=== 13. Laporan Kinerja Model di Data Uji ===

print("\n=== Laporan Kinerja Model di Data Uji (20%) ===")

print(classification_report(y_test, y_pred, digits=4))

=== 14. Metrik tambahan ===

cm = confusion_matrix(y_test, y_pred)

tn, fp, fn, tp = cm.ravel()

print("\n=== Hasil Evaluasi Model di Data Uji ===")

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

print(f"Akurasi : {accuracy_score(y_test, y_pred):.4f}")

print(f"Presisi : {precision_score(y_test, y_pred):.4f}")

print(f"Recall : {recall_score(y_test, y_pred):.4f}")

print(f"F1-Score: {f1_score(y_test, y_pred):.4f}")

=== 15. Visualisasi Confusion Matrix ===

plt.figure(figsize=(6,5))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

 xticklabels=["Prediksi Negatif","Prediksi

Positif"],

 yticklabels=["Aktual Negatif","Aktual Positif"])

plt.xlabel("Prediksi")

plt.ylabel("Aktual")

plt.title("Confusion Matrix - XGBoost (Sample Weight, Data

Uji 20%)")

plt.show()

Lampiran 16. XGBoost + TF-IDF/BoW+ sample_weight + SMOTE (split data

80:20)

135

=== 1. Import Library ===

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split, KFold,

RandomizedSearchCV

from sklearn.metrics import (

 classification_report, confusion_matrix,

 accuracy_score, precision_score, recall_score, f1_score

)

from sklearn.preprocessing import LabelEncoder

from imblearn.over_sampling import SMOTE

from sklearn.utils.class_weight import compute_sample_weight

import xgboost as xgb

import seaborn as sns

import matplotlib.pyplot as plt

import joblib

import random, os

from google.colab import files

=== 1A. Set seed untuk hasil konsisten ===

SEED = 42

np.random.seed(SEED)

random.seed(SEED)

os.environ['PYTHONHASHSEED'] = str(SEED)

=== 2. Load Data ===

df = pd.read_csv("hasil_tfidf.csv") # sesuaikan nama file

X = df.drop(columns=['LABEL'])

y = df['LABEL']

=== 3. Encode Label ===

le = LabelEncoder()

y_encoded = le.fit_transform(y)

=== 4. Split Data (80% train, 20% test) ===

X_train, X_test, y_train, y_test = train_test_split(

 X, y_encoded, test_size=0.2, stratify=y_encoded,

random_state=SEED

)

print(f"✅ Data latih: {X_train.shape}, Data uji: {X_test.shape}")

136

=== 5. Terapkan SMOTE pada data training saja ===

print("\n🔄 Melakukan oversampling SMOTE pada data

training...")

smote = SMOTE(random_state=SEED)

X_train_res, y_train_res = smote.fit_resample(X_train,

y_train)

print(f"Sebelum SMOTE: {np.bincount(y_train)}")

print(f"Sesudah SMOTE: {np.bincount(y_train_res)}")

=== 6. Hitung sample weights (agar memperhatikan distribusi

asli) ===

sample_weights =

compute_sample_weight(class_weight='balanced', y=y_train_res)

=== 7. Definisi model dasar ===

model = xgb.XGBClassifier(

 objective='binary:logistic',

 eval_metric='logloss',

 use_label_encoder=False,

 random_state=SEED

)

=== 8. Parameter untuk RandomizedSearchCV ===

param_dist = {

 'n_estimators': [200, 300, 400],

 'learning_rate': [0.05, 0.08, 0.1],

 'max_depth': [5, 7, 9],

 'min_child_weight': [1, 3],

 'gamma': [0, 0.05, 0.1],

 'subsample': [0.8, 1.0],

 'colsample_bytree': [0.8, 1.0]

}

=== 9. Inner CV: 10-fold pada data training hasil SMOTE ===

inner_cv = KFold(n_splits=10, shuffle=True,

random_state=SEED)

rand_search = RandomizedSearchCV(

 estimator=model,

137

 param_distributions=param_dist,

 n_iter=15,

 scoring='f1',

 cv=inner_cv,

 n_jobs=-1,

 verbose=2,

 random_state=SEED

)

=== 10. Jalankan RandomizedSearchCV dengan sample weight +

SMOTE data ===

print("\n🚀 Menjalankan RandomizedSearchCV (10-fold)...")

rand_search.fit(X_train_res, y_train_res,

sample_weight=sample_weights)

