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Lampiran 3. Surat Pernyataan Validasi Pelabelan Data Guru Bahasa

Indonesia
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Lampiran 4. Surat Pernyataan Validasi Pelabelan Data Wartawan
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Lampiran 5. Dokumentasi Validasi Pelabelan Data Guru Bahasa Indonesia

=

Lampiran 7. Implementasi Crawling Data

import datetime

import subprocess

import time

import pandas as pd

import os

start_date = datetime.date(2019, 10, 20)
end_date = datetime.date(2024, 10, 20)
limit = 10000

hashtag = '#bendunganjatigede'

lang = 'id'
twitter_auth_token = ' '
jeda = 60

tweet_mode = 'LATEST'




# Fungsi bantu untuk tanggal
def next_month(d):
if d.month == 12:
return datetime.date(d.year + 1, 1, 1)
else:
return datetime.date(d.year, d.month + 1, 1)
# Loop crawling per bulan
current_date = start_date
while current_date <= end_date:
next_date = next_month(current_date)
if next_date > end_date:
next_date = end_date + datetime.timedelta(days=1)
filename = f'tweet_{limit}.csv' # tanpa tanggal
search_keyword = f'{hashtag} since:{current_date}
until:{next_date} lang:{lang}’
command = [
‘npx', '-y', 'npx', 'tweet-harvest@latest',
'-0', filename,
'-s', search_keyword,
'--tab', tweet_mode,
'-1', str(limit),
'--token', twitter_auth_token ]
subprocess.run(command)
if os.path.exists(filename):
df = pd.read_csv(filename)
if 'text' in df.columns:
df[['text']].to_csv(filename, index=False)
time.sleep(jeda)
current_date = next_date

Lampiran 8. Implementasi Pre-Processing

1. Cleaning Data

import re

import pandas as pd

# Cleaning Function

def cleaning(text):

text = re.sub(r'http\S+|www.\S+', ' ', str(text)) # hapus URL

text = re.sub(r'@\w+|#\w+', ' ', text) # hapus mention/hashtag
text = re.sub(r'[?a-zA-Z\s]', ' ', text) # hapus angka, tanda baca,
emot

df["cleaning"] = df["full_text"].apply(cleaning)
print(df[["full_text", "cleaning"]].head())

2. Case Folding

df["casefolding"] = df["cleaning"].str.lower()
print(df[["cleaning"”, "casefolding"]].head())

3. Normalize

import pandas as pd

import re

# === 1. Load data CSV ===

slang_csv = pd.read_csv(" slang.csv")
# === 2. Load data TXT ===

slang_txt = {}

101



102

with open("combined slang words.txt", "r") as f:
for line in f:
parts = line.strip().split(":", 1)
if len(parts) == 2:
slang_txt[parts[@].strip().lower()]
parts[1].strip().lower()

# === 3. Load data Excel ===
slang_excel = pd.read_excel("data_normalize.x1lsx")
# === 4. Gabungkan kamus (TXT - CSV - Excel) ===

slang _dict = {}
slang_dict.update(slang_txt)
slang _dict.update(dict(zip(
slang csv["slang"].astype(str).str.strip().str.lower(),
slang csv["formal"].astype(str).str.strip().str.lower() )))
slang_dict.update(dict(zip(
slang_excel["tidak baku"].astype(str).str.strip().str.lower(),
slang_excel["baku"].astype(str).str.strip().str.lower() )))
print(f"Total entri kamus gabungan: {len(slang_dict)}")

# === 5. Fungsi Normalisasi ===
def normalize(text, kamus):

words = re.findall(r"\w+", text.lower()) # ambil kata alfanumerik
saja

return " ".join([kamus.get(w, w) for w in words])

