LAMPIRAN

Lampiran 1. Riwayat Hidup

RIWAYAT HIDUP

Aprilia Monica Sari lahir di Singaraja pada 18 April 2003.
Penulis lahir dari pasangan suami istri, Bapak Nyoman
Sutawan dan Ibu Putu Suasmini. Penulis berkebangsaan
Indonesia dan beragama Budha. Kini penulis beralamat di
Jalan Merpati No 2, Keluruhan Kaliuntu, Kecamatan
Buleleng, Kota Singaraja, Kabupaten Buleleng, Provinsi
Bali. Penulis penyelesaikan pendidikan dasar di SD Negeri

3 Banjar Jawa dan lulus pada tahun 2015. Kemudian

penulis melanjutkan pendidikan di SMP Negeri 2
Singaraja dan lulus pada tahun 2018. Pada tahun 2021, penulis lulus dari SMA
Negeri 1 Singaraja jurusan Ilmu Pengetahuan Alam dan melanjutkan studi (S1) di
Universitas Pendidikan Ganesha dengan Program Studi Sistem Informasi, Jurusan

Teknik Informatika.

119

Lampiran 2. Surat Permohonan Pelabelan Data Validator 1

KEMENTERIAN PENDIDIKAN TINGGI, SAINS,
DAN TEKNOLOGI
UNIVERSITAS PENDIDIKAN GANESHA
FAKULTAS TEKNIK DAN KEJURUAN
Jalan Udayana Nomor 11 Singaraja - Bali Kode Pos 81116

Telepon (0362) 22570 Email: ftk@undiksha.ac.id Laman: http://ftk.undiksha.

Nomor : 2312/UN48.11.1/D1.03.00/2025 Singaraja, 19 Agustus 2025

Perihal : Surat Permohonan Pengambilan Data

Yth. Kepala SD Negeri 1 Astina
di tempat

Dengan hormat, sehubungan dengan proses penyelesaian Tugas Akhir/Skripsi, maka melalui surat ini
kami mohon Bapak/Ibu berkenan memberikan data yang terkait dengan data yang dibutuhkan.

Adapun mahasiswa yang akan melakukan pengambilan data seperti tersebut di bawah ini:

Nama : Aprilia Monica Sari

NIM : 2115091063

Program Studi : Sistem Informasi

Jurusan : Teknik Informatika

Data yang dibutuhkan : Pelabelan data penelitian skripsi

Judul Penclitian : Analisis Sentimen Program Petani Milenial Pada Komentar

Tiktok Menggunakan Metode IndoBERT

Demikian kami sampaikan, atas perhatian dan kerjasamanya, diucapkan terima kasih.

a.n Dekan
Wakil Dekan Bidang Akademik,

Made Windu Antara Kesiman
NIP 198211112008121001

Catatan
' Balai » UU ITE No. 11 Tahun 2008 Pasal 5 ayat 1¥Informasi Elektronik dan/atau Dokumen Elektornik dan/atau hasil
d Sertifikasi cetaknya merupakan alat bukii hukum yang sah”
A Elektronik 4 pokumen ini tertanda ditandatangani sceara clektronik menggunakan scrtifikat elektronik yang diterbitkan BstE

+ Surat ini dapat dibuktikan keasliannya dengan menggunakan gr code yang telah tersedia

120

Lampiran 3. Surat Permohonan Pelabelan Data Validator 2

KEMENTERIAN PENDIDIKAN TINGGI, SAINS,
DAN TEKNOLOGI
UNIVERSITAS PENDIDIKAN GANESHA
FAKULTAS TEKNIK DAN KEJURUAN
Jalan Udayana Nomor 11 Singaraja - Bali Kode Pos 81116
Telepon (0362) 22570 Email: ftk@undiks .id Laman: hitp:

Nomor : 2313/UN48.11.1/DI1.03.00/2025 Singaraja, 19 Agustus 2025

Perihal : Surat Permohonan Pengambilan Data

Yth. Kepala SMP Negeri | Singaraja
di tempat

Dengan hormat, sehubungan dengan proses penyelesaian Tugas Akhir/Skripsi, maka melalui surat ini

kami mohon Bapak/Ibu berkenan memberikan data yang terkait dengan data yang dibutuhkan.

Adapun r iswa yang akan kukan p data seperti tersebut di bawah ini:
Nama : Aprilia Monica Sari

NIM 1 2115091063

Program Studi : Sistem Informasi

Jurusan : Teknik Informatika

Data yang dibutuhkan : Pelabelan data penelitian skripsi

Judul Penelitian : Analisis Sentimen Program Petani Milenial Pada Komentar

Tiktok Menggunakan Metode IndoBERT

Demikian kami sampaikan, atas perhatian dan kerjasamanya, diucapkan terima kasih.

a.n Dekan
Wakil Dekan Bidang Akademik,

Made Windu Antara Kesiman
NIP 198211112008121001

Catatan :
' Balai ® UU ITE No. 11 Talun 2008 Pasal § ayat 1*Informasi Elektronik dan/atau Dokumen Elektomik dan/atau hasil
d Sertifikasi cetaknya merupakan alat buki hukum yang sah”
A Elektronik o Dokumen ini tertanda ditandatangani secara clektronik menggunakan sertifikat elektronik yang diterbitkan BstE

 Surat ini dapat dibuktikan keasliannya dengan menggunakan g code yang telah tersedia

121

Lampiran 4. Surat Pernyataan Hasil Validasi oleh Validator 1

SURAT PERNYATAAN HASIL VALIDASI DATA

Yang bertanda tangan di bawah ini:

Nama : 1 GUSTIAYU PUTU SRI DARMAWATI, M.PD
NIP/NIK : 197202251992032009
Jabatan : Guru Bahasa Indonesia Kelas 6
Instansi : 8D Negeri | Astina
Dengan ini menyatakan bahwa saya telah melakukan validasi terhadap data

TikTok mengenai Program Petani Milenial yang telah diberikan oleh:

Nama Mahasiswa : Aprilia Monica Sari

NIM : 2115091069
Program Studi : Sistem Informasi
Universitas : Universitas Pendidikan Ganesha

Data tersebut terdiri dari sejumlah kalimat komentar yang telah diberi label sentimen
hasiswa. Berdasarkan hasil penelaah: hadap konteks kalimat, diksi,

positif dan negatif oleh

serta makna yang terkandung di dalam } saya y bahwa pelabelan yang
dilakukan sudah sesuai dengan kaidah Bahasa Indonesia dan dapat diterima secara makna dan

konteks dalam analisis sentimen.

h

Demikian surat ini dibuat untuk di{

Singaraja, 25 Agustus 2025
Guru Bahasa Indonesia,

1 GUSTIAYU PU'
NIP. 19

DARMAWATI, M.PD
251992032009

122

Lampiran 5. Surat Pernyataan Hasil Validasi oleh Validator 2

SURAT PERNYATAAN HASIL VALIDASI DATA

Yang bertanda tangan di bawah ni:
Nama : Dewa Ayu Wijayanu Kusuma Dewi. S.Pd
NIPNIK : 199504162022212002
Jabatan : Guru Bahasa Indonesia
Instansi : SMP Negeri 1 Singaraja
Dengan ini menyatakan bahwa saya telah melakukan validasi terhadap data komentar
TikTok mengenai Program Petani Milenial yang telah diberikan oleh:

Nama Mahasiswa : Aprilia Monica Sari

NIM : 2115091069

Program Studi : Sistem Informasi

Universitas : Universitas Pendidikan Ganesha

Data tersebut terdiri dari sejumlah kalimat komentar yang telah diberi label sentimen
positif dan negatif oleh mahasiswa. Berdasarkan hasil penel. han terhadap b ks kali diksi,
serta makna yang terkandung di dalam | saya yatakan bahwa pelabelan yang
dilakukan sudah sesuai dengan kaidah Bahasa Indonesia dan dapat diterima secara makna dan

konteks dalam analisis sentimen.

Demikian surat ini dibuat untuk digunakan scbagaimana mestinya.

