95

RIWAYAT HIDUP

Trihana Santhi lahir di Singaraja pada tanggal 20 Mei 2003.
Penulis lahir dari pasangan suami istri Bapak I Nyoman Surana
dan Ibu Ni Gusti Ayu Putu Armini. Penulis berkebangsaan
Indonesia dan beragama Hindu. Kini penulis beralamat di Jalan

Parikesit 1 No. 5 Banjar Tegal, Kecamatan Buleleng,

Kabupaten Buleleng, Provinsi Bali. Penulis menyelesaikan
pendldlkan dasar di SD Negeri 1 Banjar Jawa dan lulus pada tahun 2015. Kemudian
penulis melanjutkan di SMP Negeri 2 Singaraja dan lulus pada tahun 2018. Pada
tahun 2021, penulis lulus dari SMA Negeri 4 Singaraja dengan Jurusan Ilmu
Pengetahuan Alam. Selanjutnya, penulis melanjutkan studi ke jenjang Sarjana (S1)
di Universitas Pendidikan Ganesha, mengambil Program Studi Sistem Informasi di

Jurusan Teknik Informatika.

LAMPIRAN

Lampiran 1. Surat Permohonan Pelabelan Data Guru Bahasa Indonesia

Lampiran 2. Surat Permohonan Pelabelan Data Wartawan

98

Lampiran 3. Surat Pernyataan Validasi Pelabelan Data Guru Bahasa

Indonesia

99

Lampiran 4. Surat Pernyataan Validasi Pelabelan Data Wartawan

100

Lampiran 5. Dokumentasi Validasi Pelabelan Data Guru Bahasa Indonesia

=

Lampiran 7. Implementasi Crawling Data

import datetime

import subprocess

import time

import pandas as pd

import os

start_date = datetime.date(2019, 10, 20)
end_date = datetime.date(2024, 10, 20)
limit = 10000

hashtag = '#bendunganjatigede'

lang = 'id'
twitter_auth_token = ' '
jeda = 60

tweet_mode = 'LATEST'

Fungsi bantu untuk tanggal
def next_month(d):
if d.month == 12:
return datetime.date(d.year + 1, 1, 1)
else:
return datetime.date(d.year, d.month + 1, 1)
Loop crawling per bulan
current_date = start_date
while current_date <= end_date:
next_date = next_month(current_date)
if next_date > end_date:
next_date = end_date + datetime.timedelta(days=1)
filename = f'tweet_{limit}.csv' # tanpa tanggal
search_keyword = f'{hashtag} since:{current_date}
until:{next_date} lang:{lang}’
command = [
‘npx', '-y', 'npx', 'tweet-harvest@latest',
'-0', filename,
'-s', search_keyword,
'--tab', tweet_mode,
'-1', str(limit),
'--token', twitter_auth_token]
subprocess.run(command)
if os.path.exists(filename):
df = pd.read_csv(filename)
if 'text' in df.columns:
df[['text']].to_csv(filename, index=False)
time.sleep(jeda)
current_date = next_date

Lampiran 8. Implementasi Pre-Processing

1. Cleaning Data

import re

import pandas as pd

Cleaning Function

def cleaning(text):

text = re.sub(r'http\S+|www.\S+', ' ', str(text)) # hapus URL

text = re.sub(r'@\w+|#\w+', ' ', text) # hapus mention/hashtag
text = re.sub(r'[?a-zA-Z\s]', ' ', text) # hapus angka, tanda baca,
emot

df["cleaning"] = df["full_text"].apply(cleaning)
print(df[["full_text", "cleaning"]].head())

2. Case Folding

df["casefolding"] = df["cleaning"].str.lower()
print(df[["cleaning"”, "casefolding"]].head())

3. Normalize

import pandas as pd

import re

=== 1. Load data CSV ===

slang_csv = pd.read_csv(" slang.csv")
=== 2. Load data TXT ===

slang_txt = {}

101

102

with open("combined slang words.txt", "r") as f:
for line in f:
parts = line.strip().split(":", 1)
if len(parts) == 2:
slang_txt[parts[@].strip().lower()]
parts[1].strip().lower()