# === 6. Terapkan ke DataFrame ===
df["normalize"] = df["casefolding"].apply(lambda x: normalize(str(x),
slang_dict))
print(df[["casefolding"”, "normalize"]].head())
# === 7. Analisis Sumber Normalisasi ===
sumber_dict = {}
# tandai dari TXT
for k in slang_txt.keys():
sumber_dict[k] = "TXT"
# tandai dari CSV
for k in slang _csv["slang"].astype(str).str.strip().str.lower():
sumber_dict[k] = "CSv"
# tandai dari Excel
for k in slang_excel["tidak
baku"].astype(str).str.strip().str.lower():
sumber_dict[k] = "Excel"
# cek kata yang berhasil diganti
def cek_sumber(text, kamus, sumber):
words = re.findall(r"\w+", text.lower())

hasil = []
for w in words:
if w in kamus and kamus[w] != w:

hasil.append((w, kamus[w], sumber.get(w, "Tidak
Diketahui")))
return hasil
df["cek_normalisasi"] = df["casefolding"].apply(lambda x:
cek_sumber(str(x), slang dict, sumber_dict))
print(df[["casefolding", "normalize", "cek_normalisasi”]].head())

4. Tokenize

df["tokenize"] = df["normalize"].apply(lambda x: x.split())
print(df[["normalize", "tokenize"]].head())
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5. Stopword Removal

from Sastrawi.StopWordRemover.StopWordRemoverFactory import
StopWordRemoverFactory
import pandas as pd
# === 1. Stopword bawaan Sastrawi ===
stop_factory = StopWordRemoverFactory()
stopwords_sastrawi = set(stop_factory.get_stop_words())
# === 2. Fungsi Stopword Removal ===
def stopword_removal(tokens):
return [t for t in tokens if t not in stopwords_sastrawi]
# === 3. Terapkan ke dataframe ===
df["stopword"] = df["tokenize"].apply(stopword_removal)
print(df[["tokenize", "stopword"]].head())

6. Stemming

from Sastrawi.Stemmer.StemmerFactory import StemmerFactory
stemmer = StemmerFactory().create_stemmer()
def stemming(tokens):

return [stemmer.stem(t) for t in tokens]
df["stemming"] = df["stopword"].apply(stemming)
print(df[["stopword", "stemming"]].head())

Lampiran 9. Implementasi Ekstraksi Fitur TF-IDF

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
# Load data hasil preprocessing

path = "3a. Pre_processing.xlsx"

df = pd.read_excel(path)

print("Data awal:")

print(df.head())

texts = df['stemming'].astype(str)

# TF-IDF dengan max_features=2000

tfidf = TfidfVectorizer(max_features=2000)
X = tfidf.fit_transform(texts)

# Simpan hasil TF-IDF ke DataFrame + Label
tfidf_df = pd.DataFrame(X.toarray(),
columns=tfidf.get feature_names_out())
tfidf_df['Label’'] = df['Label’].values

# Simpan ke Excel
output_path = "4a. tf_idf.x1lsx"
tfidf_df.to_excel(output path, index=False)

print(tfidf_df.head())
print (f"\nHasil disimpan di: {output_path}")

Lampiran 10. Implementasi Model LSTM

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import KFold

from sklearn.preprocessing import LabelEncoder
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from sklearn.metrics import (
accuracy_score, precision_recall fscore_support,
confusion_matrix)

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, LSTM, Reshape

results_summary = []
label_encoder = None
y_encoded = None

def create_model(input_dim, output_dim):
"""Membuat model Keras dengan LSTM
model = Sequential()
model.add(Reshape((1, input_dim), input_shape=(input_dim,)))
model.add(LSTM(64))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(output_dim, activation='softmax'))
model.compile(
optimizer="adam',
loss="'sparse_categorical_crossentropy’,
metrics=["'accuracy'] )
return model
model = create_model(input_dim=X.shape[1],
output_dim=len(np.unique(y_encoded)))
model.summary()
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score,
precision_recall fscore_support, confusion_matrix,
classification_report
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.callbacks import TensorBoard, EarlyStopping
import tensorflow as tf
from datetime import datetime
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

def train_and_evaluate_all_combinations(X, y, epochs_list=[100],
batch_size_1ist=[32, 64], n_splits=5, random_state=42):

global results_summary, label_encoder, y encoded

label _encoder = LabelEncoder()

y_encoded = label _encoder.fit_transform(y)

summary_data = []

timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

main_folder = f"adasyn_training results_{timestamp}"

os.makedirs(main_folder, exist_ok=True)

for epochs in epochs_list:

for batch_size in batch_size list:
fold_results, subfolder = _train_single_combination(
X, y_encoded, epochs, batch_size, n_splits,

random_state, main_folder )