Singaraja, 25 Agustus 2025
Guru Bghasa Indoncsia,

o\Z'
Dewa Ayu Wijayanti Kusuma Dewi, S.Pd
NIP. 197202251992032009

123

Lampiran 6. Bukti Foto Bersama Validator Ahli Bahasa

124

Lampiran 7. Code Cleaning

=== Tahap Cleaning ===
def cleaning(text):
text = str (text)
text = re.sub (r"http\S+|www.\S+", "", text) # hapus URL

text = re.sub(r"@\w+", "", text) # hapus mention

text = re.sub (r"#\w+", "", text) # hapus hashtag

text = re.sub(r"["0-9a-zA-Z\s]", " ", text) # hapus simbol & tanda
baca, simpan huruf+angka

text = re.sub(r"\s+", " ", text).strip() # hapus spasi berlebih

return text

df ["cleaned"] = df["text"].apply(cleaning)

print ("=== Setelah Cleaning ===")

print (df [["uniqueId", "text", "cleaned", "label"]].head())

=== Simpan hasil cleaning dengan kolom uniqueld, text, cleaned, label
;;icleaning = df[["uniqueId", "text", "cleaned", "label"]]

df cleaning.to excel("/content/l-Data Cleaning.xlsx", index=False)
print ("File berhasil disimpan sebagai cleaning.xlsx")

Lampiran 8. Code Case Folding

import pandas as pd

=== Baca file cleaning ===
df cleaning = pd.read excel ("/content/l-Data Cleaning.xlsx")

=== Casefolding ===
df cleaning["casefolding"] = df cleaning["cleaned"].str.lower ()
=== Buat DataFrame final =

df casefolding = df cleaning[["uniqueId", "cleaned", "casefolding",
"label"]]

Rename kolom 'cleaned' jadi 'text'
df casefolding = df casefolding.rename (columns={"cleaned": "text"})

print ("=== Setelah Casefolding ==="
print (df casefolding.head())

=== Simpan ===

df casefolding.to_excel("/content/2-Data Casefolding.xlsx",
index=False)

print ("File berhasil disimpan sebagai casefolding.xlsx")

125

Lampiran 9. Code Normalize

for w in words]

= df casefolding["casefolding"]

import pandas as pd
=== Baca file casefolding ===
df casefolding = pd.read excel("/content/2-Data Casefolding.xlsx")
=== Kamus normalisasi ===
normalization dict = {
"trs": "terus",
"pak": "bapak",
"udah": "sudah",
"gak": "tidak",
"kayak": "seperti",
"ngga": "tidak",
"nggak": "tidak",
"ga": "tidak",
llg": lltidak",
"bs": "bisa",
"aamiin": "amin",
"aja": "saja",
"nyampe": "sampai',
"gini™: "ini",
'lyg" : "yang",
"dgn": "dengan",
"sampe": "sampai',
"emang": "memang",
"udh": "sudah",
"jgn": lljangan",
"info": "informasi",
"sdm": "sumber daya manusia",
"ak": "aku",
"php": "memberi harapan palsu",
"beresin": "selesaikan",
"kementan": "kementrian pertanian",
"liat": "lihat",
"joss": "mantap",
"gass": "mantap",
"wow": "mantap",
"pengen": "ingin",
"infonya": "informasinya",
"rame": "ramai",
"ngerasa": "merasa",
"mantul": "mantap",
"sdh": "sudah",
"tidk": "tidak",
"ngerasain": "merasakan",
"ngerti" "mengerti",
"tetep": "tetap"
}
=== Fungsi normalisasi ===
def normalize text (text):
words = str(text) .split()
normalized words = [normalization dict.get (w, w)
return " ".join(normalized words)
P Ambil hasil casefolding sebagai sumber teks
df casefolding["text casefolding"]
=== Terapkan Normalisasi ===
df casefolding["normalize"] =
df casefolding["text casefolding"].apply(normalize text)
=== Buat DataFrame final ===

126

df normalized = df casefolding[["uniqueId", "text casefolding",
"normalize", "label"]]

print ("=== Setelah Normalisasi ===")
print (df normalized.head())

=== Simpan ===
df normalized.to_excel ("/content/3-Data Normalize.xlsx", index=False)
print ("File berhasil disimpan sebagai normalize.xlsx")

Lampiran 10. Code Skenario 1

#
E) Import Library

F === === S == ==

import torch

import numpy as np

import pandas as pd

from torch.utils.data import Dataloader, TensorDataset, RandomSampler,
SequentialSampler

from sklearn.model selection import KFold

from sklearn.metrics import classification report, confusion matrix,
precision score, recall score, fl score

from transformers import BertTokenizer, BertForSequenceClassification
from torch.optim import AdamW

import matplotlib.pyplot as plt

import seaborn as sns

from tgdm import tgdm

—_—

B Load Dataset

df = pd.read excel ("/content/3-Data Normalize.xlsx")
TEXT COLUMN = "normalize"

LABEL7COLUMN = "label"

mapping label - angka

label map = {label: idx for idx, label in
enumerate (df [LABEL COLUMN] .unique())}
df["label id"] = df[LABEL COLUMN] .map (label map)

print ("Label mapping:", label map)

texts = df[TEXT COLUMN].astype (str) .tolist ()
labels = df["label id"].astype(int) .tolist ()

tokenizer = BertTokenizer.fromﬁpretrained("indobenchmark/indobert—
base-pl")
encodings = tokenizer (
texts, truncation=True, padding=True, max length=128,
return tensors="pt"

)

input ids = encodings["input ids"]

attention mask = encodings["attention mask"]

labels = torch.tensor (labels)

dataset = TensorDataset (input ids, attention mask, labels)

#

B} Parameter Training

#

device = torch.device("cuda" if torch.cuda.is available() else "cpu")
num epochs = 100

127

num folds = 5
batch size = 16

lr = le-5
patience = 10

B Early Stopping Class
_______ J— J— J— P ——
class EarlyStopping:
def init (self, patience=10, min delta=0, verbose=True):
moan
Args:
patience (int): Berapa epoch menunggu setelah tidak ada
peningkatan

min delta (float): Minimal perubahan untuk dianggap
sebagai peningkatan
verbose (bool): Print message saat early stop
mwan
self.patience = patience
self.min delta = min delta
self.verbose = verbose
self.counter = 0
self.best loss = None
self.early stop = False
self.best epoch 0

def call (self, val loss, epoch):
if self.best loss is None:

self.best loss = val loss
self.best epoch = epoch
elif val loss > self.best loss - self.min delta:

self.counter += 1
if self.verbose:
print (f"EarlyStopping counter:
{self.counter}/{self.patience}")
if self.counter >= self.patience:
SENEEMEEIRC T Op “="Trie

else:
self.best loss = val loss
self.best epoch = epoch
self.counter = 0

#
B K-Fold Cross Validation dengan Early Stopping

#
kfold = KFold(n splits=num folds, shuffle=True, random state=42)

fold train acc, fold val acc = [], []
fold prec, fold rec, fold f1 = [], [], []
all preds, all labels = [], []

train acc_per epoch, val acc per epoch = [], []
train loss per epoch, val loss per epoch = [], []
epochs completed per fold = []

best epoch per fold = []

for fold, (train idx, val idx) in enumerate (kfold.split (dataset)):
print (f"\n========== Fold {fold+l} ==========")

train subset = torch.utils.data.Subset (dataset, train idx)
val subset = torch.utils.data.Subset (dataset, val idx)

train loader = Dataloader (train subset,
sampler=RandomSampler (train subset), batch size=batch size)
val loader = Dataloader (val subset,

128

sampler=SequentialSampler (val subset), batch size=batch size)

model = BertForSequenceClassification.from pretrained/(
"indobenchmark/indobert-base-pl",
num labels=len (label map)

) .to (device)

optimizer = AdamW (model.parameters (), lr=1lr)
early stopping = EarlyStopping(patience=patience, verbose=True)

fold train acc_epoch, fold val acc epoch = [], []
fold train loss epoch, fold val loss epoch = [], []

for epoch in range (num_epochs) :
-—--- Training ----
model.train ()
total loss, correct, total =0, 0, O
for batch in tgdm(train loader, desc=f"Training Epoch
{epoch+1}") :
optimizer.zero grad()
input ids, attention mask, labels batch = [b.to(device)
for b in batch]
outputs = model (input ids, attention mask=attention mask,
labels=labels batch)
loss = outputs.loss
logits = outputs.logits
loss.backward()
optimizer.step ()

total loss += loss.item()

preds = torch.argmax (logits, dim=1)

correct += (preds == labels batch).sum().item()
total += labels batch.size(0)

train acc = correct / total
avg_train loss = total loss / len(train loader)

-—--- Validation ----
model.eval ()
val loss, val correct, val total = 0, 0, O
val preds, val true = [], []
with torch.no grad() :
for batch in val loader:
input ids, attention mask, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids,
attention mask=attention mask, labels=labels batch)
val loss += outputs.loss.item()
preds = torch.argmax (outputs.logits, dim=1)
val correct += (preds == labels batch) .sum() .item()
val total += labels batch.size(0)
val preds.extend(preds.cpu() .numpy())
val true.extend(labels batch.cpu() .numpy())

val acc = val correct / val total
avg val loss = val loss / len(val loader)

fold train acc_epoch.append(train acc)

fold val acc_epoch.append(val_acc)

fold train loss epoch.append(avg train loss)
fold val loss epoch.append(avg val loss)

print (f"Epoch {epoch+1}/{num_epochs} - Train Loss:
{avg train loss:.4f}, Val Loss: {avg val loss:.4f}, "

