LAMPIRAN

Lampiran 1. Surat Permohonan Pelabelan Data

KEMENTERIAN PENDIDIKAN TINGGI,
SAINS, DAN TEKNOLOGI
UNIVERSITAS PENDIDIKAN GANESHA
FAKULTAS TEKNIK DAN KEJURUAN

Jalan Udayana Nomor 11 Singaraja Bali
Laman: http://{1k undiksha.ac.id

Nomor @ ISI8/UN4S.1 1L I/KM2025 Singaraja, 17 Juni 2025
Perihal : Surat Permohonan Pengambilan Data

Yth. Kepala SMA Negeri | Bebandem
di tempat

Dengan hormat, sechubungan dengan proses penyelesaian Tugas Akhir/Skripsi, maka melalui surat ini
kami mohon Bapak/lbu berkenan memberikan data yang terkait dengan data yang dibutuhkan.
Adapun mahasiswa yang akan melakukan pengambilan data seperti tersebut di bawah ini:

Nama : Ni Komang Arista Tri Wahyuni
NIM : 2115091009

Program Studi : Sistem Informasi

Jurusan : Teknik Informatika

Data yang dibutuhkan : Pelabelan data penelitian skripsi
Judul Penelitian : Analisis Sentimen Ulasan Pengguna Terhadap Produk Skincare Korea Pada
Platform Female Daily Menggunakan K-Nearest Neighbor

Demikian kami sampaikan, atas perhatian dan kerjasamanya, diucapkan terima kasih.

92

KEMENTERIAN PENDIDIKAN TINGGI,
SAINS, DAN TEKNOLOGI
UNIVERSITAS PENDIDIKAN GANESHA
FAKULTAS TEKNIK DAN KEJURUAN

Jalan Udayana Nomor 11 Singaraja Bali
Laman: http://itk undiksha ug id

Nomor : IS17/UN48.11.1/KM/2025 Singaraja, 17 Juni 2025
Perihal : Surat Permohonan Pengambilan Data

Yth. Kepala SMP Negeri 6 Singaraja
di tempat

Dengan hormat, sehubungan dengan proses penyelesaian Tugas Akhir/Skripsi, maka melalui surat ini
kami mohon Bapak/Ibu berkenan memberikan data yang terkait dengan data yang dibutuhkan.
Adapun mahasiswa yang akan melakukan pengambilan data seperti tersebut di bawah ini:

Nama : Ni Komang Arista Tri Wahyuni

NIM : 2115091009

Program Studi : Sistem Informasi

Jurusan : Teknik Informatika

Data yang dibutuhkan : Pelabelan data penelitian skripsi

Judul Penelitian : Analisis Sentimen Ulasan Pengguna Terhadap Produk Skincare Korea Pada

Platform Female Daily Menggunakan K-Nearest Neighbor

Demikian kami sampaikan, atas perhatian dan kerjasamanya, diucapkan terima kasih.

93

Lampiran 2 Surat Pernyataan Validasi Pelabelan Data

SURAT PERNYATAAN HASIL VALIDASI DATA

Yang bertanda tangan di bawah ini:

Nama : Ni Nyoman Suci Mahartini, S.Pd., M.Pd.
NIP/NIK : 198403072011012006

Jabatan : Guru Bahasa Indonesia

Instansi : SMA Negeri 1 Bebandern

Mmiﬂmmymmunmhhmehhhnmmmmwpmﬂk
skincare Korea Selatan yang telah diberikan oleh:

Nama Mahasiswa : Ni Komang Arista Tri Wahyuni

NIM : 2115091009
Program Studi : Sistem Informasi
Universitas : Universitas Pendidikan Ganesha

Data tersebut terdiri dari scjumlah kalimat ulasan yang telah diberi label sentimen positif
dan negatif oleh mahasiswa. Berdasarkan hasil penclazhan terhadap konteks kalimat, diksi, serta
makna yang terkandung di dalam ulasan, saya menyatakan bahwa pelabelan yang dilakukan sudah
sesuai dengan kaidah Bahasa Indonesia dan dapat diterima secara makna dan kontcks dalam

Demikian surat ini dibust untuk digunakan scbagaimana mestinya.

