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LAMPIRAN 

Lampiran  1. Riwayat Hidup 

 

RIWAYAT HIDUP 

Made Donita Maharani lahir di Singaraja pada 5 

Desember 2002. Penulis lahir dari pasangan suami 

istri Bapak Alm. I Gede Sudirtha dan Ibu Nyoman 

Kartini. Penulis berkebangsaan Indonesia dan 

beragama Hindu. Kini penulis beralamat di BTN 

Griya Permai Blok B/12, Baktiseraga, Kabupaten 

Buleleng, Provinsi Bali. Penulis menyelesaikan 

pendidikan dasar di SD Laboratorium Undiksha 

Singaraja dan lulus tahun 2015. Kemudian penulis 

melanjutkan pendidikan di SMP N 1 Singaraja dan lulus tahun 2018. Pada tahun 

2021, penulis lulus dari SMA N 1 Singaraja jurusan Ilmu Pengetahuan Alam dan 

melanjutkan ke studi (S1) di Universitas Pendidikan Ganesha dengan Program 

Studi Sistem Informasi, Jurusan Teknik Informatika.   
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Lampiran  2. Surat Ketersediaan Pelabelan Data 
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Lampiran  3. Sertifikat Pendidik 
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Lampiran  4. Surat Keterangan Validasi 
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Lampiran  5. Dokumentasi bersama Validator 
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Lampiran  6. Proses Scraping Data di Aplikasi X 

# Masukkan Twitter Auth Token 

twitter_auth_token = "TOKEN"  # ganti dengan token masing-

masing 

 

# Install Node.js untuk tweet-harvest 

!sudo apt-get update -y 

!sudo apt-get install -y ca-certificates curl gnupg 

!sudo mkdir -p /etc/apt/keyrings 

!curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-

repo.gpg.key | sudo gpg --dearmor -o 

/etc/apt/keyrings/nodesource.gpg 

 

!NODE_MAJOR=20 && echo "deb [signed-

by=/etc/apt/keyrings/nodesource.gpg] 

https://deb.nodesource.com/node_$NODE_MAJOR.x nodistro main" 

| sudo tee /etc/apt/sources.list.d/nodesource.list 

 

!sudo apt-get update -y 

!sudo apt-get install -y nodejs 

!node -v 

filename = "bpjs.csv"  # nama file hasil scraping 

search_keyword = 'BPJS Kesehatan since:2021-01-01 until:2025-

07-31' 

limit = 400  # jumlah maksimal tweet 
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# Jalankan tweet-harvest 

!npx -y tweet-harvest@2.6.1 -o "{filename}" -s 

"{search_keyword}" --tab "LATEST" -l {limit} --token 

{twitter_auth_token} 

 

import pandas as pd 

 

file_path = "/content/tweets-data/bpjs.csv"  # path lengkap 

df = pd.read_csv(file_path, delimiter=",") 

print("Jumlah kolom awal:", df.shape[1]) 

print("Nama kolom tersedia:", df.columns.tolist()) 

 

# === Deteksi otomatis nama kolom teks === 

text_column = None 

for col in ["full_text", "content", "text", "tweet"]: 

    if col in df.columns: 

        text_column = col 

        break 

 

if text_column is None: 

    raise ValueError("⚠️ Tidak ditemukan kolom teks 

(full_text/content/text/tweet) di CSV") 

 

print("✅ Kolom teks terdeteksi:", text_column) 

 

# === 0. Install & Import Library === 

!pip install transformers pandas 

 

import pandas as pd 

from transformers import pipeline 

 

# === 1. Load model deteksi bahasa === 

detector = pipeline("text-classification", 

model="alexneakameni/language_detection") 

 

# === 2. Baca file CSV hasil scraping/bersih === 

file_path = "/content/tweets-data/bpjs.csv"   # ganti sesuai 

file 

df = pd.read_csv(file_path) 
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print("Jumlah tweet awal:", len(df)) 

 

# === 3. Tentukan kolom teks (cek otomatis) === 

text_column = None 

for col in ["full_text", "content", "text", "tweet"]: 

    if col in df.columns: 

        text_column = col 

        break 

if text_column is None: 

    raise ValueError("⚠️ Tidak ditemukan kolom teks di CSV") 

 

# === 4. Deteksi bahasa setiap tweet === 

def detect_lang(text): 

    try: 

        result = detector(str(text)[:500])[0]  # batasi 500 

karakter biar cepat 

        return result["label"], result["score"] 

    except: 

        return "unknown", 0.0 

 

df[["language", "lang_score"]] = df[text_column].apply(lambda 

x: pd.Series(detect_lang(x))) 

 

# === 5. Tampilkan distribusi bahasa === 

print("\nDistribusi bahasa yang terdeteksi:") 

print(df["language"].value_counts()) 

 

# === 6. Filter hanya bahasa Indonesia === 

df_id = df[df["language"].str.contains("ind", 

case=False)].copy() 

print("\nJumlah tweet berbahasa Indonesia:", len(df_id)) 

 

# ✅ === 7. Pilih hanya kolom 'created_at' dan kolom teks === 

kolom_akhir = [] 

if "created_at" in df_id.columns: 

    kolom_akhir.append("created_at") 

kolom_akhir.append(text_column) 

 

df_final = df_id[kolom_akhir + ["language", 

"lang_score"]].copy() 
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# ✅ === 8. Simpan hasil filter === 

df_final.to_csv("bpjsk_clean_id.csv", index=False, 

encoding="utf-8-sig") 

 

print("\n✅ File akhir disimpan sebagai: buruk_clean_id.csv") 

print("Kolom yang disimpan:", df_final.columns.tolist()) 

print("\nPreview 5 baris pertama:") 

print(df_final.head()) 

 

# === 0. Import Library === 

import pandas as pd 

import re 

from transformers import pipeline 

 

# === 1. Load CSV hasil deteksi bahasa === 

file_path = "/content/bpjsk_clean_id.csv" 

df = pd.read_csv(file_path) 

 

text_column = "full_text" 

if text_column not in df.columns: 

    raise ValueError(f"Kolom '{text_column}' tidak 

ditemukan!") 

 

# === 2. Filter hanya Bahasa Indonesia === 

df_id = df[df["language"].str.contains("ind", case=False, 

na=False)].copy() 

print("✅ Jumlah tweet bahasa Indonesia:", len(df_id)) 

 

# === 3. Preprocessing text === 

def preprocess_text(text): 

    text = str(text).lower() 

    text = re.sub(r"http\S+|www\S+|https\S+", "", text)  # 

hapus link 

    text = re.sub(r"@\w+", "", text)                      # 

hapus mention 

    text = re.sub(r"[^a-z\s]", "", text)                  # 

hapus simbol/angka 

    text = re.sub(r"\s+", " ", text).strip()             # 

normalisasi spasi 
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    return text 

 

df_id[text_column] = 

df_id[text_column].apply(preprocess_text) 

 

# === 4. Filter RT dan reply === 

df_id = df_id[~df_id[text_column].str.startswith(("rt",), 

na=False)].copy() 

print("✅ Setelah filter RT/reply:", len(df_id)) 

 

# === 5. Zero-shot classification === 

classifier = pipeline("zero-shot-classification", 

model="joeddav/xlm-roberta-large-xnli") 

candidate_labels = ["komentar masyarakat", "berita atau 

promosi"] 

batch_size = 32 

 

# Keyword regex lebih spesifik 

pattern_berita = 

r"\b(berita|pengumuman|dirut|official|jurnalis|promosi|press 

release|siaran pers|diumumkan oleh)\b" 

 

def cek_keyword_berita(tweet): 

    return bool(re.search(pattern_berita, tweet)) 

 

# Fungsi untuk label tweet 

def label_tweet(tweet, res): 

    max_score = max(res["scores"]) 

    max_label = res["labels"][res["scores"].index(max_score)] 