best fold = max(fold results, key=lambda fr:
fr['fl_score'])
# === Rata-rata epoch terbaik antar fold ===
avg_best_epoch = int(np.mean([fr['best_epoch'] for fr in
fold_results]))
# === Confusion Matrix Fold Terbaik ===

cm = confusion_matrix(best_fold['y_val'], best_fold ['y pred'])

cm_df = pd.DataFrame(cm,index=1abel_encoder.classes_,
columns=label_encoder.classes_)
cm_path_xlsx = os.path.join(subfolder, "folds_metrics.xlsx")

with pd.ExcelWriter(cm_path_xlsx, engine="openpyxl"

mode="a", if_sheet_exists="replace") as writer:

cm_df.to_excel(writer, sheet_name=f"cm_best_fold", index=True)
plt.figure(figsize=(6, 5)) sns.heatmap(cm, annot=True, fmt="d",

cmap="Blues", xticklabels=1label_encoder.classes_,
yticklabels=1abel_encoder.classes_)
plt.xlabel("Predicted")
plt.ylabel("Actual")

plt.title(f"Confusion Matrix (Best Fold {best fold ['fold']})")

plt.tight_layout()
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plt.savefig(os.path.join(subfolder, "confusion_matrix_best_fold.png")

Yplt.close()
row_data = {'epochs_set': epochs, 'best _epoch _avg':
avg_best_epoch, 'batch_size': batch_size, 'accuracy’:
best_fold['accuracy'], 'precision_macro':
best_fold[ 'precision'], 'recall macro': best_fold['recall'],
'fl _score_macro': best fold['fl score']}
report = classification_report(best fold['y val'],
best_fold['y_pred'], target_names=label_encoder.classes_,
output_dict=True)
for class_name in label encoder.classes_:
row_data[f'precision_{class_name} ']
report[class_name][ 'precision’]
row_data[f'recall {class_name}'] =
report[class_name][ 'recall’]
row_data[f'fl_score_{class_name}']
report[class_name]['fl-score’]
summary_data.append(row_data)
# === Simpan summary kombinasi ===
df_summary = pd.DataFrame(summary_ data)

cols = ['epochs_set', 'best_epoch_avg', 'batch_size', 'accuracy',

"precision_macro', ‘'recall_macro', 'fl_score_macro']
for class_name in label_encoder.classes_:
cols.extend([f'precision_{class_name}',
f'recall_{class_name}', f'fl_score_{class_name}'])
df_summary = df_summary[cols]
df_summary.to_excel(os.path.join(main_folder,
"summary_results.xlsx"), index=False)
print(f"Semua hasil tersimpan di folder: {main_folder}")

def _train_single_combination(X, y_encoded, epochs, batch_size,

n_splits, random_state, main_folder):

kf = KFold(n_splits=n_splits, shuffle=True,
random_state=random_state)

fold _results = [] all_histories = []

all y val = np.array([]) all_y pred = np.array([])



subfolder = os.path.join(main_folder,
f"epochs_{epochs} batch_{batch_size}") os.makedirs(subfolder,
exist_ok=True)
tb_folder = os.path.join(subfolder, "tensorboard_logs")
os.makedirs(tb_folder, exist_ok=True)
for fold, (train_idx, val_idx) in enumerate(kf.split(X), 1):
print(f"\n--- Epochs: {epochs}, Batch Size: {batch_size},
Fold: {fold} ---")
X_train, X_val = X[train_idx], X[val_idx] y_train, y_val =
y_encoded[train_idx], y_encoded[val_idx]

model = create_model(input_dim=X.shape[1],
output_dim=len(np.unique(y_encoded)))

log dir = os.path.join(tb_folder, f"fold_{fold}")
tensorboard_cb = TensorBoard(log_dir=log dir,
histogram_freq=1)

early stopping cb = EarlyStopping( monitor='val loss',
patience=10,verbose=1, restore_best_weights=True)
history = model.fit( X_train, y_train, validation_data =(X_val,
y_val),

epochs=epochs, batch_size=batch_size, verbose=1,
callbacks=[tensorboard cb, early stopping cb] )

history _dict = history.history
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best_epoch = np.argmin(history.history['val loss']) + 1 print(f"Fold