Bebandem, 30 Juli 2025
Guru Indonesia,

Ni Nyoman Mahartini, S.Pd., M.Pd.
NIP 198403072011012006

94

SURAT PERNYATAAN HASIL VALIDASI DATA

Yang bertanda tangan di bawah ini:

Nama : Putu Tri Noverawati, S.Pd.
NIP/NIK £ 199911122024212009
Jabatan : Guru Bahasa Indonesia
Instansi : SMP Negeri 6 Singaraja

Dengan ini menyatakan bahwa saya telah melakukan validasi terhadap data ulasan produk

skincare Korea Selatan yang telah diberikan oleh:

Nama Mahasiswa : Ni Komang Arista Tri Wahyuni

NIM : 2115091009
Program Studi : Sistem Informasi
Universitas : Universitas Pendidikan Ganesha

Data tersebut terdiri dari sejumlah kalimat ulasan yang telah diberi label sentimen positif
dan negatif oleh mahasiswa. Berdasarkan hasil penelaahan terhadap konteks kalimat, diksi, serta
makna yang terkandung di dalam ulasan, saya menyatakan bahwa pelabelan yang dilakukan sudah
sesuai dengan kaidah Bahasa Indonesia dan dapat diterima secara makna dan konteks dalam
analisis sentimen.

Demikian surat ini dibuat untuk digunakan sebagaimana mestinya.

Singaraja, 19 Agustus 2025

Puth Tri Noverawati, S.Pd.
NIP 199911]22024212009

95

Lampiran 3. Dokumentasi Validasi Pelabelan Data

96

Lampiran 4. Implementasi Pre-Processing Dataset

1. Case Folding

import pandas as pd

df = pd.read_csv('full_data.csv')

Case Folding

df['case_folding'] = df['Review'].str.lower()
Hasil

df[['Review', 'case_folding']].head()

2. Cleaning

import re
import string
def clean_text(text):
text = re.sub(r'\d+', '', text)
Hapus tanda baca
text = text.translate(str.maketrans('', "',
string.punctuation))
Hapus whitespace berlebih
text = text.strip()
hapus spasi di awal dan akhir
text = re.sub(r'\s+', " ', text)
ganti spasi berlebih jadi satu spasi
text = re.sub("http\S+|www.\S+", '', text)
hapus URL
text = re.sub("\n", " ", text)
hapus baris baru
text = re.sub("[*\w\s]", "", text)
hapus karakter non-alfanumerik
text = re.sub(r'\s+', " ", text).strip()
hapus spasi berlebih
return text
Penerapan Cleaning ke kolom hasil Case Folding
df['cleaned'] = df['case_folding'].apply(clean_text)
Hasil
df[['case_folding', 'cleaned']].Sample(5)

3. Tokenize

import nltk

Hapus cache

nltk.data.path.clear()

Unduh punkt

nltk.download(' punkt")

Coba word_Tokenize

from nltk.Tokenize import word_Tokenize
Tokenizer

df['tokens'] = df['cleaned'].apply(lambda x: x.split())
Cek hasil tokenisasi

df[['cleaned', 'tokens']].Sample(5)

97

4. Normalize

import pandas as pd
import ast
Load kamus slang dari GitHub
url = "https://raw.githubusercontent.com/adeariniputri/text-
preprocesing/master/slang.csv"
df_github = pd.read_csv(url)
kamus_github = dict(zip(df_github['slang'],
df_github['formal']))
Load kamus pribadi
df_kamus_pribadi = pd.read_csv('kamus_pribadi.csv')
kamus_pribadi = dict(zip(df_kamus_pribadi['slang'],
df_kamus_pribadi['formal']))
Gabungkan kamus Normalize
kamus_normalisasi = {**kamus_github, **kamus_pribadi}
Fungsi Normalize
def Normalize_text(tokens):

Normalized = []

for word in tokens:

repl = kamus_normalisasi.get(word, word)
Normalized.extend(repl.split())

return Normalized
Terapkan normalisasi
df['Normalized'] = df['tokens'].apply(Normalize_text)
SAMPLE HASIL NORMALISASI
print(df[['tokens"', 'Normalized']].Sample(min(5, len(df))))