129

f"Train Acc: {train acc:.4f}, Val Acc: {val acc:.4f}")
early stopping(avg val loss, epoch+l)

if early stopping.early stop:
print (f" A Early stopping triggered at epoch {epoch+1}")
print(f" Best validation loss was
{early stopping.best loss:.4f} at epoch {early stopping.best epoch}")
break

epochs completed = len(fold train acc_epoch)

epochs completed per fold.append(epochs completed)

best epoch per fold.append(early stopping.best epoch)

print ("l Fold {fold+l} completed {epochs completed} epochs
(best at epoch {early stopping.best epoch})")

Metrics per fold

precision = precision score(val true, val preds,
average="weighted", zero division=0)

recall = recall score(val true, val preds, average="weighted",
zero division=0)

fl = fl1 score(val true, val preds, average="weighted",
zero division=0)

fold train acc.append(train acc)
fold val acc.append(val acc)
fold prec.append(precision)

fold rec.append(recall)

fold fl.append(£f1l)

all preds.extend(val preds)
all labels.extend(val true)

train acc per epoch.append(fold train acc epoch)
val acc _per epoch.append(fold val acc_epoch)

train loss per epoch.append(fold train loss epoch)
val loss per epoch.append(fold val loss epoch)

print (f"Fold {fold+l} - Train Acc: {train acc:.4f} | Val Acc:
{val acc:.4f} | "

f"Prec: {precision:.4f} | Rec: {recall:.4f} | Fl: {fl:.4f}")

B Informasi Early Stopping

print ("\n===== Informasi Early Stopping =====")

print (f"Epoch minimum: {min(epochs completed per fold)}")

print (f"Epoch maksimum: {max (epochs completed per fold)}")

print (f"Rata-rata epoch: {np.mean(epochs completed per fold):.2f}")
print (f"Epoch per fold: {epochs completed per fold}")

print (f"\nBest epoch per fold: {best epoch per fold}")

print (f"Rata-rata best epoch: {np.mean(best epoch per fold):.2f}")
print (f"Best epoch minimum: {min (best epoch per fold)}")

print (f"Best epoch maksimum: {max(best epoch per fold)}")

#

EJ Rata-rata Akhir 5 Fold

7777777

print ("\n===== Rata-Rata Hasil 5 Fold =====")
print (f"Train Acc: {np.mean(fold train acc):.4£f}")
print (£"Val Acc: {np.mean(fold val acc):.4f}")
print (f"Precision: {np.mean(fold prec):.4f}")
print (f"Recall: {np.mean(fold rec):.4f}")

130

print (f"F1 Score: {np.mean (fold f1):.4f}")

#

) Grafik Akurasi & Loss Rata-rata per Epoch

#

min epochs = min (epochs completed per fold)

train acc_trimmed = [fold[:min epochs] for fold in
train acc per epoch]

val acc trimmed = [fold[:min epochs] for fold in val acc per epoch]
train loss trimmed = [fold[:min epochs] for fold in

train loss per epoch]

val loss trimmed = [fold[:min epochs] for fold in val loss per epoch]
avg_train acc = np.mean(train acc trimmed, axis=0)

avg val acc = np.mean(val acc_ trimmed, axis=0)

avg_train loss = np.mean(train loss trimmed, axis=0)

avg val loss = np.mean(val loss trimmed, axis=0)

epochs range = range(l, min epochs + 1)

B confusion Matrix & Classification Report

#

cm = confusion matrix(all labels, all preds)
plt.figure(figsize=(8,6))

sns.heatmap (cm, annot=True, fmt="d", cmap="Blues",
xticklabels=label map.keys (), yticklabels=label map.keys())
plt.xlabel ("Predicted", fontsize=12)

plt.ylabel ("True", fontsize=12)

plt.title("Confusion Matrix (Keseluruhan)", fontsize=14)
plt.tight layout ()
plt.savefig("confusion matrix overall.png", dpi=300)
plt.show ()

target names = list (label map.keys())

Custom classification report dengan nilai bulat (persentase)
report dict = classification report(all labels, all preds,
target names=target names, output dict=True, zero division=0)

print ("\n===== Classification Report Final =====")

print (f"{'Class':<15} {'Precision':<12} {'Recall':<12} {'Fl-
Score':<12} {'Support':<10}")

print ("=" * 65)

Print per kelas
for label name in target names:

prec = report dict[label name] ['precision'] * 100

rec = report dict[label name] ['recall'] * 100

fl = report dict[label name] ['fl-score'] * 100

sup = int(report dict[label name]['support'])

print (f"{label name:<15}
{prec:>6.0f}% {rec:>6.0f}% {fl:>6.0f}% {sup:>6}")
print ("-" * 65)

Print accuracy

acc = report dict['accuracy'] * 100

total support = int (report dict['weighted avg']['support'])
print (£"{'Accuracy':<15} {'':<12} {'':<12}

{acc:>6.0f}% {total support:>6}")

print ("-" * 65)

131

Print macro avg

macro_prec = report dict['macro avg']['precision'] * 100

macro_rec = report dict['macro avg']['recall'] * 100

macro_ fl = report dict['macro avg']['fl-score'] * 100

print (f"{'Macro Avg':<15}

{macro prec:>6.0£f}% {macro rec:>6.0£f}% {macro f1:>6.0£f}%

{total support:>6}")

Print weighted avg

weighted prec = report dict['weighted avg']['precision'] * 100
weighted rec = report dict['weighted avg']['recall'] * 100
weighted fl = report dict['weighted avg']['fl-score'] * 100

print (f"{'Weighted Avg':<15}

{weighted prec:>6.0f}% {weighted rec:>6.0f}% {weighted f1:
>6.0f1% {total support:>6}")

Simpan ke CSV
report df = pd.DataFrame (report dict).transpose()
report df pct = report df.copy()
for col in ['precision', 'recall', 'fl-score']:

if col in report df pct.columns:

report df pct[col] = (report df pctlcol] *

100) .round (0) .astype (int) .astype (str) + '$'
report df pct.to csv("classification report overall.csv", index=True)

Grafik Akurasi (SMOOTH - tanpa marker)

plt.figure (figsize=(10,5))

plt.plot (epochs range, avg train acc, label="Train Accuracy",
linewidth=2.5, color='#1£f77b4")

plt.plot (epochs range, avg val acc, label="Validation Accuracy",
linewidth=2.5, color="#ff7f0e')

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Accuracy", fontsize=12)

plt.title (f"Rata-rata Akurasi per Epoch (5 Fold, Early Stop)",
fontsize=14)

plt.legend (fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()

plt.savefig("avg accuracy epoch.png", dpi=300)

plt.show()

Grafik Loss (SMOOTH - tanpa marker)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train loss, label="Train Loss",
linewidth=2.5, color="#1£77b4")

plt.plot (epochs range, avg val loss, label="Validation Loss",
linewidth=2.5, color="#ff7f0e')

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Loss", fontsize=12)

plt.title(f"Rata-rata Loss per Epoch (5 Fold, Early Stop)",
fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()

plt.savefig("avg loss epoch.png", dpi=300)

plt.show ()

print(f"\n!ﬂ Panjang sumbu X pada grafik: {min epochs} epoch")
print(f"!ﬂ Semua hasil (grafik & laporan) sudah tersimpan dan tampil
di output Colab.")

Lampiran 11. Code Skenario 2

132

#

B Import Library
#
import torch

import numpy as np

import pandas as pd

from torch.utils.data import Dataloader, TensorDataset, RandomSampler,
SequentialSampler

from sklearn.model selection import KFold

from sklearn.metrics import classification report, confusion matrix,
precision score, recall score, fl score

from transformers import BertTokenizer, BertForSequenceClassification
from torch.optim import AdamW

import matplotlib.pyplot as plt

import seaborn as sns

from tgdm import tgdm

#

B Load Dataset

#

df = pd.read excel ("/content/3-Data Normalize.xlsx")
TEXT COLUMN = "normalize"

LABEL COLUMN = "label"

mapping label - angka

label map = {label: idx for idx, label in
enumerate (df [LABEL COLUMN] .unique ()) }
df ["label id"] = df[LABEL COLUMN].map (label map)

print ("Label mapping:", label map)

texts = df [TEXT COLUMN].astype (str).tolist()
labels = df["label id"].astype (int) .tolist ()

tokenizer = BertTokenizer.from pretrained ("indobenchmark/indobert-
base-pl")
encodings = tokenizer (
texts, truncation=True, padding=True, max length=128,
return tensors="pt"

)

input ids = encodings["input ids"]

attention mask = encodings["attention mask"]

labels = torch.tensor (labels)

dataset = TensorDataset (input ids, attention mask, labels)