{fold} berhenti di epoch terbaik: {best_epoch}")

y_pred = np.argmax(model.predict(X_val), axis=1)
acc = accuracy_score(y_val, y pred)

precision, recall, fi, _ =
precision_recall fscore_support(y_val, y pred, average='macro',
zero_division=0)

all_y val = np.concatenate([all_y val, y_val])
all y pred = np.concatenate([all_y pred, y pred])
all histories.append(history dict)

fold_result = {'fold': fold, 'best_epoch': best_epoch,
'accuracy': acc,'precision’': precision, 'recall': recall,
'fl_score': f1,'history': history_dict,'y val': y val,
'y pred': y_pred}
fold_results.append(fold_result)

model.save(os.path.join(subfolder, f"model fold{fold}.h5"))

hist_df = pd.DataFrame(history dict)
hist_df.to_excel(os.path.join(subfolder,
f"history fold{fold}.xlsx"), index=False)
plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1)
plt.plot(hist_df['loss'], label='Training Loss')
plt.plot(hist_df['val_loss'], label='Validation Loss")
plt.title(f'Loss (Fold {fold}) - Best Epoch: {best_epoch}"')
plt.xlabel('Epoch') plt.ylabel('Loss')plt.legend()

plt.subplot(1l, 2, 2)
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plt.plot(hist_df['accuracy'], label='Training Accuracy')
plt.plot(hist_df['val_accuracy'], label='Validation Accuracy')
plt.title(f'Accuracy (Fold {fold}) - Best Epoch:

{best_epoch}')plt.xlabel('Epoch') plt.ylabel('Accuracy')
plt.legend()

plt.tight_layout()plt.savefig(os.path.join(subfolder,
f"training_curves_fold{fold}.png"))
plt.close()

combined_cm = confusion_matrix(all_y val, all y pred)
plt.figure(figsize=(8, 6))
sns.heatmap(combined _cm, annot=True, fmt='d', cmap='Blues’,
xticklabels=1abel encoder.classes_,
yticklabels=1label encoder.classes_)
plt.title(f'Combined Confusion Matrix')
plt.xlabel('Predicted Label')
plt.ylabel('Actual Label')
plt.savefig(os.path.join(subfolder,
"combined_confusion_matrix.png"))
plt.close()
class_report = classification_report(all y val,
all y pred,target_names=label_encoder.classes_,
output_dict=True, zero_division=0)
df_class_report = pd.DataFrame(class_report).transpose()
excel_path = os.path.join(subfolder, "folds_metrics.xlsx")
df_folds = pd.DataFrame([{'fold': fr['fold'],
'best_epoch': fr['best epoch'],
'accuracy': fr['accuracy'], 'precision': fr['precision'],
'recall’: fr['recall'],'f1 score': fr['fl_score']}
for fr in fold_results])
with pd.ExcelWriter(excel path, engine="openpyxl") as writer:
df_folds.to_excel(writer, sheet_name="metrics_per_ fold",
index=False)
df_class_report.to_excel(writer,
sheet_name="combined_classification_report")
pd.DataFrame(combined_cm, index=1label_encoder.classes_,
columns=label_encoder.classes_).to_excel(writer,
sheet_name="combined_confusion_matrix")
return fold_results, subfolder

Lampiran 11. Implementasi Resampling

from sklearn.feature_extraction.text import TfidfVectorizer
from imblearn.over_sampling import SMOTE, ADASYN

# TF-IDF

tfidf = TfidfVectorizer(max_features=2000)
X = tfidf.fit_transform(df['stemming'])

y = df['Label’]

# SMOTE

smote = SMOTE(random_state=42)

X_smote, y_smote = smote.fit_resample(X, y)
# Gabungkan ke DataFrame

df_smote = pd.DataFrame(X_smote.toarray(),
columns=tfidf.get_feature_names_out())
df_smote['Label'] = y_smote
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# Simpan & print

df_smote.to_excel("output_smote.xlsx", index=False)
print("Hasil SMOTE:\n", df_smote['Label'].value_counts())
# ADASYN

adasyn = ADASYN(random_state=42)

X_adasyn, y_adasyn = adasyn.fit_resample(X, y)

df_adasyn = pd.DataFrame(X_adasyn.toarray(),
columns=tfidf.get_feature_names_out())

df_adasyn['Label'] = y_adasyn
df_adasyn.to_excel("output_adasyn.xlsx", index=False)
print("Hasil ADASYN:\n", df_adasyn['Label'].value_counts())
from imblearn.under_sampling import RandomUnderSampler

rus = RandomUnderSampler(random_state=42)