5. Handling Negasi

import pandas as pd
import ast
import warnings
warnings.filterwarnings('ignore")
negation_words = [
‘tidak', 'tak', ‘'bukan', 'jangan', 'belum', ‘tanpa’,
'gak', 'ga', 'nggak', 'ngga', 'enggak', 'gakusah'
]
print(f"\nKata negasi: {', '.join(negation_words)}\n")
def handle_negation(tokens):
result = []
i=20
while i < len(tokens):
if tokens[i] in negation_words and i + 1 < len(tokens):
negated_word = f"negasi_{tokens[i+1]}"
result.append(negated_word)

i+4=2

else:
result.append(tokens[i])
i+=1

return result
print("Loading data...")

98

df = pd.read_csv('preprocessing_progress.csv', encoding="utf-
8")
print(f"v Data dimuat: {len(df)} baris\n")

Convert string to 1list

df['normalized_tokens'] =
df['normalized_tokens'].apply(ast.literal_eval)

print("Proses Negation Handling (gabung negasi + kata)...\n")
df['negation_handled'] =
df['normalized_tokens'].apply(handle_negation)

print(" 5 PERBANDINGAN (5 Sample dengan Negasi):\n")

Cari data yang ada negasinya

has_negation = df['negation_handled'].apply(lambda x:
any('negasi_' in token for token in x))
samples_with_negation = df[has_negation].head(5)

if len(samples_with_negation) > ©:
Format untuk display
samples_with_negation['before_display'] =
samples_with_negation['normalized_tokens'].apply(
lambda x: str(x[:10])[21:-1] + '...'
)
samples_with_negation['after_display'] =
samples_with_negation['negation_handled'].apply(
lambda x: str(x[:10])[1:-1] + '..."
)
display_df = pd.DataFrame({
'Sebelum (Normalized)':
samples_with_negation['before_display'].values,
'Sesudah (Negation Handled)':
samples_with_negation['after_display'].values
)
print(display_df.to_string(index=True))
else:
Jika tidak ada negasi, tampilkan 5 sample biasa
print(" 4. Tidak ada negasi terdeteksi, menampilkan sample
biasa:\n")

samples = df.head(5).copy()

samples['before_display'] =
samples['normalized_tokens'].apply(lambda x: str(x[:10])[1:-1]
+ ')

samples['after_display'] =
samples['negation_handled'].apply(lambda x: str(x[:10])[1:-1] +
1] ‘l)

display_df = pd.DataFrame({
'Sebelum (Normalized)': samples['before_display'],
'Sesudah (Negation Handled)': samples['after_display']

b
print(display_df.to_string(index=True))

99

6. Stopword Removal

lgit clone
https://github.com/louisowen6/NLP_bahasa_resources.git
Membaca daftar stopwords
with open('NLP_bahasa_resources/combined_stop_words.txt', 'r'
encoding="utf-8') as f:

stopwords = set(f.read().splitlines())
Menghapus stopwords
def remove_stopwords(tokens):

return [word for word in tokens if word not in stopwords]
Terapkan pada kolom 'Normalized'
df['no_stopwords'] = df['Normalized'].apply(remove_stopwords)
df['no_stopwords_str'] = df['no_stopwords'].apply(lambda x: "
".join(x))
Hasil
print(df[['Normalized', 'no_stopwords']])

)

7. Stemming

Install Llibrary Sastrawi
Ipip install Sastrawi
Import modul untuR membuat stemmer
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory
factory = StemmerFactory()
stemmer = factory.create_stemmer()
Melakukan stemming
def stem_tokens(text):
if not isinstance(text, str) or text.strip() ==
return []
stemmed_text = stemmer.stem(text)
return stemmed_text.split()
Menerapkan fungsi stemming dan menyimpan di kolom baru
df['stemmed_tokens'] =
df['no_stopwords_str'].apply(stem_tokens)
Has1il
print(df[['no_stopwords_str', 'stemmed_tokens']])