#

B parameter Training

#

device = torch.device("cuda" if torch.cuda.is available() else "cpu")
num epochs = 100

num_folds = 5
batch size = 32

lr = le-5

patience = 10

#

B Early Stopping Class

7777777

class EarlyStopping:

def init (self, patience=10, min delta=0, verbose=True):

moan
Args:

patience (int): Berapa epoch menunggu setelah tidak ada

133

peningkatan
min delta (float): Minimal perubahan untuk dianggap
sebagai peningkatan
verbose (bool): Print message saat early stop
self.patience = patience
self.min delta = min delta
self.verbose = verbose
self.counter = 0
self.best loss = None
self.early stop = False
self.best epoch = 0

def call (self, val loss, epoch):
if self.best loss is None:
self.best loss = val loss
self.best epoch = epoch
elif val loss > self.best loss - self.min delta:
self.counter += 1
if self.verbose:
print (f"EarlyStopping counter:
{self.counter}/{self.patience}")
if self.counter >= self.patience:
self.early stop = True
else:
sel LEOESIENIO S5 . =V alRICISS
self.best epoch = epoch
self.counter = 0

B K-Fold Cross Validation dengan Early Stopping
#
kfold = KFold(n splits=num folds, shuffle=True, random state=42)

fold train acc, fold val acc = [], []
fold prec, fold rec, fold f1 = [], [], []
all preds, all labels = [], []

train acc_per epoch, val acc per epoch = [], []
train loss per epoch, val loss per epoch = [], []
epochs completed per fold = []

best epoch per fold = []

for fold, (train idx, val idx) in enumerate(kfold.split (dataset)):

print (£" \n==========NEE' Il 88 { Gl &~ " |l ——=——=—===)

train subset = torch.utils.data.Subset (dataset, train idx)

val subset = torch.utils.data.Subset (dataset, val idx)

train loader = DatalLoader (train subset,
sampler=RandomSampler (train subset), batch size=batch size)

val loader = Dataloader (val subset,

sampler=SequentialSampler(val_sﬂbset), batch size=batch size)
model = BertForSequenceClassification.from pretrained/(
"indobenchmark/indobert-base-pl",
num labels=len (label map)
) .to (device)
optimizer = AdamW (model.parameters(), lr=1lr)

early stopping = EarlyStopping(patience=patience, verbose=True)

fold train acc_epoch, fold val acc epoch = [], []
fold train loss epoch, fold val loss epoch = [], []

134

for epoch in range (num epochs) :
---- Training ----
model.train ()
total loss, correct, total =0, 0, O
for batch in tgdm(train loader, desc=f"Training Epoch
{epoch+1}"):
optimizer.zero grad()
input ids, attention mask, labels batch = [b.to(device)
for b in batch]
outputs = model (input ids, attention mask=attention mask,
labels=labels batch)
loss = outputs.loss
logits = outputs.logits
loss.backward()
optimizer.step ()

total loss += loss.item()

preds = torch.argmax(logits, dim=1)

correct += (preds == labels batch).sum().item/()
total += labels batch.size (0)

train acc = correct / total
avg train loss = total loss / len(train loader)
---- Validation ----

model.eval ()
val loss, val correct, val total = 0, 0, O
val preds, val true = [], []
with torch.no grad() :
for batch in val loader:
input ids, attention mask, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids,
attention mask=attention mask, labels=labels batch)
val loss += outputs.loss.item()
preds = torch.argmax (outputs.logits, dim=1)
val correct += (preds == labels batch) .sum() .item()
val total += labels batch.size (0)
val preds.extend(preds.cpu() .numpy())
val true.extend(labels batch.cpu() .numpy ())

val acc = val correct / val total

avg_val loss = val loss / len(val loader)

fold train acc_epoch.append(train acc)

fold val acc epoch.append(val acc)

fold train loss_epoch.append(avg train loss)
fold val loss epoch.append(avg val loss)

print (f"Epoch {epoch+l}/{num epochs} - Train Loss:
{avg train loss:.4f}, Val Loss: {avg val loss:.4f}, "
f"Train Acc: {train acc:.4f}, Val Acc: {val acc:.4f}")

early stopping(avg val loss, epoch+l)

if early stopping.early stop:
print (f" A Early stopping triggered at epoch {epoch+1}")
print(f" Best validation loss was
{early stopping.best loss:.4f} at epoch {early stopping.best epoch}")
break

epochs completed = len(fold train acc epoch)
epochs completed per fold.append(epochs completed)
best epoch per fold.append(early stopping.best epoch)

135

print (f" i} Fold {fold+l} completed {epochs completed} epochs
(best at epoch {early stopping.best epoch})")

Metrics per fold

precision = precision score(val true, val preds,
average="weighted", zero division=0)

recall = recall score(val true, val preds, average="weighted",
zero division=0)

fl = f1 score(val true, val preds, average="weighted",

zero division=0)

fold train acc.append(train_acc)
fold val acc.append(val acc)
fold prec.append (precision)

fold rec.append(recall)

fold fl.append(£fl)

all preds.extend(val preds)
all labels.extend(val_ true)

train_acc_per epoch.append(fold train acc epoch)
val acc per epoch.append(fold val acc epoch)

train loss per epoch.append(fold train loss epoch)
val loss per epoch.append(fold val loss epoch)

print (f"Fold {fold+l} - Train Acc: {train acc:.4f} | Val Acc:
{val acc:.4f} | "
f"Prec: {precision:.4f} | Rec: {recall:.4f} | Fl: {fl:.4f}"™)

_______ -

B Informasi Early Stopping

#

print ("\n===== Informasi Early Stopping =====")

print (f"Epoch minimum: {min(epochs completed per fold)}")

print (f"Epoch maksimum: {max (epochs completed per fold)}")

print (f"Rata-rata epoch: {np.mean(epochs completed per fold):.2f}")
print (f"Epoch per fold: {epochs completed per fold}")

print (f"\nBest epoch per fold: {best epoch per fold}")

print (f"Rata-rata best epoch: {np.mean(best epoch per fold):.2f}")
print (f"Best epoch minimum: {min (best epoch per fold)}")

print (f"Best epoch maksimum: {max(best epoch per fold)}")

EJ Rata-rata Akhir 5 Fold
#
print ("\n===== Rata-Rata Hasil 5 Fold =====")
print (f"Train Acc: {np.mean(fold train acc):.4f}")
print (£f"Val Acc: {np.mean (fold val acc):.4f}")
print (f"Precision: {np.mean(fold prec):.4f}")
print (f"Recall: {np.mean (fold rec):.4f}")

(

print (f"F1 Score: {np.mean(fold fl):.4f}")

#

B Grafik Akurasi & Loss Rata-rata per Epoch

#

min epochs = min(epochs completed per fold)

train acc_trimmed = [fold[:min epochs] for fold in

train _acc_per epoch]

val acc trimmed = [fold[:min epochs] for fold in val acc per epoch]
train loss trimmed = [fold[:min epochs] for fold in

train loss per epoch]

val loss trimmed = [fold[:min epochs] for fold in val loss per epoch]

136

avg train acc = np.mean(train acc trimmed, axis=0)
avg val acc = np.mean(val acc_ trimmed, axis=0)

avg_train loss = np.mean(train loss trimmed, axis=0)

avg _val loss = np.mean(val loss trimmed, axis=0)

epochs range = range(l, min epochs + 1)

777777777777
B confusion Matrix & Classification Report

#

cm = confusion matrix(all labels, all preds)
plt.figure(figsize=(8,6))

sns.heatmap (cm, annot=True, fmt="d", cmap="Blues",
xticklabels=label map.keys (), yticklabels=label map.keys())
plt.xlabel ("Predicted", fontsize=12)

plt.ylabel ("True", fontsize=12)

plt.title("Confusion Matrix (Keseluruhan)", fontsize=14)
plt.tight layout ()
plt.savefig("confusion matrix overall.png", dpi=300)
plt.show ()

target names = list (label map.keys())

Custom classification report dengan nilai bulat (persentase)
report dict = classification report(all labels, all preds,
target names=target names, output dict=True, zero division=0)

print ("\n===== Classification Report Final =====")

print (f"{'Class':<15} {'Precision':<12} {'Recall':<12} {'F1l-
Score':<12} {'Support':<10}")

print ("=" * 65)

Print per kelas

for label name in target names:
prec = report dict[label name]['precision'] * 100
rec = report dict[label name]['recall'] * 100
fl = report dict[label name] ['fl-score'] * 100

sup = int (report dict[label name] ['support'])

print (f"{label name:<15}
{prec:>6.0£f}% {rec:>6.0f}% {f1:>6.0£f}% {sup:>6}")
print ("-" * 65)

Print accuracy

acc = report dict['accuracy'] * 100

total support = int (report dict['weighted avg']['support'])
print (f"{'Accuracy':<15} {'':<12} {'':<12}

{acc:>6.0f}% {total support:>6}")

print ("-" * 65)

Print macro avg

macro_prec = report dict['macro avg']['precision'] * 100

macro_rec = report dict['macro avg']['recall'] * 100

macro_fl = report dict['macro avg']['fl-score'] * 100

print (f"{'Macro Avg':<15}

{macro prec:>6.0f}% {macro rec:>6.0f}% {macro fl1:>6.0f}%

{total support:>6}")