 

    # Keyword kuat → otomatis berita/promosi 

    if cek_keyword_berita(tweet): 

        return "berita atau promosi" 

    # Skor classifier sangat yakin → berita/promosi 

    elif max_label == "berita atau promosi" and max_score >= 

0.85: 

        return "berita atau promosi" 

    # Tweet panjang (>30 kata) cenderung berita/promosi 

    elif len(tweet.split()) > 30 and max_label == "komentar 

masyarakat": 
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        return "berita atau promosi" 

    else: 

        return "komentar masyarakat" 

 

all_labels = [] 

for i in range(0, len(df_id), batch_size): 

    batch = df_id[text_column].iloc[i:i+batch_size].tolist() 

    results = classifier(batch, candidate_labels) 

 

    for tweet, res in zip(batch, results): 

        all_labels.append(label_tweet(tweet, res)) 

 

df_id["klasifikasi"] = all_labels 

 

# === 6. Pisahkan hasil === 

df_komentar = df_id[df_id["klasifikasi"] == "komentar 

masyarakat"] 

df_berita_iklan = df_id[df_id["klasifikasi"] == "berita atau 

promosi"] 

 

# === 7. Simpan hasil akhir === 

df_komentar.to_csv("tweet_komentar.csv", index=False, 

encoding="utf-8-sig") 

df_berita_iklan.to_csv("tweet_berita_iklan.csv", index=False, 

encoding="utf-8-sig") 

 

print("\n✅ HASIL AKHIR:") 

print("💬 Jumlah komentar masyarakat:", len(df_komentar)) 

print("📰 Jumlah berita/promosi:", len(df_berita_iklan)) 

print("\n➡️ File disimpan sebagai:") 

print("   ✅ tweet_komentar.csv") 

print("   ✅ tweet_berita_iklan.csv") 
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Lampiran  7. Proses Preprocessing 

# === 1. Cleansing === 

import pandas as pd 

import re 

from google.colab import files 

 

# Upload file awal 

print("Silakan upload file labeled_paling_fix.xls...") 

uploaded = files.upload() 

file_path = list(uploaded.keys())[0] 

 

df = pd.read_excel(file_path) 

 

# Fungsi cleansing 

def cleansing(text): 

    text = str(text) 

    text = re.sub(r"http\S+|www\S+", "", text) 

    text = re.sub(r"[^a-zA-Z\s]", " ", text) 

    text = re.sub(r"\s+", " ", text).strip() 

    return text 

 

df['cleansing'] = df['ULASAN'].apply(cleansing) 

 

# Simpan hasil cleansing, tetap sertakan kolom label 

df[['ULASAN','cleansing','LABEL']].to_csv('/content/cleansing

.csv', index=False) 

print("✅ Cleansing selesai. Hasil disimpan di cleansing.csv") 

 

# Tampilkan hasil 

display(df[['ULASAN', 'cleansing']].head(5)) 

 

# === 2. Case Folding === 

import pandas as pd 

 

# 1. Baca hasil cleansing 

df = pd.read_csv('/content/cleansing.csv') 

 

# 2. Tambah kolom case folding 

df['case_folding'] = df['cleansing'].str.lower() 
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# 3. Simpan hasil case folding (bawa cleansing + case_folding 

+ LABEL) 

df[['cleansing','case_folding','LABEL']].to_csv('/content/cas

e_folding.csv', index=False) 

 

print("✅ Case folding selesai. Hasil disimpan di case_folding.csv") 

 

# Tampilkan hasil 

display(df[['cleansing', 'case_folding' ]].head(5)) 

 

# === 3. Tokenizing === 

import pandas as pd 

import nltk 

from nltk.tokenize import word_tokenize 

 

# ✅ Download resource tokenizer NLTK 

nltk.download('punkt') 

nltk.download('punkt_tab') 

 

# === 1. Baca file case_folding.csv === 

df = pd.read_csv('/content/case_folding.csv') 

 

# === 2. Tokenizing === 

df['tokenizing'] = df['case_folding'].apply(lambda x: 

word_tokenize(str(x))) 

 

# === 3. Simpan hasil tokenizing === 

df[['case_folding', 'tokenizing', 

'LABEL']].to_csv('/content/tokenizing.csv', index=False) 

print("✅ Tokenizing selesai. Hasil disimpan di tokenizing.csv") 

 

# === 4. Tampilkan hasil === 

df[['case_folding', 'tokenizing']].head(5) 

 

# === 4. Stopword Removal === 

import pandas as pd 

from Sastrawi.StopWordRemover.StopWordRemoverFactory import 

StopWordRemoverFactory 

import ast 
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# 1. Baca hasil tokenizing 

df = pd.read_csv('/content/tokenizing.csv') 

 

# 2. Pastikan kolom tokenizing berupa list 

df['tokenizing'] = df['tokenizing'].apply(ast.literal_eval) 

 

# 3. Ambil daftar stopword dari Sastrawi 

stop_factory = StopWordRemoverFactory() 

stopwords = set(stop_factory.get_stop_words()) 

 

# 4. Fungsi hapus stopword 

def remove_stopwords(tokens): 

    return [word for word in tokens if word not in stopwords] 

 

# 5. Terapkan fungsi ke dataset 

df['stopword_removal'] = 

df['tokenizing'].apply(remove_stopwords) 

 

# 6. Simpan hasil stopword removal (bawa tokenizing + 

stopword_removal + label) 

df[['tokenizing','stopword_removal','LABEL']].to_csv('/conten

t/stopword_removal.csv', index=False) 

 

print("✅ Stopword removal selesai. Hasil disimpan di stopword_removal.csv") 

 

# Tampilkan hasil (tanpa label, cukup 5 data) 

display(df[['tokenizing', 'stopword_removal']].head(5)) 

 

# === 5. NORMALISASI === 

import pandas as pd 

import ast 

 

# 1. Baca hasil STOPWORD REMOVAL (sudah ada kolom LABEL di 

dalamnya) 

df = pd.read_csv('/content/stopword_removal.csv') 

df['stopword_removal'] = 

df['stopword_removal'].apply(ast.literal_eval) 

 

# 2. Ambil kamus alay dari GitHub 

url_alay = 
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"https://raw.githubusercontent.com/nasalsabila/kamus-

alay/master/colloquial-indonesian-lexicon.csv" 

alay_df = pd.read_csv(url_alay) 

 

# 3. Buat dictionary slang -> formal 

slang_dict = dict(zip(alay_df['slang'], alay_df['formal'])) 

 

# 4. Fungsi normalisasi 

def normalize_tokens(tokens): 

    return [slang_dict.get(word.lower(), word) for word in 

tokens] 

 

# 5. Terapkan normalisasi ke dataset 

df['normalisasi'] = 

df['stopword_removal'].apply(normalize_tokens) 

 

# 6. Simpan hasil normalisasi (tetap bawa kolom LABEL asli) 

df[['stopword_removal', 'normalisasi', 

'LABEL']].to_csv('/content/normalisasi.csv', index=False) 

 

print("✅ NORMALISASI selesai. Hasil disimpan di normalisasi.csv") 

 

# Tampilkan hasil 

display(df[['stopword_removal', 'normalisasi' ]].head(5)) 

 

# === 6. STEMMING === 

import pandas as pd 

from Sastrawi.Stemmer.StemmerFactory import StemmerFactory 

import ast 

 

# === 1. Baca file hasil normalisasi (sudah ada kolom LABEL) 

=== 

# Pastikan file ada di path yang benar 

df = pd.read_csv('/content/normalisasi.csv') 

 

# Pastikan kolom 'normalisasi' berisi list (jika masih 

string, ubah) 

def convert_to_list(x): 

    try: 

        return ast.literal_eval(x) if isinstance(x, str) else 
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x 

    except: 

        return [] 