100

Lampiran 5. Ekstraksi Fitur TF-IDF

from sklearn.feature_extraction.text import TfidfVectorizer
#Menggabungkan List token menjadi string

df['stemmed_str'] = df['stemmed_tokens'].apply(lambda x: ' '.join(x))
#Inisialisasi TF-IDF Vectorizer

vectorizer = TfidfVectorizer()

#Transformasi ke bentuk TF-IDF

tfidf_matrix = vectorizer.fit_transform(df['stemmed_str'])
#Konversi ke DataFrame

tfidf_df = pd.DataFrame(tfidf_matrix.toarray(),
columns=vectorizer.get_feature_names_out())

#Menampilkan hasil TF-IDF

print(tfidf_df.head())

101

Lampiran 6. Implementasi KNN tanpa Resampling

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

import pickle

import warnings
warnings.filterwarnings('ignore")

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import StratifiedKFold

from sklearn.metrics import (classification_report, confusion_matrix,
accuracy_score, fl_score,

precision_score, recall_score)

print("="*70)
print("KNN BASELINE MODEL")
print("="*70)

print("\n[1/4] Loading data...")

with open('tfidf_train.pkl', 'rb') as f:
X_train = pickle.load(f)

with open('tfidf_test.pkl', 'rb') as f:
X_test = pickle.load(f)

with open('labels_train.pkl', 'rb') as f:
y_train = pickle.load(f)

with open('labels_test.pkl', 'rb') as f:
y_test = pickle.load(f)

with open('label_encoder.pkl', 'rb') as f:
le = pickle.load(f)

print(f"v Training: {X_train.shape}, Testing: {X_test.shape}")
print("\n[2/4] Cross Validation (5-Fold)...")

k_range = [3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31]
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

results = {
k' [T,
"train_acc': [],
'val_acc': [],
"train_f1': [],
'val_ f1': [],
"train_precision': [],
'val_precision': [],
"train_recall': [],
'val_recall': []

102

for k in k_range:
val _accs = []
val_fls = []
val _precisions = []
val _recalls = []

K-Fold CVv
for train_idx, val_idx in skf.split(X_train, y_train):
X_tr = X_train[train_idx]
X_val = X_train[val_idx]
y_tr =y train.iloc[train_idx] if hasattr(y_train, 'iloc')
else y_train[train_idx]
y_val = y train.iloc[val_idx] if hasattr(y_train, 'iloc') else
y_train[val_idx]

knn = KNeighborsClassifier(n_neighbors=k, weights="uniform',
metric="euclidean')

knn.fit(X_tr, y_tr)

y_val_pred = knn.predict(X_val)

val_accs.append(accuracy_score(y_val, y_val_pred))

val_fils.append(fl_score(y_val, y val_pred,
average="weighted'))

val precisions.append(precision_score(y_val, y_val pred,
average="weighted'))

val recalls.append(recall_score(y_val, y_val pred,
average="weighted'))

Train pada full training set

knn_full = KNeighborsClassifier(n_neighbors=k, weights="'uniform',
metric="euclidean"')

knn_full.fit(X_train, y_train)

y_train_pred = knn_full.predict(X_train)

results['k'].append(k)
results['train_acc'].append(accuracy_score(y_train, y_train_pred))
results['val_acc'].append(np.mean(val_accs))
results['train_f1'].append(f1l_score(y_train, y_train_pred,
average="weighted'))
results['val_f1'].append(np.mean(val_f1s))
results['train_precision'].append(precision_score(y_train,
y_train_pred, average='weighted'))
results['val_precision'].append(np.mean(val_precisions))
results['train_recall'].append(recall_score(y_train, y_train_pred,
average="weighted'))
results['val_recall'].append(np.mean(val_recalls))

Tampilkan hasil CV lengkap

print("\n TABEL LENGKAP HASIL CV:")
df_results = pd.DataFrame(results)
print(df_results.to_string(index=False))

103

best_idx = np.argmax(results['val_f1'])
best_k = results['k'][best_idx]
print(f"\n & Best K = {best_k} (Val F1:
{results['val_f1'][best_idx]:.4f})")

print("\n[3/4] Training final model...")