Print weighted avg

weighted prec = report dict['weighted avg']['precision'] * 100
weighted rec = report dict['weighted avg'](['recall'] * 100
weighted fl = report dict['weighted avg']['fl-score'] * 100

print (f"{'Weighted Avg':<15}

137

{weighted prec:>6.0f}% {weighted rec:>6.0f}% {weighted f1l:
>6.0f}% {total support:>6}")

Simpan ke CSV
report df = pd.DataFrame (report dict) .transpose ()
report df pct = report df.copy()
for col in ['precision', 'recall', 'fl-score']:

if col in report df pct.columns:

report df pct[col] = (report df pctlcol] *

100) .round (0) .astype (int) .astype (str) + 'S%'
report df pct.to csv("classification report overall.csv", index=True)

Grafik Akurasi (SMOOTH - tanpa marker)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train acc, label="Train Accuracy",
linewidth=2.5, color="#1£f77b4")

plt.plot (epochs range, avg val acc, label="Validation Accuracy",
linewidth=2.5, color='#ff7f0e")

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Accuracy", fontsize=12)

plt.title(f"Rata-rata Akurasi per Epoch (5 Fold, Early Stop)",
fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()

plt.savefig("avg accuracy epoch.png", dpi=300)

plt.show ()

Grafik Loss (SMOOTH - tanpa marker)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train loss, label="Train Loss",
linewidth=2.5, color="#1£f77b4")

plt.plot (epochs range, avg val loss, label="Validation Loss",
linewidth=2.5, color='#ff7f0e')

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Loss", fontsize=12)

plt.title (f"Rata-rata Loss per Epoch (5 Fold, Early Stop)",
fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()

plt.savefig("avg loss epoch.png", dpi=300)

plt.show()

print (£"\n@ Panjang sumbu X pada grafik: {min epochs} epoch")
print(f"!l Semua hasil (grafik & laporan) sudah tersimpan dan tampil
di output Colab.")

138

Lampiran 12. Code Skenario 3

#
E) Import Library

_____ J— J— J— J— P ——

import torch

import numpy as np

import pandas as pd

from torch.utils.data import Dataloader, TensorDataset, RandomSampler,
SequentialSampler

from sklearn.model selection import KFold

from sklearn.metrics import classification report, confusion matrix,
precision score, recall score, fl score

from transformers import BertTokenizer, BertForSequenceClassification
from torch.optim import AdamW

import matplotlib.pyplot as plt

import seaborn as sns

from tgdm import tqgdm

from imblearn.over sampling import SMOTE # 2 GANTI: Import SMOTE
from collections import Counter

_____ R [——

B Load Dataset

df = pd.read excel ("/content/3-Data Normalize.xlsx")

TEXT COLUMN = "normalize"

LZ—\BEL_COLUMN = "label"

mapping label - angka

label map = {label: idx for idx, label in
enumerate (df [LABEL COLUMN] .unique ()) }

df ["label id"] = df[LABEL COLUMN].map (label map)
print ("Label mapping:", label map)

texts = df[TEXT COLUMN].astype (str).tolist ()
labels = df["label id"].astype (int) .tolist ()

Tampilkan distribusi kelas asli

print ("\n===== Distribusi Kelas Original =====")

label counts = Counter (labels)

for label, count in label counts.items () :
label name = [k for k, v in label map.items() if v == label] [0]
print (f"{label name}: {count} ({count/len (labels) *100:.2f}%) ™)

tokenizer = BertTokenizer.fromﬁpretrained("indobenchmark/indobert—
base-pl")
encodings = tokenizer (
texts, truncation=True, padding=True, max length=128,
return tensors="pt"

)

input ids = encodings["input ids"]
attention mask = encodings["attention mask"]
labels tensor = torch.tensor (labels)

7777777

B Parameter Training

#

device = torch.device("cuda" if torch.cuda.is available() else "cpu")
num_epochs = 100

num_folds = 5
batch size = 16
lr = le-5

139

patience = 10

use smote = True
#
+ O Early Stopping Class

class EarlyStopping:
def init (self, patience=10, min delta=0, verbose=True) :

self.patience = patience
self.min delta = min delta
self.verbose = verbose
self.counter = 0

self.best loss = None
self.early stop = False
self.best epoch = 0

def call (self, val loss, epoch):
if self.best loss is None:
self. best_loss = val loss
self.best epoch = epoch
elif val loss > self.best loss - self.min delta:
self.counter += 1
if self.verbose:
print (f"EarlyStopping counter:
{self.counter}/{self.patience}")
if self.counter >= self.patience:
self.early stop = True

else:
self.best loss = val loss
self.best epoch = epoch
self.counter = 0

B K-Fold Cross Validation dengan Early Stopping + SMOTE
#
kfold = KFold(n splits=num folds, shuffle=True, random state=42)

fold train acc, fold val acc = [], []
fold prec, fold rec, fold f1 = [], [], []
all preds, all labels = [], []

train acc per epoch, val acc per epoch = [], []
train loss per epoch, val loss per epoch = [], []
epochs completed per fold = []

best epoch per fold = []

TAMBAHAN: Tracking info SMOTE per fold
smote info per fold = []

for fold, (train idx, wval idx) in
enumerate (kfold. spllt(range(len(labels)))):
prlnt(f"\n{'—'*60}")
prlnt('========== Fold {fold+l} ==========")
(ll{'7|*60}")

LANGKAH 1: Ambil data train dan validation
train input ids = input ids[train idx]

train attention mask = attention mask[train idx]
train labels = labels tensor[train idx]

val input ids = input ids([val idx]
val attention mask = attention mask([val idx]
val labels = labels tensor[val idx]

140

print (f"\n--- Distribusi Sebelum SMOTE ---")
train label counts = Counter (train labels.numpy())
for label, count in sorted(train label counts.items()):
label name = [k for k, v in label map.items() if v ==
label] [0]
print (f" Train {label name}: {count}")

LANGKAH 2: Terapkan SMOTE pada Training Set
if use smote:
print (f"\n¥%F Menerapkan SMOTE pada Training Set...")
print (£" SMOTE akan membuat data sintetis untuk kelas
minoritas")

Gabungkan input ids dan attention mask untuk SMOTE
original shape = train input ids.shape

Reshape untuk SMOTE: (num samples, features)
train data = torch.cat ([

train input ids,

train attention mask
], dim=1) .numpy ()

Apply SMOTE
k neighbors=5 artinya menggunakan 5 tetangga terdekat untuk

interpolasi
Pastikan k neighbors <= jumlah sampel kelas minoritas - 1
min class count = min(train label counts.values())
k neighbors = min(5, min class count - 1) if min class count >
1 else 1

smote = SMOTE (random state=42, k neighbors=k neighbors)
train data resampled, train labels resampled =
smote.fit resample (
train data,
train labels.numpy ()
)

Split kembali menjadi input ids dan attention mask

seq_length = original shape[1l]

train input ids = torch.tensor (train data resampled]:,
:seq_length])

train attention mask = torch.tensor(train data resampled[:,
seq length:])

train labels = torch.tensor (train labels resampled)

print (f"\n--- Distribusi Setelah SMOTE ---")
train label counts after = Counter(train labels.numpy())
for label, count in sorted(train label counts after.items()):
label name = [k for k, v in label map.items () if v ==
label] [0]
print (f" Train {label name}: {count}")

print (f"\nk} Ukuran dataset:")

print (f" Training: {len(train labels)} samples (setelah
SMOTE) ")

print (f" Validation: {len(val labels)} samples (TIDAK di-

SMOTE) ")

Simpan info SMOTE
before count = len(train idx)
after count = len(train_labels)
smote info = {
'fold': fold + 1,
'before': before count,
'after': after count,

141

'addition': after count - before count,
'addition pct': ((after count - before count) /
before count) * 100
}
smote info per fold.append(smote info)
print (£" Data sintetis bertambah:
{smote info['addition']} sampel ({smote info['addition pct']:.1£f}%)")

LANGKAH 3: Buat Dataloader
train dataset = TensorDataset (train input ids,
train attention mask, train labels)

val dataset = TensorDataset(val input ids, val attention mask,
val labels)
train loader = DatalLoader (train dataset,

samplerzRgndomSampler(trainidataset), batch size=batch size)
val loader = DatalLoader (val dataset,
sampler=SequentialSampler (val dataset), batch size=batch size)

LANGKAH 4: Inisialisasi Model

model = BertForSequenceClassification.from pretrained(
"indobenchmark/indobert-base-pl",
num labels=len (label map)

) .to (device)

optimizer = AdamW (model.parameters (), lr=lr)
early stopping = EarlyStopping (patience=patience, verbose=True)

fold train acc epoch, fold val acc epoch = [], []
fold train loss epoch, fold val loss epoch = [], []