 

df['normalisasi'] = df['normalisasi'].apply(convert_to_list) 

 

# === 2. Buat stemmer === 

stemmer = StemmerFactory().create_stemmer() 

 

# === 3. Fungsi stemming === 

def stemming(tokens): 

    return [stemmer.stem(word) for word in tokens if 

isinstance(word, str)] 

 

# === 4. Terapkan stemming pada setiap baris === 

df['stemming'] = df['normalisasi'].apply(stemming) 

 

# === 5. Simpan hasil stemming + LABEL === 

df[['normalisasi', 'stemming', 

'LABEL']].to_csv('/content/stemming.csv', index=False) 

print("✅ Stemming selesai. Hasil akhir disimpan di 'stemming.csv'") 

 

# === 6. Tampilkan hasil === 

df[['normalisasi', 'stemming']].head(5) 

 

 

 

 

 

 

 

 

 



 

 

113 

 

 

Lampiran  8. Proses TF-IDF (Term Frequency–Inverse Document Frequency) 

import pandas as pd 

from google.colab import files 

from sklearn.feature_extraction.text import TfidfVectorizer 

 

# 1. Upload file CSV hasil stemming 

print("Silakan upload file stemming.csv...") 

uploaded = files.upload() 

file_path = list(uploaded.keys())[0] 

 

# 2. Baca file 

df = pd.read_csv(file_path) 

 

# 3. Gabungkan token hasil stemming jadi string 

df['stemming_joined'] = df['stemming'].apply(lambda x: " 

".join(eval(x)) if isinstance(x, str) else "") 

 

# 4. TF-IDF Vectorizer 

tfidf = TfidfVectorizer() 

tfidf_matrix = tfidf.fit_transform(df['stemming_joined']) 

 

# 5. Konversi hasil TF-IDF ke DataFrame 

tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), 

columns=tfidf.get_feature_names_out()) 

 

# 6. Gabungkan dengan kolom label 

tfidf_labeled = pd.concat([df[['LABEL']], tfidf_df], axis=1) 

 

# 7. Simpan ke CSV 

tfidf_labeled.to_csv("hasil_tfidf.csv", index=False) 

print("✅ TF-IDF berhasil disimpan ke 'hasil_tfidf.csv'") 

 

# 8. Tampilkan 10 kata dengan rata-rata TF-IDF tertinggi 

mean_tfidf = tfidf_df.mean(axis=0) 

top_tfidf = mean_tfidf.sort_values(ascending=False) 

print("\n10 kata dengan rata-rata TF-IDF tertinggi:") 

print(top_tfidf.head(10)) 
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Lampiran  9.  Proses BoW (Bag of Words) 

 import pandas as pd 

from google.colab import files 

from sklearn.feature_extraction.text import CountVectorizer 

 

# 1. Upload file CSV hasil stemming 

print("Silakan upload file stemming.csv...") 

uploaded = files.upload() 

file_path = list(uploaded.keys())[0] 

 

# 2. Baca file 

df = pd.read_csv(file_path) 

 

# 3. Gabungkan token hasil stemming jadi string 

df['stemming_joined'] = df['stemming'].apply(lambda x: " 

".join(eval(x)) if isinstance(x, str) else "") 

 

# 4. Inisialisasi BoW (CountVectorizer) 

bow = CountVectorizer() 

bow_matrix = bow.fit_transform(df['stemming_joined']) 

 

# 5. Konversi hasil BoW ke DataFrame 

bow_df = pd.DataFrame(bow_matrix.toarray(), 

columns=bow.get_feature_names_out()) 

 

# 6. Gabungkan dengan kolom label 

bow_labeled = pd.concat([df[['LABEL']], bow_df], axis=1) 

 

# 7. Simpan ke CSV 

bow_labeled.to_csv("/content/hasil_bow.csv", index=False) 

print("✅ BoW berhasil disimpan ke 'hasil_bow.csv'") 

 

# 8. Download file hasil 

files.download("/content/hasil_bow.csv") 

 

# 9. Tampilkan 10 kata yang paling sering muncul 

word_freq = bow_df.sum(axis=0).sort_values(ascending=False) 

print("\n10 kata yang paling sering muncul (BoW):") 

print(word_freq.head(10)) 
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Lampiran  10. Proses XGBoost + TF-IDF/BoW + scale_post_weight 

# === 1. Import Library ===     

import pandas as pd 

import numpy as np 

from sklearn.model_selection import RandomizedSearchCV, 

KFold, cross_val_predict 

from sklearn.metrics import classification_report, 

confusion_matrix, accuracy_score, precision_score, 

recall_score, f1_score 

from sklearn.preprocessing import LabelEncoder 

import xgboost as xgb 

import joblib 

from google.colab import files 

import seaborn as sns 

import matplotlib.pyplot as plt 

import random, os 

 

# === 1A. Set seed agar hasil stabil === 

SEED = 42 

np.random.seed(SEED) 

random.seed(SEED) 

os.environ['PYTHONHASHSEED'] = str(SEED) 

 

# === 2. Load Data === 

df = pd.read_csv("hasil_tfidf.csv")   # sesuaikan nama file 

X = df.drop(columns=['LABEL']) 

y = df['LABEL'] 

 

# === 3. Encode Label === 

le = LabelEncoder() 

y_encoded = le.fit_transform(y) 

 

# === 4. Hitung rasio kelas === 

neg = np.sum(y_encoded == 0) 

pos = np.sum(y_encoded == 1) 

scale_pos_weight = neg / pos 

print(f"Rasio kelas (negatif:positif) = {neg}:{pos}") 

print(f"scale_pos_weight = {scale_pos_weight:.2f}") 

 

# === 5. Definisi model dasar XGBoost === 
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model = xgb.XGBClassifier( 

    objective='binary:logistic', 

    eval_metric='logloss', 

    random_state=SEED, 

    use_label_encoder=False, 

    tree_method='hist' 

) 

 

# === 6. Parameter untuk RandomizedSearch === 

param_dist = { 

    'n_estimators': [200, 300, 400], 

    'learning_rate': [0.05, 0.08, 0.1], 

    'max_depth': [5, 7, 9], 

    'min_child_weight': [1, 3], 

    'gamma': [0, 0.05, 0.1], 

    'subsample': [0.8, 1.0], 

    'colsample_bytree': [0.8, 1.0], 

 

    'scale_pos_weight': [scale_pos_weight, scale_pos_weight * 

1.1, scale_pos_weight * 0.9] 

} 

 

# === 7. Definisi 10-Fold Cross Validation === 

cv = KFold(n_splits=10, shuffle=True, random_state=SEED) 

 

# === 8. RandomizedSearchCV === 

rand_search = RandomizedSearchCV( 

    estimator=model, 

    param_distributions=param_dist, 

    n_iter=15, 

    scoring='f1', 

    cv=cv, 

    n_jobs=-1, 

    verbose=2, 

    random_state=SEED 

) 

 

# === 9. Jalankan pencarian parameter terbaik === 

print("\n🚀 Mulai proses tuning dengan 10-Fold Cross 

Validation ...") 
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rand_search.fit(X, y_encoded) 

print("✅ Selesai tuning.\n") 

 

# === 10. Hasil parameter terbaik === 

print("=== Parameter Terbaik dari RandomizedSearchCV ===") 

print(rand_search.best_params_) 

print(f"F1-Score rata-rata CV terbaik: 

{rand_search.best_score_:.4f}") 

 

# === 11. Evaluasi model dengan 10-Fold Cross Validation === 

best_model = rand_search.best_estimator_ 

y_pred_cv = cross_val_predict(best_model, X, y_encoded, 

cv=cv, n_jobs=-1) 

 

cm = confusion_matrix(y_encoded, y_pred_cv) 

tn, fp, fn, tp = cm.ravel() 