X_rus, y_rus = rus.fit_resample(X.values.reshape(-1,1), y)

df_rus_seq = pd.DataFrame({'stemming': X_rus.flatten(), 'Label':
y_rus})

df_rus_seq.to_excel("output under.xlsx", index=False)
print("Hasil Undersampling tanpa TF-IDF:\n",

df_rus_seq[ 'Label'].value_counts())

Lampiran 12. Implementasi GUI

import streamlit as st

import pickle

import numpy as np

import pandas as pd

from tensorflow.keras.models import load_model
from preprocessing import TextPreprocessor
import warnings
warnings.filterwarnings('ignore')

# ===== KONFIGURASI HALAMAN =====

st.set_page_config(
page_title="Analisis Sentimen Utang Negara", page_icon="[J4",
layout="wide", initial sidebar_state="expanded")

# ===== CUSTOM CSS =====
st.markdown("""
<style>

.main-header {
font-size: 2.5rem; font-weight: bold; color: #1E88ES5;
text-align: center; margin-bottom: 1rem;}
.prediction-box {
padding: 20px; border-radius: 10px; margin: 20px 0;
text-align: center; font-size: 1.5rem; font-weight: bold;}
.positive {
background-color: #4CAF50; color: white;}
.negative {
background-color: #F44336; color: white;}
.neutral {
background-color: #9E9E9E;color: white;}
.confidence-score {
font-size: 1.2rem; color: #555; margin-top: 10px;}
.info-box {
background-color: #E3F2FD; padding: 15px;
border-radius: 8px; border-left: 5px solid #1E88ES5;



margin: 10px 0;} </style>
, unsafe_allow_html=True)
# ===== LOAD MODEL DAN ARTIFACTS =====
@st.cache_resource
def load_artifacts():
"""Load model, vectorizer, dan label encoder
try:
model = load_model('model_best.h5")
with open('tfidf_vectorizer.pkl', 'rb') as f:
tfidf_vectorizer = pickle.load(f)
with open('label_encoder.pkl', 'rb') as f:
label encoder = pickle.load(f)
preprocessor = TextPreprocessor()
return model, tfidf vectorizer, label encoder, preprocessor
except Exception as e:

st.error(f" X Error loading artifacts: {str(e)}")
st.info("Pastikan file berikut ada dalam folder yang sama:
model best.h5, tfidf_vectorizer.pkl, label encoder.pkl™)
return None, None, None, None
# Load artifacts
model, tfidf_vectorizer, label_encoder, preprocessor =
load_artifacts()
# ===== FUNGSI PREDIKSI =====
def predict_sentiment(text):
""" Fungsi untuk memprediksi sentimen dari teks input
Args:
text (str): Teks tweet yang akan diprediksi
Returns:
tuple: (predicted_class, confidence_score,
all probabilities)"""
# 1. Preprocessing
processed_text = preprocessor.preprocess(text)
# 2. Transform dengan TF-IDF
tfidf_features =
tfidf_vectorizer.transform([processed_text]).toarray()
# 3. Prediksi dengan model
prediction_proba = model.predict(tfidf_features, verbose=0)
# 4. Get predicted class
predicted_class_idx = np.argmax(prediction_proba, axis=1)[0]
predicted_class =
label_encoder.inverse_transform([predicted class_idx])[@]
# 5. Get confidence score
confidence_score = prediction_proba[@][predicted_class_idx] *