knn_best = KNeighborsClassifier(n_neighbors=best_k, weights="'uniform',
metric="euclidean')
knn_best.fit(X_train, y_train)

y_train_pred = knn_best.predict(X_train)
y_test_pred = knn_best.predict(X_test)

train_acc = accuracy_score(y_train, y_train_pred)

test_acc = accuracy_score(y_test, y_test_pred)

test f1 = f1_score(y_test, y_test_pred, average='weighted')
test_precision = precision_score(y_test, y_test_pred,
average="weighted')

test_recall = recall_score(y_test, y_test_pred, average='weighted')

print(f"\n PERFORMA MODEL (K={best k}):")
print(f" Train Accuracy: {train_acc:.4f}")
print(f" Test Accuracy: {test_acc:.4f}")
print(f" Test F1-Score: {test_f1:.4f}")
print(f" Test Precision: {test_precision:.4f}")
print(f" Test Recall: {test_recall:.4f}")

print(f"\n CLASSIFICATION REPORT:")
print(classification_report(y_test, y_ test_pred,
target_names=le.classes_))

print("\n[4/4] Creating visualizations...")
cm = confusion_matrix(y_test, y_test_pred)
fig, axes = plt.subplots(1l, 2, figsize=(14, 5))

Plot 1: Accuracy vs K

axl = axes[9]

axl.plot(results['k'], results['train_acc'], marker='o', label='Train
Accuracy', linewidth=2)

axl.plot(results['k"'], results['val_acc'], marker='s",
label="Validation Accuracy', linewidth=2)

axl.axvline(x=best_k, color="red', linestyle='--', label=f'Best
K={best_k}', alpha=0.7)

axl.set_xlabel('K (Number of Neighbors)')
ax1l.set_ylabel('Accuracy')

axl.set_title('KNN Performance: Accuracy vs K', fontweight='bold")
ax1l.legend()

axl.grid(True, alpha=0.3)

104

Plot 2: Confusion Matrix

ax2

sns.

ax2.
ax2.
ax2.

plt.
plt.
plt.

= axes[1]

heatmap(cm, annot=True, fmt='d', cmap='Blues’,
xticklabels=1le.classes_, yticklabels=le.classes_, ax=ax2)

set_xlabel('Predicted')

set_ylabel('True')

set_title(f'Confusion Matrix (K={best_k})', fontweight='bold")

tight_layout()
savefig('knn_baseline_results.png', dpi=300, bbox_inches="tight")
show()

105

Lampiran 7. Implementasi KNN dengan ADASYN

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

import pickle

import warnings
warnings.filterwarnings('ignore")

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import StratifiedKFold

from sklearn.metrics import (classification_report, confusion_matrix,
accuracy_score, fl_score,

precision_score, recall_score)

from sklearn.preprocessing import StandardScaler

from imblearn.over_sampling import ADASYN

print("="*70)
print("KNN + ADASYN MODEL")
print("="*70)

print("\n[1/5] Loading data...")

with open('tfidf_train.pkl', 'rb') as f:
X_train = pickle.load(f)

with open('tfidf_test.pkl', 'rb') as f:
X_test = pickle.load(f)

with open('labels_train.pkl', 'rb') as f:
y_train = pickle.load(f)

with open('labels_test.pkl', 'rb') as f:
y_test = pickle.load(f)

with open('label_encoder.pkl', 'rb') as f:
le = pickle.load(f)

print(f"v Training: {X_train.shape}, Testing: {X_test.shape}")

SIMPAN distribusi SEBELUM ADASYN
print("\n[2/5] Applying ADASYN...")

Hitung distribusi sebelum ADASYN
unique_before, counts_before = np.unique(y_train, return_counts=True)
print(f"\n kil Distribusi SEBELUM ADASYN:")
for label, count in zip(unique_before, counts_before):
print(f" {le.inverse_transform([label])[0]}: {count} samples")

adasyn = ADASYN(n_neighbors=3, random_state=42)
X_train_bal, y_train_bal = adasyn.fit_resample(X_train, y_train)

Hitung distribusi setelah ADASYN
unique_after, counts_after = np.unique(y_train_bal,
return_counts=True)