 

accuracy = accuracy_score(y_encoded, y_pred_cv) 

precision = precision_score(y_encoded, y_pred_cv) 

recall = recall_score(y_encoded, y_pred_cv) 

f1 = f1_score(y_encoded, y_pred_cv) 

 

print("\n=== Hasil Evaluasi Model XGBoost (10-Fold CV) ===") 

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}") 

print(f"Akurasi : {accuracy:.4f}") 

print(f"Presisi : {precision:.4f}") 

print(f"Recall  : {recall:.4f}") 

print(f"F1-Score: {f1:.4f}") 

 

print("\nClassification Report:") 

print(classification_report(y_encoded, y_pred_cv, 

target_names=le.classes_, digits=4)) 

 

# === 12. Visualisasi Confusion Matrix === 

plt.figure(figsize=(6,5)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 

            xticklabels=["Prediksi Negatif","Prediksi 

Positif"], 

            yticklabels=["Aktual Negatif","Aktual Positif"]) 

plt.xlabel("Prediksi") 
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plt.ylabel("Aktual") 

plt.title("Confusion Matrix - XGBoost (10-Fold Cross 

Validation)") 

plt.show() 

 

Lampiran  11. Proses XGBoost + TF-IDF/BoW + sample_weight 

# === 1. Import Library ===    

import pandas as pd 

import numpy as np 

from sklearn.model_selection import RandomizedSearchCV, KFold 

from sklearn.metrics import classification_report, 

confusion_matrix, accuracy_score, precision_score, 

recall_score, f1_score 

from sklearn.preprocessing import LabelEncoder 

import xgboost as xgb 

import joblib 

from google.colab import files 

import seaborn as sns 

import matplotlib.pyplot as plt 

import random, os 

 

# === 1A. Set seed agar hasil stabil === 

SEED = 42 

np.random.seed(SEED) 

random.seed(SEED) 

os.environ['PYTHONHASHSEED'] = str(SEED) 

 

# === 2. Load Data === 

df = pd.read_csv("hasil_bow.csv")   # sesuaikan nama file 

X = df.drop(columns=['LABEL']) 

y = df['LABEL'] 

 

# === 3. Encode Label === 

le = LabelEncoder() 

y_encoded = le.fit_transform(y) 

 

# === 4. Hitung rasio kelas === 

neg = np.sum(y_encoded == 0) 
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pos = np.sum(y_encoded == 1) 

ratio = neg / pos 

print(f"Rasio kelas (negatif:positif) = {neg}:{pos}") 

 

# === 5. Buat sample_weight untuk tiap instance === 

# Bobot kelas mayoritas = 1, minoritas = rasio 

class_weights = {0: 1, 1: ratio} 

sample_weights = np.array([class_weights[class_id] for 

class_id in y_encoded]) 

 

# === 6. Definisi model dasar XGBoost === 

model = xgb.XGBClassifier( 

    objective='binary:logistic', 

    eval_metric='logloss', 

    random_state=SEED, 

    use_label_encoder=False, 

    tree_method='hist' 

) 

 

# === 7. Parameter untuk RandomizedSearch === 

param_dist = { 

    'n_estimators': [200, 300, 400], 

    'learning_rate': [0.05, 0.08, 0.1], 

    'max_depth': [5, 7, 9], 

    'min_child_weight': [1, 3], 

    'gamma': [0, 0.05, 0.1], 

    'subsample': [0.8, 1.0], 

    'colsample_bytree': [0.8, 1.0] 

} 

 

# === 8. Definisi 10-Fold Cross Validation === 

cv = KFold(n_splits=10, shuffle=True, random_state=SEED) 

 

# === 9. RandomizedSearchCV dengan sample_weight === 

rand_search = RandomizedSearchCV( 

    estimator=model, 

    param_distributions=param_dist, 

    n_iter=15, 

    scoring='f1', 

    cv=cv, 



 

 

120 

    n_jobs=-1, 

    verbose=2, 

    random_state=SEED 

) 

 

# === 10. Jalankan pencarian parameter terbaik === 

print("\n🚀 Mulai proses tuning dengan 10-Fold Cross 

Validation ...") 

rand_search.fit(X, y_encoded, sample_weight=sample_weights) 

print("✅ Selesai tuning.\n") 

 

# === 11. Hasil parameter terbaik === 

print("=== Parameter Terbaik dari RandomizedSearchCV ===") 

print(rand_search.best_params_) 

print(f"F1-Score rata-rata CV terbaik: 

{rand_search.best_score_:.4f}") 

 

# === 12. Evaluasi model dengan 10-Fold Cross Validation 

(manual, support sample_weight) === 

best_model = rand_search.best_estimator_ 

 

y_pred_cv = np.zeros_like(y_encoded) 

 

print("\n🚀 Mulai evaluasi dengan 10-Fold Cross Validation 

(manual)...") 

for fold, (train_idx, test_idx) in enumerate(cv.split(X), 1): 

    X_train, X_test = X.iloc[train_idx], X.iloc[test_idx] 

    y_train, y_test = y_encoded[train_idx], 

y_encoded[test_idx] 

    sample_weight_train = sample_weights[train_idx] 

 

    best_model.fit(X_train, y_train, 

sample_weight=sample_weight_train) 

    y_pred_cv[test_idx] = best_model.predict(X_test) 

    print(f"Fold {fold} selesai ✅") 

 

print("✅ Evaluasi selesai.\n") 

 

# === 13. Hitung metrik evaluasi === 
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cm = confusion_matrix(y_encoded, y_pred_cv) 

tn, fp, fn, tp = cm.ravel() 

 

accuracy = accuracy_score(y_encoded, y_pred_cv) 

precision = precision_score(y_encoded, y_pred_cv) 

recall = recall_score(y_encoded, y_pred_cv) 

f1 = f1_score(y_encoded, y_pred_cv) 

 

print("=== Hasil Evaluasi Model XGBoost (10-Fold CV dengan 

sample_weight) ===") 

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}") 

print(f"Akurasi : {accuracy:.4f}") 

print(f"Presisi : {precision:.4f}") 

print(f"Recall  : {recall:.4f}") 

print(f"F1-Score: {f1:.4f}") 

 

print("\n" + classification_report(y_encoded, y_pred_cv, 

target_names=le.classes_, digits=4)) 

 

# === 14. Visualisasi Confusion Matrix === 

plt.figure(figsize=(6,5)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 

            xticklabels=["Prediksi Negatif","Prediksi 

Positif"], 

            yticklabels=["Aktual Negatif","Aktual Positif"]) 

plt.xlabel("Prediksi") 

plt.ylabel("Aktual") 

plt.title("Confusion Matrix - XGBoost (10-Fold CV, 

sample_weight)") 

plt.show() 

 

Lampiran  12. Proses XGBoost + TF-IDF/BoW + sample_weight + SMOTE 

# === 1. Import Library === 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import RandomizedSearchCV, 

StratifiedKFold 
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from sklearn.metrics import classification_report, 

confusion_matrix, accuracy_score, precision_score, 

recall_score, f1_score 

from sklearn.preprocessing import LabelEncoder 

from imblearn.over_sampling import SMOTE 

import xgboost as xgb 

import joblib 

from google.colab import files 

import seaborn as sns 

import matplotlib.pyplot as plt 

import random, os 

 

# === 1A. Set seed untuk reproduktifitas === 

SEED = 42 

np.random.seed(SEED) 

random.seed(SEED) 

os.environ['PYTHONHASHSEED'] = str(SEED) 

 

# === 2. Load Data === 

df = pd.read_csv("hasil_tfidf.csv")   # bisa diganti ke 

hasil_bow.csv 

X = df.drop(columns=['LABEL']) 

y = df['LABEL'] 

 

# === 3. Encode Label === 

le = LabelEncoder() 

y_encoded = le.fit_transform(y) 

 