=== 3. Load data Excel ===
slang_excel = pd.read_excel("data_normalize.x1lsx")
=== 4. Gabungkan kamus (TXT - CSV - Excel) ===

slang _dict = {}
slang_dict.update(slang_txt)
slang _dict.update(dict(zip(
slang csv["slang"].astype(str).str.strip().str.lower(),
slang csv["formal"].astype(str).str.strip().str.lower())))
slang_dict.update(dict(zip(
slang_excel["tidak baku"].astype(str).str.strip().str.lower(),
slang_excel["baku"].astype(str).str.strip().str.lower())))
print(f"Total entri kamus gabungan: {len(slang_dict)}")

=== 5. Fungsi Normalisasi ===
def normalize(text, kamus):

words = re.findall(r"\w+", text.lower()) # ambil kata alfanumerik
saja

return " ".join([kamus.get(w, w) for w in words])

=== 6. Terapkan ke DataFrame ===
df["normalize"] = df["casefolding"].apply(lambda x: normalize(str(x),
slang_dict))
print(df[["casefolding"”, "normalize"]].head())
=== 7. Analisis Sumber Normalisasi ===
sumber_dict = {}
tandai dari TXT
for k in slang_txt.keys():
sumber_dict[k] = "TXT"
tandai dari CSV
for k in slang _csv["slang"].astype(str).str.strip().str.lower():
sumber_dict[k] = "CSv"
tandai dari Excel
for k in slang_excel["tidak
baku"].astype(str).str.strip().str.lower():
sumber_dict[k] = "Excel"
cek kata yang berhasil diganti
def cek_sumber(text, kamus, sumber):
words = re.findall(r"\w+", text.lower())

hasil = []
for w in words:
if w in kamus and kamus[w] != w:

hasil.append((w, kamus[w], sumber.get(w, "Tidak
Diketahui")))
return hasil
df["cek_normalisasi"] = df["casefolding"].apply(lambda x:
cek_sumber(str(x), slang dict, sumber_dict))
print(df[["casefolding", "normalize", "cek_normalisasi”]].head())

4. Tokenize

df["tokenize"] = df["normalize"].apply(lambda x: x.split())
print(df[["normalize", "tokenize"]].head())

103

5. Stopword Removal

from Sastrawi.StopWordRemover.StopWordRemoverFactory import
StopWordRemoverFactory
import pandas as pd
=== 1. Stopword bawaan Sastrawi ===
stop_factory = StopWordRemoverFactory()
stopwords_sastrawi = set(stop_factory.get_stop_words())
=== 2. Fungsi Stopword Removal ===
def stopword_removal(tokens):
return [t for t in tokens if t not in stopwords_sastrawi]
=== 3. Terapkan ke dataframe ===
df["stopword"] = df["tokenize"].apply(stopword_removal)
print(df[["tokenize", "stopword"]].head())

6. Stemming

from Sastrawi.Stemmer.StemmerFactory import StemmerFactory
stemmer = StemmerFactory().create_stemmer()
def stemming(tokens):

return [stemmer.stem(t) for t in tokens]
df["stemming"] = df["stopword"].apply(stemming)
print(df[["stopword", "stemming"]].head())

Lampiran 9. Implementasi Ekstraksi Fitur TF-IDF

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
Load data hasil preprocessing

path = "3a. Pre_processing.xlsx"

df = pd.read_excel(path)

print("Data awal:")

print(df.head())

texts = df['stemming'].astype(str)

TF-IDF dengan max_features=2000

tfidf = TfidfVectorizer(max_features=2000)
X = tfidf.fit_transform(texts)

Simpan hasil TF-IDF ke DataFrame + Label
tfidf_df = pd.DataFrame(X.toarray(),
columns=tfidf.get feature_names_out())
tfidf_df['Label’'] = df['Label’].values

Simpan ke Excel
output_path = "4a. tf_idf.x1lsx"
tfidf_df.to_excel(output path, index=False)

print(tfidf_df.head())
print (f"\nHasil disimpan di: {output_path}")

Lampiran 10. Implementasi Model LSTM

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import KFold

from sklearn.preprocessing import LabelEncoder

104

from sklearn.metrics import (
accuracy_score, precision_recall fscore_support,
confusion_matrix)