106

print(f"\n] Distribusi SETELAH ADASYN:")
for label, count in zip(unique_after, counts_after):
print(f" {le.inverse_transform([label])[0]}: {count} samples")

print(f"\nv ADASYN selesai")
print(f" Before: {X_train.shape[@]} samples")
print(f" After: {X_train_bal.shape[0]} samples (balanced)")

print("\n[3/5] Scaling data...")

scaler = StandardScaler(with_mean=False)
X_train_bal_scaled = scaler.fit_transform(X_train_bal)
X_test_scaled = scaler.transform(X_test)

print("v Scaling selesai")
print("\n[4/5] Cross Validation (5-Fold)...")

k_range = [3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

results = {
ke [0
"train_acc': [],
'val _acc': [],
"train_f1': [],
'val_f1': [],
"train_precision': [],
'val_precision': [],
"train_recall': [],
‘val_recall': []

for k in k_range:
train_accs = []
val_accs = []
train_f1s = []
val_fl1s = []
train_precisions = []
val_precisions = []
train_recalls = []
val_recalls = []

K-Fold CV
for train_idx, val_idx in skf.split(X_train_bal_scaled,
y_train_bal):
X_tr = X_train_bal_scaled[train_idx]
X_val = X_train_bal_scaled[val_idx]
y_tr = y train_bal[train_idx]
y_val = y _train_bal[val_idx]

107

knn = KNeighborsClassifier(n_neighbors=k, weights="uniform',
metric="euclidean')
knn.fit(X_tr, y_tr)

y_tr_pred = knn.predict(X_tr)
y_val pred = knn.predict(X_val)

train_accs.append(accuracy_score(y_tr, y_tr_pred))

train_f1s.append(fl_score(y_tr, y_tr_pred,
average="weighted'))

train_precisions.append(precision_score(y_tr, y_tr_pred,
average="weighted'))

train_recalls.append(recall_score(y_tr, y_tr_pred,
average="weighted'))

val _accs.append(accuracy_score(y_val, y_val pred))

val fils.append(fl_score(y_val, y val pred,
average="weighted'))

val precisions.append(precision_score(y_val, y_val pred,
average="weighted'))

val _recalls.append(recall_score(y_val, y_val pred,
average="weighted'))

results['k'].append(k)
results['train_acc'].append(np.mean(train_accs))
results['val_acc'].append(np.mean(val_accs))
results['train_f1'].append(np.mean(train_f1s))
results['val_f1'].append(np.mean(val_f1s))
results['train_precision'].append(np.mean(train_precisions))
results['val_precision'].append(np.mean(val_precisions))
results['train_recall'].append(np.mean(train_recalls))
results['val_recall'].append(np.mean(val_recalls))

Tampilkan hasil CV lengkap
print("\nll TABEL LENGKAP HASIL CV:")
df_results = pd.DataFrame(results)
print(df_results.to_string(index=False))

best_idx = np.argmax(results['val_f1'])
best_k = results['k'][best_idx]
print(f"\n s Best K = {best_k} (Val F1:
{results['val_f1'][best_idx]:.4f})")

print("\n[5/5] Training final model...")
knn_best = KNeighborsClassifier(n_neighbors=best_k, weights="uniform',
metric="euclidean')

knn_best.fit(X_train_bal_scaled, y train_bal)

y_train_pred = knn_best.predict(X_train_bal_scaled)
y_test_pred = knn_best.predict(X_test_scaled)

108

train_acc = accuracy_score(y_train_bal, y_ train_pred)

test_acc = accuracy_score(y_test, y_test_pred)

test _f1 = f1_score(y_test, y_test_pred, average='weighted')
test_precision = precision_score(y_test, y_ test_pred,
average="weighted")

test_recall = recall_score(y_test, y_test_pred, average='weighted')

print(f"\n il PERFORMA MODEL (K={best_k}):")
print(f" Train Accuracy: {train_acc:.4f}")
print(f" Test Accuracy: {test_acc:.4f}")
print(f" Test F1-Score: {test_f1:.4f}")
print(f" Test Precision: {test_precision:.4f}")
print(f" Test Recall: {test_recall:.4f}")

print(f"\n CLASSIFICATION REPORT:")
print(classification_report(y_test, y_ test_pred,
target_names=1le.classes_))

print("\nl Creating visualizations...")
cm = confusion_matrix(y_test, y_test_pred)