# === 4. Hitung rasio kelas sebelum SMOTE === 

neg = np.sum(y_encoded == 0) 

pos = np.sum(y_encoded == 1) 

ratio = neg / pos 

print(f"Rasio kelas (negatif:positif) sebelum SMOTE = 

{neg}:{pos}") 

 

# === 5. Terapkan SMOTE untuk penyeimbangan data === 

smote = SMOTE(random_state=SEED) 
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X_res, y_res = smote.fit_resample(X, y_encoded) 

print(f"Setelah SMOTE: {np.bincount(y_res)} (Seimbang   )") 

 

# === 6. Buat sample_weight === 

class_weights = {0: 1, 1: ratio}  # meskipun sudah seimbang, 

tetap untuk stabilitas 

sample_weights = np.array([class_weights[c] for c in y_res]) 

 

# === 7. Definisi model dasar XGBoost === 

model = xgb.XGBClassifier( 

    objective='binary:logistic', 

    eval_metric='logloss', 

    random_state=SEED, 

    use_label_encoder=False, 

    tree_method='hist' 

) 

 

# === 8. Parameter RandomizedSearchCV === 

param_dist = { 

    'n_estimators': [200, 300, 400], 

    'learning_rate': [0.05, 0.08, 0.1], 

    'max_depth': [5, 7, 9], 

    'min_child_weight': [1, 3], 

    'gamma': [0, 0.05, 0.1], 

    'subsample': [0.8, 1.0], 

    'colsample_bytree': [0.8, 1.0] 

} 

 

# === 9. 10-Fold Cross Validation === 

cv = StratifiedKFold(n_splits=10, shuffle=True, 

random_state=SEED) 

 

# === 10. RandomizedSearchCV dengan sample_weight === 

rand_search = RandomizedSearchCV( 

    estimator=model, 

    param_distributions=param_dist, 

    n_iter=15, 
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    scoring='f1', 

    cv=cv, 

    n_jobs=-1, 

    verbose=2, 

    random_state=SEED 

) 

 

print("\n        Mulai RandomizedSearchCV (10-Fold CV, SMOTE + 

sample_weight)...") 

rand_search.fit(X_res, y_res, sample_weight=sample_weights) 

print("   Selesai tuning.\n") 

 

# === 11. Ambil best model === 

best_model = rand_search.best_estimator_ 

print("=== Parameter Terbaik ===") 

print(rand_search.best_params_) 

print(f"F1-Score rata-rata CV terbaik: 

{rand_search.best_score_:.4f}") 

 

# === 12. Evaluasi model dengan 10-Fold CV manual === 

y_pred_cv = np.zeros_like(y_res) 

for fold, (train_idx, test_idx) in enumerate(cv.split(X_res, 

y_res), 1): 

    X_train, X_test = X_res.iloc[train_idx], 

X_res.iloc[test_idx] 

    y_train, y_test = y_res[train_idx], y_res[test_idx] 

    sample_weight_train = sample_weights[train_idx] 

 

    best_model.fit(X_train, y_train, 

sample_weight=sample_weight_train) 

    y_pred_cv[test_idx] = best_model.predict(X_test) 

    print(f"Fold {fold} selesai   ") 

 

# === 13. Hitung metrik evaluasi === 

cm = confusion_matrix(y_res, y_pred_cv) 

tn, fp, fn, tp = cm.ravel() 
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accuracy = accuracy_score(y_res, y_pred_cv) 

precision = precision_score(y_res, y_pred_cv) 

recall = recall_score(y_res, y_pred_cv) 

f1 = f1_score(y_res, y_pred_cv) 

 

print("\n=== Hasil Evaluasi XGBoost (10-Fold CV, SMOTE + 

sample_weight) ===") 

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}") 

print(f"Akurasi : {accuracy:.4f}") 

print(f"Presisi : {precision:.4f}") 

print(f"Recall  : {recall:.4f}") 

print(f"F1-Score: {f1:.4f}") 

print(classification_report(y_res, y_pred_cv, 

target_names=le.classes_, digits=4)) 

 

# === 14. Visualisasi Confusion Matrix === 

plt.figure(figsize=(6,5)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 

            xticklabels=["Prediksi Negatif","Prediksi 

Positif"], 

            yticklabels=["Aktual Negatif","Aktual Positif"]) 

plt.xlabel("Prediksi") 

plt.ylabel("Aktual") 

plt.title("Confusion Matrix - XGBoost (10-Fold CV, SMOTE + 

sample_weight)") 

plt.show() 

 

# === 15. Simpan model === 

joblib.dump(best_model, 'model_xgb_best_SMOTE.pkl') 

files.download('model_xgb_best_SMOTE.pkl') 

 

print("\n   Model akhir berhasil disimpan!") 

 

Lampiran  13. Proses XGBoost + TF-IDF/BoW 

# === 1. Import Library ===  
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import pandas as pd 

import numpy as np 

from sklearn.model_selection import KFold 

from sklearn.metrics import classification_report, 

confusion_matrix, accuracy_score, precision_score, 

recall_score, f1_score 

from sklearn.preprocessing import LabelEncoder 

import xgboost as xgb 

import joblib 

from google.colab import files 

import seaborn as sns 

import matplotlib.pyplot as plt 

import random, os 

 

# === 1A. Set seed agar hasil stabil === 

SEED = 42 

np.random.seed(SEED) 

random.seed(SEED) 

os.environ['PYTHONHASHSEED'] = str(SEED) 

 

# === 2. Load Data TFIDF === 

df = pd.read_csv("hasil_tfidf.csv") # sesuaikan nama file 

X = df.drop(columns=['LABEL']) 

y = df['LABEL'] 

 

# === 3. Encode Label === 

le = LabelEncoder() 

y_encoded = le.fit_transform(y) 

 

# === 4. Tampilkan rasio kelas === 

neg = np.sum(y_encoded == 0) 

pos = np.sum(y_encoded == 1) 

print(f"Rasio kelas (negatif:positif) = {neg}:{pos}") 

 

# === 5. Definisi Model XGBoost (PARAMETER DEFAULT RESMI) 

model = xgb.XGBClassifier()      

 

# === 6. Definisi 10-Fold Cross Validation === 

cv = KFold(n_splits=10, shuffle=True, random_state=SEED) 
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# === 7. Jalankan 10-Fold CV === 

y_pred_cv = np.zeros_like(y_encoded) 

 

print("\n🚀 Mulai evaluasi 10-Fold Cross Validation (default 

resmi XGBoost)...") 

for fold, (train_idx, test_idx) in enumerate(cv.split(X), 1): 

 

    X_train, X_test = X.iloc[train_idx], X.iloc[test_idx] 

    y_train, y_test = y_encoded[train_idx], 

y_encoded[test_idx] 

 

    model.fit(X_train, y_train) 

    y_pred_cv[test_idx] = model.predict(X_test) 

    print(f"Fold {fold} selesai ✅") 

 

print("✅ Evaluasi selesai.\n") 

 

# === 8. Hitung metrik evaluasi === 

cm = confusion_matrix(y_encoded, y_pred_cv) 

tn, fp, fn, tp = cm.ravel() 

 

accuracy = accuracy_score(y_encoded, y_pred_cv) 

precision = precision_score(y_encoded, y_pred_cv) 

recall = recall_score(y_encoded, y_pred_cv) 

f1 = f1_score(y_encoded, y_pred_cv) 

 

print("=== Hasil Evaluasi Model XGBoost (10-Fold CV, Default 

Resmi) ===") 

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}") 

print(f"Akurasi : {accuracy:.4f}") 

print(f"Presisi : {precision:.4f}") 

print(f"Recall  : {recall:.4f}") 

print(f"F1-Score: {f1:.4f}\n") 

 

print(classification_report(y_encoded, y_pred_cv, 

target_names=le.classes_, digits=4)) 

 