=== 11. Dapatkan best model ===

best_model = rand_search.best_estimator_

print("\n=== Parameter Terbaik dari RandomizedSearchCV (Inner

10-Fold) ===")

print(rand_search.best_params_)

print(f"F1-Score terbaik (cross-val):

{rand_search.best_score_:.4f}")

=== 12. Latih ulang best model pada seluruh data training

hasil SMOTE ===

best_model.fit(X_train_res, y_train_res,

sample_weight=sample_weights)

=== 13. Prediksi pada data uji (20%) ===

y_pred = best_model.predict(X_test)

=== 14. Evaluasi Model di Data Uji ===

print("\n=== Laporan Kinerja Model di Data Uji (20%) ===")

print(classification_report(y_test, y_pred, digits=4))

=== 15. Metrik tambahan ===

cm = confusion_matrix(y_test, y_pred)

tn, fp, fn, tp = cm.ravel()

print("\n=== Hasil Evaluasi Model di Data Uji ===")

138

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}")

print(f"Akurasi : {accuracy_score(y_test, y_pred):.4f}")

print(f"Presisi : {precision_score(y_test, y_pred):.4f}")

print(f"Recall : {recall_score(y_test, y_pred):.4f}")

print(f"F1-Score: {f1_score(y_test, y_pred):.4f}")

=== 16. Visualisasi Confusion Matrix ===

plt.figure(figsize=(6,5))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

 xticklabels=["Prediksi Negatif","Prediksi

Positif"],

 yticklabels=["Aktual Negatif","Aktual Positif"])

plt.xlabel("Prediksi")

plt.ylabel("Aktual")

plt.title("Confusion Matrix - XGBoost (SMOTE + Sample Weight,

Data Uji 20%)")

plt.show()

Lampiran 17. UI (User Interface)

import streamlit as st

import pandas as pd

import numpy as np

import re

import matplotlib.pyplot as plt

from wordcloud import WordCloud

from sklearn.feature_extraction.text import

CountVectorizer, TfidfVectorizer

from sklearn.model_selection import train_test_split

from xgboost import XGBClassifier

from Sastrawi.StopWordRemover.StopWordRemoverFactory

import StopWordRemoverFactory

from Sastrawi.Stemmer.StemmerFactory import

StemmerFactory

139

from nltk.tokenize import word_tokenize

import nltk

nltk.download('punkt')

Page Config

st.set_page_config(page_title="Analisis Sentimen

BPJS", layout="wide")

Header

st.markdown("""

<div style="background-

color:#2E3A87;color:white;padding:60px 0 30px 0;

text-align:center;font-size:32px;font-weight:700;">

APLIKASI ANALISIS SENTIMEN BPJS KESEHATAN

</div>

""", unsafe_allow_html=True)

Tabs

tab1, tab2, tab3 = st.tabs([

 "Dataset & Preprocessing",

 "Fitur Ekstraksi",

 "Analisis Sentimen"

])

#Tab 1: Dataset & Preprocessing

with tab1:

 st.subheader("Upload Dataset & Preprocessing")

 uploaded = st.file_uploader("Upload CSV/XLSX",

type=["csv", "xlsx"])

 if uploaded:

 df = pd.read_csv(uploaded) if

uploaded.name.endswith(".csv") else

pd.read_excel(uploaded)

140

 if "ULASAN" not in df.columns or "LABEL" not

in df.columns:

 st.error("Dataset harus memiliki kolom

ULASAN dan LABEL")

 st.stop()

 df = df[["ULASAN", "LABEL"]].copy()

 st.success("Dataset berhasil dimuat")

 # Cleansing & Case Folding

 def cleansing(text):

 text = str(text).lower()

 text = re.sub(r"http\S+|www\S+", "",

text)

 text = re.sub(r"[^a-z\s]", " ", text)

 text = re.sub(r"\s+", " ", text).strip()

 return text

 df["Cleansing"] =

df["ULASAN"].apply(cleansing)

 # Tokenizing

 df["Tokenizing"] =

df["Cleansing"].apply(word_tokenize)

 # Normalisasi

 slang = pd.read_csv(

 "https://raw.githubusercontent.com/nasals

abila/kamus-alay/master/colloquial-indonesian-

lexicon.csv"

)

141

 slang_dict =

dict(zip(slang["slang"].str.lower(),

slang["formal"].str.lower()))

 df["Normalisasi"] =

df["Tokenizing"].apply(lambda x: [slang_dict.get(w,

w) for w in x])

 # Stopword Removal

 stopwords =

set(StopWordRemoverFactory().get_stop_words())

 df["Stopword_Removal"] =

df["Normalisasi"].apply(lambda x: [w for w in x if w

not in stopwords])