LANGKAH 5: Training Loop dengan Early Stopping
for epoch in range (num epochs) :
—-——— Training ----
model.train ()
total loss, correct, total = 0, 0, 0
for batch in tgdm(train loader, desc=f"Training Epoch
{epoch+1}"):
optimizer.zero grad()
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids batch,
attention mask=attention mask batch, labels=labels batch)
loss = outputs.loss
logits = outputs.logits
loss.backward()
optimizer.step ()

total loss += loss.item()

preds = torch.argmax(logits, dim=1)

correct += (preds == labels batch).sum().item/()
total += labels batch.size (0)

train acc = correct / total

avg _train loss = total loss / len(train loader)

-——- Validation (pada data ASLI, tanpa SMOTE) ----
model.eval ()

val loss, val correct, val total = 0, 0, O

val preds, val true = [], []
with torch.no grad():
for batch in val loader:
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]

142

outputs = model (input ids batch,
attention mask=attention mask batch, labels=labels batch)
val loss += outputs.loss.item()
preds = torch.argmax (outputs.logits, dim=1)
val correct += (preds == labels batch) .sum() .item()
val total += labels batch.size (0)
val preds.extend(preds.cpu() .numpy())
val true.extend(labels batch.cpu() .numpy())

val acc = val correct / val total

avg val loss = val loss / lgn(valiloader)

fold train acc_epoch.append(train acc)

fold val acc epoch.append(val acc)

fold train loss_epoch.append(avg train loss)
fold val loss epoch.append(avg val loss)

print (f"Epoch {epoch+l}/{num_epochs} - Train Loss:
{avg train loss:.4f}, Val Loss: {avg val loss:.4f}, "
f"Train Acc: {train acc:.4f}, Val Acc: {val acc:.4f}")

B LANGKAH 6: Early Stopping memantau validation loss
early stopping(avg val loss, epoch+l)

if early stopping.early stop:
print (£" !+ Early stopping triggered at epoch {epoch+1}")

print(f" Best validation loss was
{early stopping.best loss:.4f} at epoch {early stopping.best epoch}")
break

epochs completed = len(fold train acc epoch)

epochs completed per fold.append(epochs completed)

best epoch per fold.append(early stopping.best epoch)

print (£" I} Fold {fold+l} completed {epochs completed} epochs
(best at epoch {early stopping.best epoch})")

Metrics per fold

precision = precision score(val true, val preds,
average="weighted", zero division=0)
recall = recall score(val true, val preds, average="weighted",

zero division=0)
fl = f1 score(val true, val preds, average="weighted",
zero division=0)

fold train acc.append(train acc)
fold val acc.append(val acc)
fold prec.append (precision)

fold rec.append(recall)

fold fl.append(£fl)

all preds.extend(val preds)
all labels.extend(val true)

train acc per epoch.append(fold train acc epoch)
val acc per epoch.append(fold val acc epoch)

train loss per epoch.append(fold train loss_ epoch)
val loss per epoch.append(fold val loss epoch)

print (f"Fold {fold+l} - Train Acc: {train acc:.4f} | Val Acc:
{val acc:.4f} | "
f"Prec: {precision:.4f} | Rec: {recall:.4f} | Fl: {fl:.4£f}")

#
@ Informasi SMOTE (Synthetic Minority Over-sampling Technique)

143

#
if use smote:
print ("\n===== }} Informasi SMOTE =====")
smote df = pd.DataFrame (smote info per fold)
print (smote df.to string(index=False))
print (f"\nRata-rata penambahan data sintetis:

{smote df['addition'].mean():.1f} sampel
({smote df['addition pct'].mean():.1£f}%)")
print (f"Total data training sebelum SMOTE:
{smote df['before'].mean():.0£f}")
print (f"Total data training setelah SMOTE:
{smote df['after'].mean():.0f}")
#
B Informasi Early Stopping
$ ======= ———e S S —= —=
print ("\n===== (» Informasi Early Stopping =====")

print (f"Epoch minimum: {min(epochs completed per fold)}")

print (f"Epoch maksimum: {max (epochs completed per fold)}")

print (f"Rata-rata epoch: {np.mean(epochs completed per fold):.2f}")
print (f"Epoch per fold: {epochs completed per fold}")

print (f"\nBest epoch per fold: {best epoch per fold}")

print (f"Rata-rata best epoch: {np.mean(best epoch per fold):.2f}")
print (f"Best epoch minimum: {min (best epoch per fold)}")

print (f"Best epoch maksimum: {max(best epoch per fold)}")

[Rata-rata Akhir 5 Fold

#

print ("\n===== ,/ Rata-Rata Hasil 5 Fold =====")

print (£"SMOTE: {'AKTIF' if use smote else 'TIDAK AKTIF'}")
print (f"Train Acc: {np.mean(fold train acc):.4f}")

print (f"Val Acc: {np.mean (fold val acc):.4f}")

print (f"Precision: {np.mean(fold prec):.4£f}")

print (f"Recall: {np.mean (fold rec):.4£f}")

print (f"F1 Score: {np.mean(fold:fl):.4f}")

#

B Grafik Akurasi & Loss Rata-rata per Epoch (SMOOTH - TANPA
MARKER)

min epochs = min(epochs completed per fold)

train acc_trimmed = [fold[:min epochs] for fold in

train_acc_per epoch]

val acc _trimmed = [fold[:min epochs] for fold in val acc per epoch]
train loss trimmed = [fold[:min epochs] for fold in

train loss per epoch]

val loss trimmed = [fold[:min epochs] for fold in val loss per epoch]

avg train acc = np.mean(train acc trimmed, axis=0)
avg _val acc = np.mean(val_acc_trimmed, axis=0)

avg train loss = np.mean(train loss trimmed, axis=0)
avg val loss = np.mean(val loss trimmed, axis=0)

epochs range = range(l, min _epochs + 1)

Grafik Akurasi (SMOOTH - tanpa marker)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train acc, label="Train Accuracy",
linewidth=2.5, color="#1£f77b4")

plt.plot (epochs range, avg val acc, label="Validation Accuracy",
linewidth=2.5, color="#ff7f0e"')

plt.xlabel ("Epoch", fontsize=12)

144

plt.ylabel ("Accuracy", fontsize=12)

smote status = "dengan SMOTE" if use smote else "tanpa SMOTE"
plt.title(f"Rata-rata Akurasi per Epoch (5 Fold, Early Stop
{smote status})", fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()
plt.savefig("avg accuracy epoch smote.png", dpi=300)
plt.show ()

Grafik Loss (SMOOTH - tanpa marker)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train loss, label="Train Loss",
linewidth=2.5, color="#1f77b4")

plt.plot (epochs range, avg val loss, label="Validation Loss",
linewidth=2.5, color="#ff7f0e"')

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Loss", fontsize=12)

plt.title(f"Rata-rata Loss per Epoch (5 Fold, Early Stop
{smote status})", fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()

plt.savefig("avg loss epoch smote.png", dpi=300)

plt.show ()

#

M@ confusion Matrix & Classification Report
_______ N

cm = confusion matrix(all labels, all preds)
plt.figure(figsize=(8,6))

sns.heatmap (cm, annot=True, fmt="d", cmap="Blues",
xticklabels=label map.keys (), yticklabels=label map.keys())
plt.xlabel ("Predicted", fontsize=12)

plt.ylabel ("True", fontsize=12)

plt.title("Confusion Matrix (Keseluruhan - dengan SMOTE)",
fontsize=14)

plt.tight layout ()
plt.savefig("confusion matrix overall smote.png", dpi=300)
plt.show ()

target names = list (label map.keys())

B custom classification report dengan nilai bulat (persentase)
report dict = classification report(all labels, all preds,
target names=target names, output dict=True, zero division=0)

print ("\n===== Classification Report Final (dengan SMOTE) =====")
print (f"{'Class':<15} {'Precision':<12} {'Recall':<12} {'Fl-
Score':<12} {'Support':<10}")

print ("=" * 65)

Print per kelas
for label name in target names:

prec = report dict[label name] ['precision'] * 100

rec = report dict[label name] ['recall'] * 100

fl = report dict[label name] ['fl-score'] * 100

sup = int(report dict[label name] ['support'])

print (f"{label name:<15}
{prec:>6.0£f}% {rec:>6.0£f}% {fl:>6.0£}% {sup:>6}")
print ("-" * 65)

Print accuracy

145

acc = report dict['accuracy'] * 100

total support = int(report dict['weighted avg']['support'])
print (f"{'Accuracy':<15} {'':<12} {'':<12}

{acc:>6.0£f}% {total support:>6}")

print("-" * 65)

Print macro avg

macro prec = report dict['macro avg']['precision'] * 100

macro_rec = report dict['macro avg']['recall'] * 100

macro_ fl = report dict['macro avg']['fl-score'] * 100

print (f"{'Macro Avg':<15}

{macro prec:>6.0f}% {macro rec:>6.0f}% {macro f1:>6.0f}%

{total support:>6}")

Print weighted avg

weighted prec = report dict['weighted avg']['precision'] * 100
weighted rec = report dict['weighted avg'](['recall'] * 100
weighted fl = report dict['weighted avg']['fl-score'] * 100

print (f"{'Weighted Avg':<15}

{weighted prec:>6.0f}% {weighted rec:>6.0f}% {weighted f1:
>6.0f}% {total support:>6}")

Simpan ke CSV
report df = pd.DataFrame (report dict) .transpose ()
report df pct = report df.copy()

for col in ['precision', 'recall', 'fl-score']:
if col in report df pct.columns:
report df pct[col] = (report df pctlcol] *

100) .round(0) .astype (int) .astype (str) + 'S
report df pct.to esv("classification report overall smote.csv",
index=True)

print (f"\nf4 Panjang sumbu X pada grafik: {min epochs} epoch")
print(f" Semua hasil (grafik & laporan) sudah tersimpan dan tampil
di output Colab.")

print(f" SMOTE berhasil diterapkan untuk membuat data sintetis bagi
kelas minoritas.")