# === 9. Visualisasi Confusion Matrix === 

plt.figure(figsize=(6,5)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 
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            xticklabels=["Prediksi Negatif","Prediksi 

Positif"], 

            yticklabels=["Aktual Negatif","Aktual Positif"]) 

plt.xlabel("Prediksi") 

plt.ylabel("Aktual") 

plt.title("Confusion Matrix - XGBoost (10-Fold CV, Default 

Resmi)") 

plt.show() 

 

Lampiran  14. Proses XGBoost + TF-IDF/BoW + scale_post_weight (split data 

80:20) 

# === 1. Import Library === 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split, KFold, 

RandomizedSearchCV 

from sklearn.metrics import ( 

    classification_report, confusion_matrix, 

    accuracy_score, precision_score, recall_score, f1_score 

) 

from sklearn.preprocessing import LabelEncoder 

import xgboost as xgb 

import seaborn as sns 

import matplotlib.pyplot as plt 

import joblib 

import random, os 

 

# === 1A. Set seed === 

SEED = 42 

np.random.seed(SEED) 

random.seed(SEED) 

os.environ['PYTHONHASHSEED'] = str(SEED) 

 

# === 2. Load Data === 

df = pd.read_csv("hasil_tfidf.csv")   # sesuaikan nama file 

X = df.drop(columns=['LABEL']) 

y = df['LABEL'] 

 

# === 3. Encode Label === 
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le = LabelEncoder() 

y_encoded = le.fit_transform(y) 

 

# === 4. Split Data (80% train, 20% test) === 

X_train, X_test, y_train, y_test = train_test_split( 

    X, y_encoded, test_size=0.2, stratify=y_encoded, 

random_state=SEED 

) 

 

# === 5. Hitung scale_pos_weight === 

neg = np.sum(y_train == 0) 

pos = np.sum(y_train == 1) 

scale_pos_weight = neg / pos 

print(f"Rasio kelas (negatif:positif) = {neg}:{pos}") 

print(f"scale_pos_weight = {scale_pos_weight:.2f}") 

 

# === 6. Model dasar === 

model = xgb.XGBClassifier( 

    objective='binary:logistic', 

    eval_metric='logloss', 

    use_label_encoder=False, 

    random_state=SEED 

) 

 

# === 7. Parameter untuk RandomizedSearchCV === 

param_dist = { 

    'n_estimators': [200, 300, 400], 

    'learning_rate': [0.05, 0.08, 0.1], 

    'max_depth': [5, 7, 9], 

    'min_child_weight': [1, 3], 

    'gamma': [0, 0.05, 0.1], 

    'subsample': [0.8, 1.0], 

    'colsample_bytree': [0.8, 1.0], 

    'scale_pos_weight': [scale_pos_weight, scale_pos_weight * 

1.1] 

} 

 

# === 8. Inner CV: 10-fold pada data training === 

inner_cv = KFold(n_splits=10, shuffle=True, 

random_state=SEED) 



 

 

130 

 

rand_search = RandomizedSearchCV( 

    estimator=model, 

    param_distributions=param_dist, 

    n_iter=15, 

    scoring='f1', 

    cv=inner_cv, 

    n_jobs=-1, 

    verbose=2, 

    random_state=SEED 

) 

 

# === 9. Jalankan RandomizedSearch pada 80% data training === 

rand_search.fit(X_train, y_train) 

 

# === 10. Dapatkan best model === 

best_model = rand_search.best_estimator_ 

print("\n=== Parameter Terbaik dari RandomizedSearchCV (Inner 

10-Fold) ===") 

print(rand_search.best_params_) 

print(f"F1-Score terbaik (cross-val): 

{rand_search.best_score_:.4f}") 

 

# === 11. Latih ulang best model pada seluruh data training 

(80%) === 

best_model.fit(X_train, y_train) 

 

# === 12. Prediksi pada data uji (20%) === 

y_pred = best_model.predict(X_test) 

 

# === 13. Evaluasi Model di Data Uji === 

print("\n=== Laporan Kinerja Model di Data Uji (20%) ===") 

print(classification_report(y_test, y_pred, digits=4)) 

 

# === 14. Metrik tambahan === 

cm = confusion_matrix(y_test, y_pred) 

tn, fp, fn, tp = cm.ravel() 

 

print("\n=== Hasil Evaluasi Model di Data Uji ===") 

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}") 
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print(f"Akurasi : {accuracy_score(y_test, y_pred):.4f}") 

print(f"Presisi : {precision_score(y_test, y_pred):.4f}") 

print(f"Recall  : {recall_score(y_test, y_pred):.4f}") 

print(f"F1-Score: {f1_score(y_test, y_pred):.4f}") 

 

# === 15. Visualisasi Confusion Matrix === 

plt.figure(figsize=(6,5)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 

            xticklabels=["Prediksi Negatif","Prediksi 

Positif"], 

            yticklabels=["Aktual Negatif","Aktual Positif"]) 

plt.xlabel("Prediksi") 

plt.ylabel("Aktual") 

plt.title("Confusion Matrix - XGBoost (Data Uji 20%)") 

plt.show() 

 

Lampiran  15. XGBoost + TF-IDF/BoW + sample_weight (split data 80:20) 

# === 1. Import Library ===   

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split, KFold, 

RandomizedSearchCV 

from sklearn.metrics import ( 

    classification_report, confusion_matrix, 

    accuracy_score, precision_score, recall_score, f1_score 

) 

from sklearn.preprocessing import LabelEncoder 

import xgboost as xgb 

import seaborn as sns 

import matplotlib.pyplot as plt 

import joblib 

import random, os 

 

# === 1A. Set seed === 

SEED = 42 

np.random.seed(SEED) 

random.seed(SEED) 

os.environ['PYTHONHASHSEED'] = str(SEED) 



 

 

132 

 

# === 2. Load Data === 

df = pd.read_csv("hasil_bow.csv")   # sesuaikan nama file 

X = df.drop(columns=['LABEL']) 

y = df['LABEL'] 

 

# === 3. Encode Label === 

le = LabelEncoder() 

y_encoded = le.fit_transform(y) 

 

# === 4. Split Data (80% train, 20% test) === 

X_train, X_test, y_train, y_test = train_test_split( 

    X, y_encoded, test_size=0.2, stratify=y_encoded, 

random_state=SEED 

) 

 

# === 5. Buat Sample Weight === 

neg = np.sum(y_train == 0) 

pos = np.sum(y_train == 1) 

 

# bobot kebalikan proporsi kelas 

weight_pos = neg / pos 

weight_neg = 1 

 

sample_weight_train = np.array([weight_pos if label == 1 else 

weight_neg for label in y_train]) 

 

print(f"Jumlah data kelas negatif = {neg}") 

print(f"Jumlah data kelas positif = {pos}") 

print(f"Bobot sample weight positif = {weight_pos:.2f}") 

print(f"Bobot sample weight negatif = {weight_neg}") 

 

# === 6. Model dasar (tanpa scale_pos_weight) === 

model = xgb.XGBClassifier( 

    objective='binary:logistic', 

    eval_metric='logloss', 

    use_label_encoder=False, 

    random_state=SEED 

) 
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# === 7. Parameter RandomizedSearchCV === 

param_dist = { 

    'n_estimators': [200, 300, 400], 

    'learning_rate': [0.05, 0.08, 0.1], 

    'max_depth': [5, 7, 9], 

    'min_child_weight': [1, 3], 

    'gamma': [0, 0.05, 0.1], 

    'subsample': [0.8, 1.0], 

    'colsample_bytree': [0.8, 1.0] 

} 

 

# === 8. Inner CV: 10-fold pada data training === 

inner_cv = KFold(n_splits=10, shuffle=True, 

random_state=SEED) 

 

rand_search = RandomizedSearchCV( 

    estimator=model, 

    param_distributions=param_dist, 

    n_iter=15, 

    scoring='f1', 

    cv=inner_cv, 

    n_jobs=-1, 

    verbose=2, 

    random_state=SEED 

) 