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, LSTM, Reshape

results_summary = []
label_encoder = None
y_encoded = None

def create_model(input_dim, output_dim):
"""Membuat model Keras dengan LSTM
model = Sequential()
model.add(Reshape((1, input_dim), input_shape=(input_dim,)))
model.add(LSTM(64))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(output_dim, activation='softmax'))
model.compile(
optimizer="adam',
loss="'sparse_categorical_crossentropy’,
metrics=["'accuracy'])
return model
model = create_model(input_dim=X.shape[1],
output_dim=len(np.unique(y_encoded)))
model.summary()
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score,
precision_recall fscore_support, confusion_matrix,
classification_report
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.callbacks import TensorBoard, EarlyStopping
import tensorflow as tf
from datetime import datetime
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

def train_and_evaluate_all_combinations(X, y, epochs_list=[100],
batch_size_1ist=[32, 64], n_splits=5, random_state=42):

global results_summary, label_encoder, y encoded

label _encoder = LabelEncoder()

y_encoded = label _encoder.fit_transform(y)

summary_data = []

timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

main_folder = f"adasyn_training results_{timestamp}"

os.makedirs(main_folder, exist_ok=True)

for epochs in epochs_list:

for batch_size in batch_size list:
fold_results, subfolder = _train_single_combination(
X, y_encoded, epochs, batch_size, n_splits,

random_state, main_folder)

best fold = max(fold results, key=lambda fr:
fr['fl_score'])
=== Rata-rata epoch terbaik antar fold ===
avg_best_epoch = int(np.mean([fr['best_epoch'] for fr in
fold_results]))
=== Confusion Matrix Fold Terbaik ===

cm = confusion_matrix(best_fold['y_val'], best_fold ['y pred'])

cm_df = pd.DataFrame(cm,index=1abel_encoder.classes_,
columns=label_encoder.classes_)
cm_path_xlsx = os.path.join(subfolder, "folds_metrics.xlsx")

with pd.ExcelWriter(cm_path_xlsx, engine="openpyxl"

mode="a", if_sheet_exists="replace") as writer:

cm_df.to_excel(writer, sheet_name=f"cm_best_fold", index=True)
plt.figure(figsize=(6, 5)) sns.heatmap(cm, annot=True, fmt="d",

cmap="Blues", xticklabels=1label_encoder.classes_,
yticklabels=1abel_encoder.classes_)
plt.xlabel("Predicted")
plt.ylabel("Actual")

plt.title(f"Confusion Matrix (Best Fold {best fold ['fold']})")

plt.tight_layout()

105

plt.savefig(os.path.join(subfolder, "confusion_matrix_best_fold.png")

Yplt.close()
row_data = {'epochs_set': epochs, 'best _epoch _avg':
avg_best_epoch, 'batch_size': batch_size, 'accuracy’:
best_fold['accuracy'], 'precision_macro':
best_fold['precision'], 'recall macro': best_fold['recall'],
'fl _score_macro': best fold['fl score']}
report = classification_report(best fold['y val'],
best_fold['y_pred'], target_names=label_encoder.classes_,
output_dict=True)
for class_name in label encoder.classes_:
row_data[f'precision_{class_name} ']
report[class_name]['precision’]
row_data[f'recall {class_name}'] =
report[class_name]['recall’]
row_data[f'fl_score_{class_name}']
report[class_name]['fl-score’]
summary_data.append(row_data)
=== Simpan summary kombinasi ===
df_summary = pd.DataFrame(summary_ data)

cols = ['epochs_set', 'best_epoch_avg', 'batch_size', 'accuracy',

"precision_macro', ‘'recall_macro', 'fl_score_macro']
for class_name in label_encoder.classes_:
cols.extend([f'precision_{class_name}',
f'recall_{class_name}', f'fl_score_{class_name}'])
df_summary = df_summary[cols]
df_summary.to_excel(os.path.join(main_folder,
"summary_results.xlsx"), index=False)
print(f"Semua hasil tersimpan di folder: {main_folder}")

def _train_single_combination(X, y_encoded, epochs, batch_size,

n_splits, random_state, main_folder):

kf = KFold(n_splits=n_splits, shuffle=True,
random_state=random_state)

fold _results = [] all_histories = []

all y val = np.array([]) all_y pred = np.array([])

subfolder = os.path.join(main_folder,
f"epochs_{epochs} batch_{batch_size}") os.makedirs(subfolder,
exist_ok=True)
tb_folder = os.path.join(subfolder, "tensorboard_logs")
os.makedirs(tb_folder, exist_ok=True)
for fold, (train_idx, val_idx) in enumerate(kf.split(X), 1):
print(f"\n--- Epochs: {epochs}, Batch Size: {batch_size},
Fold: {fold} ---")
X_train, X_val = X[train_idx], X[val_idx] y_train, y_val =
y_encoded[train_idx], y_encoded[val_idx]