100

return predicted_class, confidence_score, prediction_proba[@]
# ===== HEADER =====
st.markdown('<p class="main-header"> )l Sentimen Analisis Utang
Negara</p>', unsafe_allow_html=True)
# ===== SIDEBAR =====
with st.sidebar:
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st.image("https://img.icons8.com/fluency/96/000000/bar-chart.png",

width=80)
st.title(" [ Informasi")
st.markdown("""
<div class="info-box">
<b>Model:</b> LSTM + TF-IDF<br>
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<b>Pre-processing:</b>
<ul>
<li>Cleaning Data</1i>
<li>Case Folding</1li>
<li>Normalisasi</1i>
<li>Tokenisasi</1i>
<li>Stopword Removal</1i>
<li>Stemming</1i> </ul>
<b>Features:</b> TF-IDF (max 2000)<br>
<b>Training:</b> K-Fold (k=5), Early Stopping<br>
<b>Batch Size:</b> 32 </div>
""" unsafe_allow_html=True)
st.markdown("---")
st.markdown("### @ Cara Penggunaan")
st.markdown("""
1. Masukkan teks tweet
2. Klik tombol **Prediksi**
3. Lihat hasil sentimen dan confidence score """)
# ===== MAIN CONTENT =====
if model is not None:
tabl, tab2 = st.tabs(["®& Prediksi Sentimen", " ./ About"])
with tabil:
st.subheader("Masukkan Teks Tweet")
weet_text = st.text_area( "Ketikkan teks tweet di sini:",
height=150, placeholder="Contoh: Pemerintah harus lebih transparan
dalam mengelola utang negara...",
help="Masukkan tweet yang ingin dianalisis sentimennya")
# Button untuk prediksi
coll, col2, col3 = st.columns([1, 1, 1])
with col2: predict_button = st.button(" @ Prediksi",
type="primary", use_container_width=True)
# Prediksi saat button diklik
if predict_button:

if tweet_text.strip() == "":
st.warning(" 1+ Mohon masukkan teks tweet terlebih dahulu!")
else:

with st.spinner("Menganalisis sentimen..."):
predicted_class, confidence, probabilities =
predict_sentiment(tweet_text)
# Tampilkan hasil
st.markdown("### J;] Sentiment Result")
# Box hasil prediksi - deteksi otomatis warna
predicted_lower = predicted_class.lower()
if 'positif' in predicted_lower or ‘'positive' in
predicted_lower:
box_class = 'positive'’
elif 'negatif' in predicted_lower or ‘'negative' in
predicted_lower:

box_class = 'negative’
else:
box_class = 'neutral’

st.markdown(f"""
<div class="prediction-box {box_class}">
Tweet ini memiliki Sentimen "{predicted_class}" </div>
<div class="confidence-score">
Dengan confidence: {confidence:.2f}% </div>
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, unsafe_allow_html=True)
# Tampilkan detail preprocessing
with st.expander(" 5 Lihat Detail Preprocessing"):
processed = preprocessor.preprocess(tweet_text)
st.markdown(f"**Teks Original:**\n " ~\n{tweet_text}\n "™ ")
st.markdown(f"**Setelah
Preprocessing:**\n "~ \n{processed}\n " ")
# Tampilkan probabilitas semua kelas
with st.expander(" Ii Lihat Probabilitas Semua Kelas"):
prob_df = pd.DataFrame({
'Sentimen': label encoder.classes_,
'"Probabilitas (%)': [p * 100 for p in probabilities]})
prob_df = prob_df.sort_values('Probabilitas (%),
ascending=False
# Bar chart
st.bar_chart(prob_df.set_index('Sentimen'))
# Table
st.dataframe(prob_df, use_container_width=True)
# Contoh tweet
st.markdown("---")
st.markdown (" #t# Contoh Tweet")
coll, col2, col3 = st.columns(3)

with coll:
if st.button("Contoh Positif"):
st.session_state.example_text = "Pemerintah berhasil .. "
with col2:
if st.button("Contoh Negatif"):
st.session_state.example_text = "Utang negara semakin .. "
with col3:

if st.button("Contoh Netral"):
st.session_state.example_text = ".."
# Tampilkan contoh jika ada
if 'example_text' in st.session_state:
st.info(f" Contoh: {st.session_state.example text}")
with tab2:
st.subheader(" !X Tentang Aplikasi")
st.markdown("""
### Analisis Sentimen Utang Negara
**Dikembangkan dengan menggunakan Streamlit & TensorFlow**

")

else:

st.error(")( Gagal memuat model. Pastikan semua file artifacts
tersedia.")

st.stop()
# ===== FOOTER =====
st.markdown("---")

st.markdown (
<div style='text-align: center; color: #888; padding: 20px;'>

<p>® 2025 Sentiment Analysis App | Powered by LSTM & Streamlit</p>
</div>
""", unsafe_allow_html=True)