 

# === 9. Jalankan RandomizedSearch (dengan sample_weight) === 

rand_search.fit(X_train, y_train, 

sample_weight=sample_weight_train) 

 

# === 10. Dapatkan best model === 

best_model = rand_search.best_estimator_ 

print("\n=== Parameter Terbaik dari RandomizedSearchCV (Inner 

10-Fold) ===") 

print(rand_search.best_params_) 

print(f"F1-Score terbaik (cross-val): 

{rand_search.best_score_:.4f}") 

 

# === 11. Latih ulang best model pada seluruh data training 

(dengan sample_weight) === 



 

 

134 

best_model.fit(X_train, y_train, 

sample_weight=sample_weight_train) 

 

# === 12. Prediksi pada data uji (20%) === 

y_pred = best_model.predict(X_test) 

 

# === 13. Laporan Kinerja Model di Data Uji === 

print("\n=== Laporan Kinerja Model di Data Uji (20%) ===") 

print(classification_report(y_test, y_pred, digits=4)) 

 

# === 14. Metrik tambahan === 

cm = confusion_matrix(y_test, y_pred) 

tn, fp, fn, tp = cm.ravel() 

 

print("\n=== Hasil Evaluasi Model di Data Uji ===") 

print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}") 

print(f"Akurasi : {accuracy_score(y_test, y_pred):.4f}") 

print(f"Presisi : {precision_score(y_test, y_pred):.4f}") 

print(f"Recall  : {recall_score(y_test, y_pred):.4f}") 

print(f"F1-Score: {f1_score(y_test, y_pred):.4f}") 

 

# === 15. Visualisasi Confusion Matrix === 

plt.figure(figsize=(6,5)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 

            xticklabels=["Prediksi Negatif","Prediksi 

Positif"], 

            yticklabels=["Aktual Negatif","Aktual Positif"]) 

plt.xlabel("Prediksi") 

plt.ylabel("Aktual") 

plt.title("Confusion Matrix - XGBoost (Sample Weight, Data 

Uji 20%)") 

plt.show() 

 

 

 

Lampiran  16. XGBoost + TF-IDF/BoW+ sample_weight + SMOTE (split data 

80:20) 
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# === 1. Import Library ===     

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split, KFold, 

RandomizedSearchCV 

from sklearn.metrics import ( 

    classification_report, confusion_matrix, 

    accuracy_score, precision_score, recall_score, f1_score 

) 

from sklearn.preprocessing import LabelEncoder 

from imblearn.over_sampling import SMOTE 

from sklearn.utils.class_weight import compute_sample_weight 

import xgboost as xgb 

import seaborn as sns 

import matplotlib.pyplot as plt 

import joblib 

import random, os 

from google.colab import files 

 

# === 1A. Set seed untuk hasil konsisten === 

SEED = 42 

np.random.seed(SEED) 

random.seed(SEED) 

os.environ['PYTHONHASHSEED'] = str(SEED) 

 

# === 2. Load Data === 

df = pd.read_csv("hasil_tfidf.csv")   # sesuaikan nama file 

X = df.drop(columns=['LABEL']) 

y = df['LABEL'] 

 

# === 3. Encode Label === 

le = LabelEncoder() 

y_encoded = le.fit_transform(y) 

 

# === 4. Split Data (80% train, 20% test) === 

X_train, X_test, y_train, y_test = train_test_split( 

    X, y_encoded, test_size=0.2, stratify=y_encoded, 

random_state=SEED 

) 

print(f"✅ Data latih: {X_train.shape}, Data uji: {X_test.shape}") 
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# === 5. Terapkan SMOTE pada data training saja === 

print("\n🔄 Melakukan oversampling SMOTE pada data 

training...") 

smote = SMOTE(random_state=SEED) 

X_train_res, y_train_res = smote.fit_resample(X_train, 

y_train) 

print(f"Sebelum SMOTE: {np.bincount(y_train)}") 

print(f"Sesudah SMOTE: {np.bincount(y_train_res)}") 

 

# === 6. Hitung sample weights (agar memperhatikan distribusi 

asli) === 

sample_weights = 

compute_sample_weight(class_weight='balanced', y=y_train_res) 

 

# === 7. Definisi model dasar === 

model = xgb.XGBClassifier( 

    objective='binary:logistic', 

    eval_metric='logloss', 

    use_label_encoder=False, 

    random_state=SEED 

) 

 

# === 8. Parameter untuk RandomizedSearchCV === 

param_dist = { 

    'n_estimators': [200, 300, 400], 

    'learning_rate': [0.05, 0.08, 0.1], 

    'max_depth': [5, 7, 9], 

    'min_child_weight': [1, 3], 

    'gamma': [0, 0.05, 0.1], 

    'subsample': [0.8, 1.0], 

    'colsample_bytree': [0.8, 1.0] 

} 

 

# === 9. Inner CV: 10-fold pada data training hasil SMOTE === 

inner_cv = KFold(n_splits=10, shuffle=True, 

random_state=SEED) 

 

rand_search = RandomizedSearchCV( 

    estimator=model, 
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    param_distributions=param_dist, 

    n_iter=15, 

    scoring='f1', 

    cv=inner_cv, 

    n_jobs=-1, 

    verbose=2, 

    random_state=SEED 

) 

 

# === 10. Jalankan RandomizedSearchCV dengan sample weight + 

SMOTE data === 

print("\n🚀 Menjalankan RandomizedSearchCV (10-fold)...") 

rand_search.fit(X_train_res, y_train_res, 

sample_weight=sample_weights) 

 

# === 11. Dapatkan best model === 

best_model = rand_search.best_estimator_ 

print("\n=== Parameter Terbaik dari RandomizedSearchCV (Inner 

10-Fold) ===") 

print(rand_search.best_params_) 

print(f"F1-Score terbaik (cross-val): 

{rand_search.best_score_:.4f}") 

 

# === 12. Latih ulang best model pada seluruh data training 

hasil SMOTE === 

best_model.fit(X_train_res, y_train_res, 

sample_weight=sample_weights) 

 

# === 13. Prediksi pada data uji (20%) === 

y_pred = best_model.predict(X_test) 

 

# === 14. Evaluasi Model di Data Uji === 

print("\n=== Laporan Kinerja Model di Data Uji (20%) ===") 

print(classification_report(y_test, y_pred, digits=4)) 

 

# === 15. Metrik tambahan === 

cm = confusion_matrix(y_test, y_pred) 

tn, fp, fn, tp = cm.ravel() 

 

print("\n=== Hasil Evaluasi Model di Data Uji ===") 
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print(f"TP: {tp}, FP: {fp}, FN: {fn}, TN: {tn}") 

print(f"Akurasi : {accuracy_score(y_test, y_pred):.4f}") 

print(f"Presisi : {precision_score(y_test, y_pred):.4f}") 

print(f"Recall  : {recall_score(y_test, y_pred):.4f}") 

print(f"F1-Score: {f1_score(y_test, y_pred):.4f}") 

 

# === 16. Visualisasi Confusion Matrix === 

plt.figure(figsize=(6,5)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 

            xticklabels=["Prediksi Negatif","Prediksi 

Positif"], 

            yticklabels=["Aktual Negatif","Aktual Positif"]) 

plt.xlabel("Prediksi") 

plt.ylabel("Aktual") 

plt.title("Confusion Matrix - XGBoost (SMOTE + Sample Weight, 

Data Uji 20%)") 

plt.show() 

 