Lampiran 13. Code Skenario 4

[——

B} Import Library

import torch

import numpy as np

import pandas as pd

from torch.utils.data import DatalLoader, TensorDataset, RandomSampler,
SequentialSampler

from sklearn.model selection import KFold

from sklearn.metrics import classification report, confusion matrix,
precision score, recall score, fl score

from transformers import BertTokenizer, BertForSequenceClassification
from torch.optim import AdamW

import matplotlib.pyplot as plt

import seaborn as sns

from tgdm import tgdm

from imblearn.over sampling import SMOTE # GANTI: Import SMOTE
from collections import Counter

#

B Load Dataset
#

146

df = pd.read excel ("/content/3-Data Normalize.xlsx")

TEXT COLUMN = "normalize"
LABEL COLUMN = "label"

mapping label - angka

label map = {label: idx for idx, label in
enumerate (df [LABEL COLUMN] .unique()) }
df ["label id"] = df[LABEL COLUMN].map (label map)

print ("Label mapping:", lgbel_map)

texts = df[TEXT COLUMN].astype (str).tolist ()
labels = df["label id"].astype (int).tolist ()

Tampilkan distribusi kelas asli

print ("\n===== Distribusi Kelas Original =====")

label counts = Counter (labels)

for label, count in label counts.items():
label name = [k for k, v in label map.items() if v == label][0]
print (f"{label name}: {count} ({count/len(labels)*100:.2f}%)")

tokenizer = BertTokenizer.from_pretrained(“indobenchmark/indobert—
base-pl")
encodings = tokenizer (
texts, truncation=True, padding=True, max length=128,
return tensors="pt"

)

input ids = encodings["input ids"]
attention mask = encodings["attention mask"]
labels tensor = torch.tensor (labels)

[—

B Parameter Training

#

device = torch.device("cuda" if torch.cuda.is available() else "cpu")
num_epochs = 100

num folds = 5
batch size = 32

lr = le-5
patience = 10
use smote = True

B Early Stopping Class
#
class EarlyStopping:
def init (self, patience=10, min delta=0, verbose=True):

self.patience = patience
self.min delta = min delta
self.verbose = verbose
self.counter = 0

self.best loss = None
self.early stop = False
self.best epoch = 0

def call (self, val loss, epoch):

if self.best loss is None:
self.best loss = val loss
self.best epoch = epoch

elif val loss > self.best loss - self.min delta:
self.counter += 1
if self.verbose:

print (f"EarlyStopping counter:
{self.counter}/{self.patience}")

147

if self.counter >= self.patience:
self.early stop = True

else:
self.best loss = val loss
self.best epoch = epoch
self.counter = 0

_______ J— J— P ——

B K-Fold Cross Validation dengan Early Stopping + SMOTE
_______ [—— J— J— [——
kfold = KFold(n splits=num folds, shuffle=True, random state=42)

fold train acc, fold val acc = [], []
fold prec, fold rec, fold f1 = [], [], []
all preds, all labels = [], []

train acc per epoch, val acc per epoch = [], []
train loss per epoch, val loss per epoch = [], []
epochs completed per fold = []

best epoch per fold = []

TAMBAHAN: Tracking info SMOTE per fold
smote info per fold = []

for fold, (train idx, wval idx) in

enumerate(kfold.gplit(range(len(labels)))):
print (f"\n{'="*60}")
print (f"========== Fold {fold+l} ==========")
print (£"{"'="*60}")

LANGKAH 1: Ambil data train dan validation
train input ids = input ids[train idx]
train_attention mask = attention mask[train_idx]
train labels = labels tensor[train idx]

val input ids = input ids([val idx]
val attention mask = attention mask([val idx]
val labels = labels tensor[val idx]

print (f"\n--- Distribusi Sebelum SMOTE ---")
train label counts = Counter (train labels.numpy())
for label, count in sorted(train label counts.items()) :
label name = [k for k, v in label map.items() if v ==
label] [0]
print (f" Train {label name}: {count}")

LANGKAH 2: Terapkan SMOTE pada Training Set
if use smote:
print (f"\n%* Menerapkan SMOTE pada Training Set...")
print (£" SMOTE akan membuat data sintetis untuk kelas
minoritas")

Gabungkan input ids dan attention mask untuk SMOTE
original shape = train input ids.shape

Reshape untuk SMOTE: (num samples, features)
train data = torch.cat ([

train input ids,

train attention mask
], dim=1) .numpy ()

Apply SMOTE
k neighbors=5 artinya menggunakan 5 tetangga terdekat untuk
interpolasi

148

Pastikan k neighbors <= jumlah sampel kelas minoritas - 1

min class count = min(train label counts.values())

k neighbors = min(5, min class count - 1) if min class count >
1 else 1

smote = SMOTE (random state=42, k neighbors=k neighbors)
train data resampled, train labels resampled =
smote.fit resample (
train data,
train labels.numpy ()

)

Split kembali menjadi input ids dan attention mask
seq length = original shape[1]

train input ids = torch.tensor(train data resampled]:,
:seq_length])

train attention mask = torch.tensor (train data resampled|:,
seq length:])

train labels = torch.tensor(train labels resampled)

print (f"\n--- Distribusi Setelah SMOTE ---")

train label counts after = Counter (train labels.numpy())

for label, count in sorted(train label counts after.items()):
label name = [k for k, v in label map.items() if v ==

label] [0]
print (f" Train {label name}: {count}")

print (£"\n) Ukuran dataset:")

print (f" Training: {len(train labels)} samples (setelah
SMOTE) ")

print (f" Validation: {len(val labels)} samples (TIDAK di-

SMOTE) ")

Simpan info SMOTE
before count = len(train idx)
after count = len(train labels)
smote info = {
' TEANGIREEIE6 1. I - ";
'before': before count,
'after': after count,
'addition': after count - before count,
'addition pct': ((after count - before count) /
before count) * 100
}
smote info per fold.append(smote info)
print (£" Data sintetis bertambah:
{smote info['addition']} sampel ({smote info['addition pct']:.1£}%)")

LANGKAH 3: Buat DatalLoader
train dataset = TensorDataset(train input ids,
train attention mask, train labels)
val dataset = TensorDataset(val input ids, val attention mask,

val labels)

train loader = DatalLoader (train dataset,
sampler=RandomSampler (train dataset), batch size=batch size)

val loader = DatalLoader (val dataset,
sampler=SequentialSampler (val dataset), batch size=batch size)

LANGKAH 4: Inisialisasi Model

model = BertForSequenceClassification.from pretrained/(
"indobenchmark/indobert-base-pl",
num labels=len (label map)

) .to (device)

149

optimizer = AdamW (model.parameters (), lr=1lr)
early stopping = EarlyStopping(patience=patience, verbose=True)

fold train acc _epoch, fold val acc epoch = [], []
fold train loss epoch, fold val loss epoch = [], []

LANGKAH 5: Training Loop dengan Early Stopping
for epoch in range (num _epochs):
-—-- Training ----
model.train ()
total loss, correct, total =0, 0, O
for batch in tgdm(train loader, desc=f"Training Epoch
{epoch+1}"):
optimizer.zero grad()
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids batch,
attention mask=attention mask batch, labels=labels batch)
loss = outputs.loss
logits = outputs.logits
loss.backward()
optimizer.step ()

total loss += loss.item()

preds = torch.argmax (logits, dim=1)

correct += (preds == labels batch) .sum() .item/()
total += labels batch.size (0)

train_acc = correct / total

avg train loss = total loss / len(train loader)