BUAT 3 PLOT: ADASYN Comparison + Accuracy vs K + Confusion Matrix
fig, axes = plt.subplots(l, 3, figsize=(20, 5))

Plot 1: DIAGRAM BATANG PERBANDINGAN ADASYN
axl = axes[0@]

labels = le.classes_
X = np.arange(len(labels))
width = 0.35

barsl = axl.bar(x - width/2, counts_before, width, label='Before
ADASYN', color="'#ef4444', alpha=0.8)

bars2 = axl.bar(x + width/2, counts_after, width, label='After
ADASYN', color="#10b981', alpha=0.8)

Tambahkan nilai di atas bar
for bar in barsil:
height = bar.get_height()
axl.text(bar.get_x() + bar.get_width()/2., height,
f'{int(height)}’,
ha="center', va='bottom', fontsize=10, fontweight='bold")

for bar in bars2:
height = bar.get_height()
ax1l.text(bar.get_x() + bar.get_width()/2., height,
f'{int(height)}’,
ha="'center', va='bottom', fontsize=10, fontweight="'bold")

axl.set_xlabel('Class', fontweight='bold")
ax1l.set_ylabel('Number of Samples', fontweight='bold')

109

axl.set_title('Data Distribution: Before vs After ADASYN',
fontweight="bold', fontsize=12)

axl.set_xticks(x)

axl.set_xticklabels(labels)

ax1l.legend()

ax1l.grid(True, alpha=0.3, axis='y'")

Plot 2: Accuracy vs K

ax2 = axes[1]

ax2.plot(results['k'], results['train_acc'], marker='o', label='Train
Accuracy', linewidth=2, color="'#3b82f6")

ax2.plot(results['k"'], results['val_acc'], marker='s",
label="Validation Accuracy', linewidth=2, color='#f59e0b")
ax2.axvline(x=best_k, color="red', linestyle='--', label=f'Best
K={best_k}', alpha=0.7, linewidth=2)

ax2.set_xlabel('K (Number of Neighbors)', fontweight='bold")
ax2.set_ylabel('Accuracy', fontweight='bold')
ax2.set_title('KNN + ADASYN Performance: Accuracy vs K',
fontweight="bold', fontsize=12)

ax2.legend()

ax2.grid(True, alpha=0.3)

Plot 3: Confusion Matrix

ax3 = axes[2]

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues’,
xticklabels=1le.classes_, yticklabels=1le.classes_, ax=ax3,
cbar_kws={"label': 'Count'})

ax3.set_xlabel('Predicted', fontweight='bold")

ax3.set_ylabel('True', fontweight='bold")

ax3.set_title(f'Confusion Matrix (K={best_k})', fontweight='bold",

fontsize=12)

plt.tight_layout()

plt.savefig('knn_adasyn_results.png', dpi=300, bbox_inches="tight'")
print("v Visualization saved: knn_adasyn_results.png")

plt.show()

110

RIWAYAT HIDUP

Ni Komang Arista Tri Wahyuni lahir di Karangasem
pada 9 Mei 2003. Penulis lahir dari pasangan suami istri
Bapak I Ketut Latra dan Ibu Ni Ketut Sari. Penulis
berkebangsaan Indonesia dan beragama Hindu. Kini
Penulis beralamat di Banjar Tanah Ampo, Desa
Jungutan, Kecamatan = Bebandem, Kabupaten
Karangasem, Provinsi Bali. Penulis menyelesaikan
pendidikan dasar di SD Negeri 3 Sibetan dan lulus pada
tahun 2015. Kemudian penulis melanjutkan pendidikan
di SMP Negeri 1 Bebandem dan lulus pada tahun 2018.
Pada tahun 2021, penulis lulus dari SMA Negeri 1
Bebandem jurusan Ilmu Pengetahuan Alam dan melanjutkan studi (S1) di
Universitas Pendidikan Ganesha dengan Program Studi Sistem Informasi, Jurusan
Teknik Informatika.

111