Lampiran  17. UI (User Interface) 

import streamlit as st 

import pandas as pd 

import numpy as np 

import re 

import matplotlib.pyplot as plt 

from wordcloud import WordCloud 

 

from sklearn.feature_extraction.text import 

CountVectorizer, TfidfVectorizer 

from sklearn.model_selection import train_test_split 

from xgboost import XGBClassifier 

 

from Sastrawi.StopWordRemover.StopWordRemoverFactory 

import StopWordRemoverFactory 

from Sastrawi.Stemmer.StemmerFactory import 

StemmerFactory 
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from nltk.tokenize import word_tokenize 

import nltk 

nltk.download('punkt') 

 

# Page Config 

st.set_page_config(page_title="Analisis Sentimen 

BPJS", layout="wide") 

# Header 

st.markdown(""" 

<div style="background-

color:#2E3A87;color:white;padding:60px 0 30px 0; 

text-align:center;font-size:32px;font-weight:700;"> 

APLIKASI ANALISIS SENTIMEN BPJS KESEHATAN 

</div> 

""", unsafe_allow_html=True) 

# Tabs 

tab1, tab2, tab3 = st.tabs([ 

    "Dataset & Preprocessing", 

    "Fitur Ekstraksi", 

    "Analisis Sentimen" 

]) 

#Tab 1: Dataset & Preprocessing 

with tab1: 

    st.subheader("Upload Dataset & Preprocessing") 

    uploaded = st.file_uploader("Upload CSV/XLSX", 

type=["csv", "xlsx"]) 

 

    if uploaded: 

        df = pd.read_csv(uploaded) if 

uploaded.name.endswith(".csv") else 

pd.read_excel(uploaded) 
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        if "ULASAN" not in df.columns or "LABEL" not 

in df.columns: 

            st.error("Dataset harus memiliki kolom 

ULASAN dan LABEL") 

            st.stop() 

 

        df = df[["ULASAN", "LABEL"]].copy() 

        st.success("Dataset berhasil dimuat") 

 

        # Cleansing & Case Folding 

        def cleansing(text): 

            text = str(text).lower() 

            text = re.sub(r"http\S+|www\S+", "", 

text) 

            text = re.sub(r"[^a-z\s]", " ", text) 

            text = re.sub(r"\s+", " ", text).strip() 

            return text 

 

        df["Cleansing"] = 

df["ULASAN"].apply(cleansing) 

 

        # Tokenizing 

        df["Tokenizing"] = 

df["Cleansing"].apply(word_tokenize) 

 

        # Normalisasi 

        slang = pd.read_csv( 

            "https://raw.githubusercontent.com/nasals

abila/kamus-alay/master/colloquial-indonesian-

lexicon.csv" 

        ) 
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        slang_dict = 

dict(zip(slang["slang"].str.lower(), 

slang["formal"].str.lower())) 

        df["Normalisasi"] = 

df["Tokenizing"].apply(lambda x: [slang_dict.get(w, 

w) for w in x]) 

 

        # Stopword Removal 

        stopwords = 

set(StopWordRemoverFactory().get_stop_words()) 

        df["Stopword_Removal"] = 

df["Normalisasi"].apply(lambda x: [w for w in x if w 

not in stopwords]) 

 

        # Stemming 

        stemmer = StemmerFactory().create_stemmer() 

        df["Stemming"] = 

df["Stopword_Removal"].apply(lambda x: 

[stemmer.stem(w) for w in x]) 

 

        # Label Encoding 

        label_map = {"negatif": 0, "positif": 1} 

        df["LABEL_NUM"] = df["LABEL"].map(label_map) 

 

        st.subheader("Hasil Lengkap Preprocessing") 

        st.dataframe(df[[ 

            "ULASAN", 

            "Cleansing", 

            "Tokenizing", 

            "Normalisasi", 

            "Stopword_Removal", 

            "Stemming", 
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            "LABEL" 

        ]].head()) 

 

        st.session_state["preprocessed"] = df 

        st.session_state["ekstraksi_selesai"] = False 

 

# Tab 2 : Fitur Ekstraksi 

with tab2: 

    st.subheader("Fitur Ekstraksi") 

 

    if "preprocessed" not in st.session_state: 

        st.warning("Jalankan Tab 1 terlebih dahulu") 

        st.stop() 

 

    df = st.session_state["preprocessed"] 

    df["JOINED"] = df["Stemming"].apply(lambda x: " 

".join(x)) 

 

    metode = st.radio("Pilih metode ekstraksi:", 

["TF-IDF", "BoW"], horizontal=True) 

 

    if st.button("Mulai Ekstraksi"): 

        if metode == "TF-IDF": 

            vectorizer = 

TfidfVectorizer(max_features=5000) 

        else: 

            vectorizer = 

CountVectorizer(max_features=5000) 

 

        X = vectorizer.fit_transform(df["JOINED"]) 

 

        st.session_state["X"] = X 
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        st.session_state["y"] = df["LABEL_NUM"] 

        st.session_state["vectorizer"] = vectorizer 

        st.session_state["ekstraksi_selesai"] = True 

 

        st.success(f"Ekstraksi {metode} selesai") 

 

        # Preview Hasil Ekstraksi 

        preview_df = pd.DataFrame( 

            X.toarray(), 

            columns=vectorizer.get_feature_names_out(

) 

        ).head() 

 

        st.subheader("Preview Hasil Ekstraksi") 

        st.dataframe(preview_df) 

 

# Tab 3 : Analisis Sentimen 

with tab3: 

    st.subheader("Analisis Sentimen") 

 

    if not st.session_state.get("ekstraksi_selesai", 

False): 

        st.info("Lakukan ekstraksi fitur di Tab 2 

terlebih dahulu") 

        st.stop() 

 

    X = st.session_state["X"] 

    y = st.session_state["y"] 

    df = st.session_state["preprocessed"].copy() 

 

    # Train Model 

    model = XGBClassifier( 
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        objective='binary:logistic', 

        eval_metric='logloss', 

        random_state=42, 

        subsample=1.0, 

        n_estimators=400, 

        min_child_weight=1, 

        max_depth=9, 

        learning_rate=0.08, 

        gamma=0.1, 

        colsample_bytree=0.8, 

        tree_method='hist', 

        use_label_encoder=False 

    ) 

 

    model.fit(X, y) 

 

    # Prediksi  

    y_pred_all = model.predict(X) 

    df["Prediksi"] = pd.Series(y_pred_all).map({0: 

"Negatif", 1: "Positif"}) 

 

    st.subheader("Hasil Prediksi") 

    st.dataframe(df[["ULASAN", "Prediksi"]].head(10)) 

 

    # Diagram Batang 

    st.subheader("Distribusi Sentimen") 

    counts = df["Prediksi"].value_counts() 

 

    fig, ax = plt.subplots() 

    ax.bar( 

        counts.index, 

        counts.values, 
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        color=["red", "green"] 

    ) 

    ax.set_xlabel("Sentimen") 

    ax.set_ylabel("Jumlah") 

    st.pyplot(fig) 

 

    #WordCloud 

    st.subheader("WordCloud Sentimen") 

 

    col1, col2 = st.columns(2) 

 

    with col1: 

        st.markdown("WordCloud Positif") 

        text_pos = " ".join([" ".join(x) for x in 

df[df["Prediksi"] == "Positif"]["Stemming"]]) or 

"positif" 

        wc_pos = WordCloud(width=400, height=300, 

background_color="white", 

colormap="Greens").generate(text_pos) 

        fig, ax = plt.subplots() 

        ax.imshow(wc_pos) 

        ax.axis("off") 

        st.pyplot(fig) 

 

    with col2: 

        st.markdown("WordCloud Negatif") 

        text_neg = " ".join([" ".join(x) for x in 

df[df["Prediksi"] == "Negatif"]["Stemming"]]) or 

"negatif" 

        wc_neg = WordCloud(width=400, height=300, 

background_color="white", 

colormap="Reds").generate(text_neg) 
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        fig, ax = plt.subplots() 

        ax.imshow(wc_neg) 

        ax.axis("off") 

        st.pyplot(fig) 

 