model = create_model(input_dim=X.shape[1],
output_dim=len(np.unique(y_encoded)))

log dir = os.path.join(tb_folder, f"fold_{fold}")
tensorboard_cb = TensorBoard(log_dir=log dir,
histogram_freq=1)

early stopping cb = EarlyStopping(monitor='val loss',
patience=10,verbose=1, restore_best_weights=True)
history = model.fit(X_train, y_train, validation_data =(X_val,
y_val),

epochs=epochs, batch_size=batch_size, verbose=1,
callbacks=[tensorboard cb, early stopping cb])

history _dict = history.history

106

best_epoch = np.argmin(history.history['val loss']) + 1 print(f"Fold

{fold} berhenti di epoch terbaik: {best_epoch}")

y_pred = np.argmax(model.predict(X_val), axis=1)
acc = accuracy_score(y_val, y pred)

precision, recall, fi, _ =
precision_recall fscore_support(y_val, y pred, average='macro',
zero_division=0)

all_y val = np.concatenate([all_y val, y_val])
all y pred = np.concatenate([all_y pred, y pred])
all histories.append(history dict)

fold_result = {'fold': fold, 'best_epoch': best_epoch,
'accuracy': acc,'precision’': precision, 'recall': recall,
'fl_score': f1,'history': history_dict,'y val': y val,
'y pred': y_pred}
fold_results.append(fold_result)

model.save(os.path.join(subfolder, f"model fold{fold}.h5"))

hist_df = pd.DataFrame(history dict)
hist_df.to_excel(os.path.join(subfolder,
f"history fold{fold}.xlsx"), index=False)
plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1)
plt.plot(hist_df['loss'], label='Training Loss')
plt.plot(hist_df['val_loss'], label='Validation Loss")
plt.title(f'Loss (Fold {fold}) - Best Epoch: {best_epoch}"')
plt.xlabel('Epoch') plt.ylabel('Loss')plt.legend()

plt.subplot(1l, 2, 2)

107

plt.plot(hist_df['accuracy'], label='Training Accuracy')
plt.plot(hist_df['val_accuracy'], label='Validation Accuracy')
plt.title(f'Accuracy (Fold {fold}) - Best Epoch:

{best_epoch}')plt.xlabel('Epoch') plt.ylabel('Accuracy')
plt.legend()

plt.tight_layout()plt.savefig(os.path.join(subfolder,
f"training_curves_fold{fold}.png"))
plt.close()

combined_cm = confusion_matrix(all_y val, all y pred)
plt.figure(figsize=(8, 6))
sns.heatmap(combined _cm, annot=True, fmt='d', cmap='Blues’,
xticklabels=1abel encoder.classes_,
yticklabels=1label encoder.classes_)
plt.title(f'Combined Confusion Matrix')
plt.xlabel('Predicted Label')
plt.ylabel('Actual Label')
plt.savefig(os.path.join(subfolder,
"combined_confusion_matrix.png"))
plt.close()
class_report = classification_report(all y val,
all y pred,target_names=label_encoder.classes_,
output_dict=True, zero_division=0)
df_class_report = pd.DataFrame(class_report).transpose()
excel_path = os.path.join(subfolder, "folds_metrics.xlsx")
df_folds = pd.DataFrame([{'fold': fr['fold'],
'best_epoch': fr['best epoch'],
'accuracy': fr['accuracy'], 'precision': fr['precision'],
'recall’: fr['recall'],'f1 score': fr['fl_score']}
for fr in fold_results])
with pd.ExcelWriter(excel path, engine="openpyxl") as writer:
df_folds.to_excel(writer, sheet_name="metrics_per_ fold",
index=False)
df_class_report.to_excel(writer,
sheet_name="combined_classification_report")
pd.DataFrame(combined_cm, index=1label_encoder.classes_,
columns=label_encoder.classes_).to_excel(writer,
sheet_name="combined_confusion_matrix")
return fold_results, subfolder

Lampiran 11. Implementasi Resampling

from sklearn.feature_extraction.text import TfidfVectorizer
from imblearn.over_sampling import SMOTE, ADASYN

TF-IDF

tfidf = TfidfVectorizer(max_features=2000)
X = tfidf.fit_transform(df['stemming'])

y = df['Label’]

SMOTE

smote = SMOTE(random_state=42)

X_smote, y_smote = smote.fit_resample(X, y)
Gabungkan ke DataFrame

df_smote = pd.DataFrame(X_smote.toarray(),
columns=tfidf.get_feature_names_out())
df_smote['Label'] = y_smote