 # Stemming

 stemmer = StemmerFactory().create_stemmer()

 df["Stemming"] =

df["Stopword_Removal"].apply(lambda x:

[stemmer.stem(w) for w in x])

 # Label Encoding

 label_map = {"negatif": 0, "positif": 1}

 df["LABEL_NUM"] = df["LABEL"].map(label_map)

 st.subheader("Hasil Lengkap Preprocessing")

 st.dataframe(df[[

 "ULASAN",

 "Cleansing",

 "Tokenizing",

 "Normalisasi",

 "Stopword_Removal",

 "Stemming",

142

 "LABEL"

]].head())

 st.session_state["preprocessed"] = df

 st.session_state["ekstraksi_selesai"] = False

Tab 2 : Fitur Ekstraksi

with tab2:

 st.subheader("Fitur Ekstraksi")

 if "preprocessed" not in st.session_state:

 st.warning("Jalankan Tab 1 terlebih dahulu")

 st.stop()

 df = st.session_state["preprocessed"]

 df["JOINED"] = df["Stemming"].apply(lambda x: "

".join(x))

 metode = st.radio("Pilih metode ekstraksi:",

["TF-IDF", "BoW"], horizontal=True)

 if st.button("Mulai Ekstraksi"):

 if metode == "TF-IDF":

 vectorizer =

TfidfVectorizer(max_features=5000)

 else:

 vectorizer =

CountVectorizer(max_features=5000)

 X = vectorizer.fit_transform(df["JOINED"])

 st.session_state["X"] = X

143

 st.session_state["y"] = df["LABEL_NUM"]

 st.session_state["vectorizer"] = vectorizer

 st.session_state["ekstraksi_selesai"] = True

 st.success(f"Ekstraksi {metode} selesai")

 # Preview Hasil Ekstraksi

 preview_df = pd.DataFrame(

 X.toarray(),

 columns=vectorizer.get_feature_names_out(

)

).head()

 st.subheader("Preview Hasil Ekstraksi")

 st.dataframe(preview_df)

Tab 3 : Analisis Sentimen

with tab3:

 st.subheader("Analisis Sentimen")

 if not st.session_state.get("ekstraksi_selesai",

False):

 st.info("Lakukan ekstraksi fitur di Tab 2

terlebih dahulu")

 st.stop()

 X = st.session_state["X"]

 y = st.session_state["y"]

 df = st.session_state["preprocessed"].copy()

 # Train Model

 model = XGBClassifier(

144

 objective='binary:logistic',

 eval_metric='logloss',

 random_state=42,

 subsample=1.0,

 n_estimators=400,

 min_child_weight=1,

 max_depth=9,

 learning_rate=0.08,

 gamma=0.1,

 colsample_bytree=0.8,

 tree_method='hist',

 use_label_encoder=False

)

 model.fit(X, y)

 # Prediksi

 y_pred_all = model.predict(X)

 df["Prediksi"] = pd.Series(y_pred_all).map({0:

"Negatif", 1: "Positif"})

 st.subheader("Hasil Prediksi")

 st.dataframe(df[["ULASAN", "Prediksi"]].head(10))

 # Diagram Batang

 st.subheader("Distribusi Sentimen")

 counts = df["Prediksi"].value_counts()

 fig, ax = plt.subplots()

 ax.bar(

 counts.index,

 counts.values,

145

 color=["red", "green"]

)

 ax.set_xlabel("Sentimen")

 ax.set_ylabel("Jumlah")

 st.pyplot(fig)

 #WordCloud

 st.subheader("WordCloud Sentimen")

 col1, col2 = st.columns(2)

 with col1:

 st.markdown("WordCloud Positif")

 text_pos = " ".join([" ".join(x) for x in

df[df["Prediksi"] == "Positif"]["Stemming"]]) or

"positif"

 wc_pos = WordCloud(width=400, height=300,

background_color="white",

colormap="Greens").generate(text_pos)

 fig, ax = plt.subplots()

 ax.imshow(wc_pos)

 ax.axis("off")

 st.pyplot(fig)

 with col2:

 st.markdown("WordCloud Negatif")

 text_neg = " ".join([" ".join(x) for x in

df[df["Prediksi"] == "Negatif"]["Stemming"]]) or

"negatif"

 wc_neg = WordCloud(width=400, height=300,

background_color="white",

colormap="Reds").generate(text_neg)

146

 fig, ax = plt.subplots()

 ax.imshow(wc_neg)

 ax.axis("off")

 st.pyplot(fig)