108

Simpan & print

df_smote.to_excel("output_smote.xlsx", index=False)
print("Hasil SMOTE:\n", df_smote['Label'].value_counts())
ADASYN

adasyn = ADASYN(random_state=42)

X_adasyn, y_adasyn = adasyn.fit_resample(X, y)

df_adasyn = pd.DataFrame(X_adasyn.toarray(),
columns=tfidf.get_feature_names_out())

df_adasyn['Label'] = y_adasyn
df_adasyn.to_excel("output_adasyn.xlsx", index=False)
print("Hasil ADASYN:\n", df_adasyn['Label'].value_counts())
from imblearn.under_sampling import RandomUnderSampler

rus = RandomUnderSampler(random_state=42)

X_rus, y_rus = rus.fit_resample(X.values.reshape(-1,1), y)

df_rus_seq = pd.DataFrame({'stemming': X_rus.flatten(), 'Label':
y_rus})

df_rus_seq.to_excel("output under.xlsx", index=False)
print("Hasil Undersampling tanpa TF-IDF:\n",

df_rus_seq['Label'].value_counts())

Lampiran 12. Implementasi GUI

import streamlit as st

import pickle

import numpy as np

import pandas as pd

from tensorflow.keras.models import load_model
from preprocessing import TextPreprocessor
import warnings
warnings.filterwarnings('ignore')

===== KONFIGURASI HALAMAN =====

st.set_page_config(
page_title="Analisis Sentimen Utang Negara", page_icon="[J4",
layout="wide", initial sidebar_state="expanded")

===== CUSTOM CSS =====
st.markdown("""
<style>

.main-header {
font-size: 2.5rem; font-weight: bold; color: #1E88ES5;
text-align: center; margin-bottom: 1rem;}
.prediction-box {
padding: 20px; border-radius: 10px; margin: 20px 0;
text-align: center; font-size: 1.5rem; font-weight: bold;}
.positive {
background-color: #4CAF50; color: white;}
.negative {
background-color: #F44336; color: white;}
.neutral {
background-color: #9E9E9E;color: white;}
.confidence-score {
font-size: 1.2rem; color: #555; margin-top: 10px;}
.info-box {
background-color: #E3F2FD; padding: 15px;
border-radius: 8px; border-left: 5px solid #1E88ES5;

margin: 10px 0;} </style>
, unsafe_allow_html=True)
===== LOAD MODEL DAN ARTIFACTS =====
@st.cache_resource
def load_artifacts():
"""Load model, vectorizer, dan label encoder
try:
model = load_model('model_best.h5")
with open('tfidf_vectorizer.pkl', 'rb') as f:
tfidf_vectorizer = pickle.load(f)
with open('label_encoder.pkl', 'rb') as f:
label encoder = pickle.load(f)
preprocessor = TextPreprocessor()
return model, tfidf vectorizer, label encoder, preprocessor
except Exception as e:

st.error(f" X Error loading artifacts: {str(e)}")
st.info("Pastikan file berikut ada dalam folder yang sama:
model best.h5, tfidf_vectorizer.pkl, label encoder.pkl™)
return None, None, None, None
Load artifacts
model, tfidf_vectorizer, label_encoder, preprocessor =
load_artifacts()
===== FUNGSI PREDIKSI =====
def predict_sentiment(text):
""" Fungsi untuk memprediksi sentimen dari teks input
Args:
text (str): Teks tweet yang akan diprediksi
Returns:
tuple: (predicted_class, confidence_score,
all probabilities)"""
1. Preprocessing
processed_text = preprocessor.preprocess(text)
2. Transform dengan TF-IDF
tfidf_features =
tfidf_vectorizer.transform([processed_text]).toarray()
3. Prediksi dengan model
prediction_proba = model.predict(tfidf_features, verbose=0)
4. Get predicted class
predicted_class_idx = np.argmax(prediction_proba, axis=1)[0]
predicted_class =
label_encoder.inverse_transform([predicted class_idx])[@]
5. Get confidence score
confidence_score = prediction_proba[@][predicted_class_idx] *

100

return predicted_class, confidence_score, prediction_proba[@]
===== HEADER =====
st.markdown('<p class="main-header">)l Sentimen Analisis Utang
Negara</p>', unsafe_allow_html=True)
===== SIDEBAR =====
with st.sidebar:

109

st.image("https://img.icons8.com/fluency/96/000000/bar-chart.png",

width=80)
st.title(" [Informasi")
st.markdown("""
<div class="info-box">
Model: LSTM + TF-IDF

110

Pre-processing:

Cleaning Data</1i>
Case Folding</1li>
Normalisasi</1i>
Tokenisasi</1i>
Stopword Removal</1i>
Stemming</1i>
Features: TF-IDF (max 2000)

Training: K-Fold (k=5), Early Stopping

Batch Size: 32 </div>
""" unsafe_allow_html=True)
st.markdown("---")
st.markdown("### @ Cara Penggunaan")
st.markdown("""
1. Masukkan teks tweet
2. Klik tombol **Prediksi**
3. Lihat hasil sentimen dan confidence score """)
===== MAIN CONTENT =====
if model is not None:
tabl, tab2 = st.tabs(["®& Prediksi Sentimen", " ./ About"])
with tabil:
st.subheader("Masukkan Teks Tweet")
weet_text = st.text_area("Ketikkan teks tweet di sini:",
height=150, placeholder="Contoh: Pemerintah harus lebih transparan
dalam mengelola utang negara...",
help="Masukkan tweet yang ingin dianalisis sentimennya")
Button untuk prediksi
coll, col2, col3 = st.columns([1, 1, 1])
with col2: predict_button = st.button(" @ Prediksi",
type="primary", use_container_width=True)
Prediksi saat button diklik
if predict_button:

if tweet_text.strip() == "":
st.warning(" 1+ Mohon masukkan teks tweet terlebih dahulu!")
else:

with st.spinner("Menganalisis sentimen..."):
predicted_class, confidence, probabilities =
predict_sentiment(tweet_text)
Tampilkan hasil
st.markdown("### J;] Sentiment Result")
Box hasil prediksi - deteksi otomatis warna
predicted_lower = predicted_class.lower()
if 'positif' in predicted_lower or ‘'positive' in
predicted_lower:
box_class = 'positive'’
elif 'negatif' in predicted_lower or ‘'negative' in
predicted_lower:

box_class = 'negative’
else:
box_class = 'neutral’

st.markdown(f"""
<div class="prediction-box {box_class}">
Tweet ini memiliki Sentimen "{predicted_class}" </div>
<div class="confidence-score">
Dengan confidence: {confidence:.2f}% </div>

111

, unsafe_allow_html=True)
Tampilkan detail preprocessing
with st.expander(" 5 Lihat Detail Preprocessing"):
processed = preprocessor.preprocess(tweet_text)
st.markdown(f"**Teks Original:**\n " ~\n{tweet_text}\n "™ ")
st.markdown(f"**Setelah
Preprocessing:**\n "~ \n{processed}\n " ")
Tampilkan probabilitas semua kelas
with st.expander(" Ii Lihat Probabilitas Semua Kelas"):
prob_df = pd.DataFrame({
'Sentimen': label encoder.classes_,
'"Probabilitas (%)': [p * 100 for p in probabilities]})
prob_df = prob_df.sort_values('Probabilitas (%),
ascending=False
Bar chart
st.bar_chart(prob_df.set_index('Sentimen'))
Table
st.dataframe(prob_df, use_container_width=True)
Contoh tweet
st.markdown("---")
st.markdown (" #t# Contoh Tweet")
coll, col2, col3 = st.columns(3)

with coll:
if st.button("Contoh Positif"):
st.session_state.example_text = "Pemerintah berhasil .. "
with col2:
if st.button("Contoh Negatif"):
st.session_state.example_text = "Utang negara semakin .. "
with col3:

if st.button("Contoh Netral"):
st.session_state.example_text = ".."
Tampilkan contoh jika ada
if 'example_text' in st.session_state:
st.info(f" Contoh: {st.session_state.example text}")
with tab2:
st.subheader(" !X Tentang Aplikasi")
st.markdown("""
Analisis Sentimen Utang Negara
Dikembangkan dengan menggunakan Streamlit & TensorFlow

")

else:

st.error(")(Gagal memuat model. Pastikan semua file artifacts
tersedia.")

st.stop()
===== FOOTER =====
st.markdown("---")

st.markdown (
<div style='text-align: center; color: #888; padding: 20px;'>

<p>® 2025 Sentiment Analysis App | Powered by LSTM & Streamlit</p>
</div>
""", unsafe_allow_html=True)