-——- Validation (pada data ASLI, tanpa SMOTE) --—--
model.eval ()

val loss, val correct, val total = 0, 0, O

val preds, val true = [], []
with torch.no grad():
for batch in val loader:
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids batch,
attention mask=attention mask batch, labels=labels batch)
val loss += outputs.loss.item()
preds = torch.argmax (outputs.logits, dim=1)
val correct += (preds == labels batch) .sum() .item()
val total += labels batch.size (0)
val preds.extend(preds.cpu() .numpy())
val true.extend(labels batch.cpu() .numpy())

val acc = val correct / val total
avg _val loss = val loss / len(val loader)

fold train acc_epoch.append(train_ acc)

fold val acc epoch.append(val acc)

fold train loss_epoch.append(avg train loss)
fold val loss epoch.append(avg val loss)

print (f"Epoch {epoch+l}/{num_epochs} - Train Loss:

{avg_train loss:.4f}, Val Loss: {avg val loss:.4f}, "
f"Train Acc: {train acc:.4f}, Val Acc: {val acc:.4f}")

@ LANGKAH 6: Early Stopping memantau validation loss
early stopping(avg val loss, epoch+l)

if early stopping.early stop:

150

print (f" A Early stopping triggered at epoch {epoch+l}")
print(f" Best validation loss was

{early stopping.best loss:.4f} at epoch {early stopping.best epoch}")
break

epochs completed = len(fold train acc epoch)

epochs completed per fold.append(epochs completed)

best epoch per fold.append(early stopping.best epoch)

print (f" I} Fold {fold+l} completed {epochs completed} epochs
(best at epoch {early stopping.best epoch})")

Metrics per fold
precision = precision score(val true, val preds,
average="weighted", zero division=0)

recall = recall score(val true, val preds, average="weighted",
zero division=0)
fl = fl1 score(val true, val preds, average="weighted",

zero_division=0)

fold train acc.append(train_acc)
fold val acc.append(val acc)
fold prec.append (precision)

fold rec.append(recall)

fold fl.append(f1l)

all preds.extend(val preds)
all labels.extend(val true)

train _acc per epoch.append(fold train acc epoch)
val acc per epoch.append(fold val acc_epoch)

train loss per epoch.append(fold train loss epoch)
val loss per epoch.append(fold val loss epoch)

print (f"Fold {fold+l} - Train Acc: {train acc:.4f} | Val Acc:

{val acc:.4f} | "
f"Prec: {precision:.4f} | Rec: {recall:.4f} | Fl: {fl:.4f}")

B Informasi SMOTE (Synthetic Minority Over-sampling Technique)
#
if use smote:
print ("\n===== Jj] Informasi SMOTE =====")
smote df = pd.DataFrame (smote info per fold)
print (smote df.to string(index=False))
print (f"\nRata-rata penambahan data sintetis:

{smote df['addition'].mean():.1f} sampel
({smote df['addition pct'].mean():.1£}%)")
print (f"Total data training sebelum SMOTE:
{smote df['before'].mean():.0£f}")
print (f"Total data training setelah SMOTE:
{smote df['after'].mean():.0f}")
#
B Informasi Early Stopping
#
print ("\n===== (® Informasi Early Stopping =====")

print (f"Epoch minimum: {min(epochs completed per fold)}")

print (f"Epoch maksimum: {max (epochs completed per fold)}")

print (f"Rata-rata epoch: {np.mean(epochs completed per fold):.2f}")
print (f"Epoch per fold: {epochs completed per fold}")

print (f"\nBest epoch per fold: {best epoch per fold}")

print (f"Rata-rata best epoch: {np.mean(best_epoch_per_fold):.ZfVW
print (f"Best epoch minimum: {min (best epoch per fold)}")

print (f"Best epoch maksimum: {max (best epoch per fold)}")

151

#
[Rata-rata Akhir 5 Fold

#

print ("\n===== ,/ Rata-Rata Hasil 5 Fold =====")

print (£"SMOTE: {'AKTIF' if use smote else 'TIDAK AKTIF'}")
print (f"Train Acc: {np.mean(fold train acc):.4f}")

print (£f"Val Acc: {np.mean (fold val acc):.4f}")

print (f"Precision: {np.mean(fold prec):.4f}")

print (f"Recall: {np.mean (fold rec):.4f}")

print (f"F1 Score: {np.mean (fold f1):.4f}")

#

B Grafik Akurasi & Loss Rata-rata per Epoch (SMOOTH - TANPA
MARKER)

_______ P —— P —— P —— P —— P ——

min epochs = min(epochs completed per fold)

train acc_trimmed = [fold[:min epochs] for fold in

train _acc_per epoch]

val acc_trimmed = [fold[:min epochs] for fold in val acc per epoch]
train loss trimmed = [fold[:min epochs] for fold in

train loss per epoch]

val loss trimmed = [fold[:min epochs] for fold in val loss per epoch]

avg_train acc = np.mean(train acc trimmed, axis=0)
avg val acc = np.mean(val acc trimmed, axis=0)

avg_train loss = np.mean(train loss trimmed, axis=0)
avg val loss = np.mean(val loss trimmed, axis=0)
epochs range = range(l, min epochs + 1)

Grafik Akurasi (SMOOTH - tanpa marker)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train acc, label="Train Accuracy",
linewidth=2.5, color='#1£77b4"')

plt.plot (epochs range, avg val acc, label="Validation Accuracy",
linewidth=2.5, color="#ff7f0e"')

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Accuracy", fontsize=12)

smote status = "dengan SMOTE" if use smote else "tanpa SMOTE"
plt.title (f"Rata-rata Akurasi per Epoch (5 Fold, Early Stop
{smote status})", fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout()
plt.savefig("avg accuracy epoch smote.png", dpi=300)
plt.show ()

Grafik Loss (SMOOTH - tanpa marker)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train loss, label="Train Loss",
linewidth=2.5, color="#1£f77b4")

plt.plot (epochs range, avg val loss, label="Validation Loss",
linewidth=2.5, color="#ff7f0e')

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Loss", fontsize=12)

plt.title(f"Rata-rata Loss per Epoch (5 Fold, Early Stop
{smote status})", fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()

plt.savefig("avg loss epoch smote.png", dpi=300)
plt.show ()

152

#
[confusion Matrix & Classification Report
#
cm = confusion matrix(all labels, all preds)
plt.figure(figsize=(8,6))

sns.heatmap (cm, annot=True, fmt="d", cmap="Blues",
xticklabels=label map.keys (), yticklabels=label map.keys())
plt.xlabel ("Predicted", fontsize=12)

plt.ylabel ("True", fontsize=12)

plt.title("Confusion Matrix (Keseluruhan - dengan SMOTE)",
fontsize=14)

plt.tight layout ()
plt.savefig("confusion matrix overall smote.png", dpi=300)
plt.show ()

target names = list(label map.keys())

Custom classification report dengan nilai bulat (persentase)
report dict = classification report(all labels, all preds,
target names=target names, output dict=True, zero division=0)

print ("\n===== Classification Report Final (dengan SMOTE) =====")
print (f"{'Class':<15} {'Precision':<12} {'Recall':<12} {'Fl-
Score':<12} {'Support':<10}"™)

print ("=" * 65)

Print per kelas
for label name in target names:

prec = report dict[label name] ['precision'] * 100

rec = report dict[label name] ['recall'] * 100

fl = report dict[label name] ['fl-score'] * 100

sup = int(report dict[label name] ['support'])

print (f"{label name:<15}
{prec:>6.0£}% {rec:>6.0£f}% {f1:>6.0f}% {sup:>6}")
print ("-" * 65)

Print accuracy

acc = report dict['accuracy'] * 100

total support = int (report dict['weighted avg']['support'])
print (f"{'Accuracy':<15} {'':<12} {'':<12}

{acc:>6.0f}% {total support:>6}")

print ("-" * 65)

Print macro avg

macro_prec = report dict['macro avg']['precision'] * 100

macro_rec = report dict['macro avg']['recall'] * 100

macro_fl = report dict['macro avg']['fl-score'] * 100

print (f"{'Macro Avg':<15}

{macro prec:>6.0£f}% {macro rec:>6.0f}% {macro f1:>6.0f}%

{total support:>6}")

Print weighted avg

weighted prec = report dict['weighted avg']['precision'] * 100
weighted rec = report dict['weighted avg'](['recall'] * 100
weighted fl = report dict['weighted avg']['fl-score'] * 100

print (f"{'Weighted Avg':<15}

{weighted prec:>6.0f}% {weighted rec:>6.0f}% {weighted f1:
>6.0f}% {total support:>6}")

Simpan ke CSV
report df = pd.DataFrame(report_dict).transpose()
report df pct = report df.copyl()

153

for col in ['precision', 'recall', 'fl-score']:
if col in report df pct.columns:
report df pctlcol] = (report df pctlcol] *
100) .round (0) .astype (int) .astype (str) + '%'
report df pct.to csv("classification report overall smote.csv",
index=True)

print (f"\nf Panjang sumbu X pada grafik: {min epochs} epoch")
print(f" Semua hasil (grafik & laporan) sudah tersimpan dan tampil
di output Colab.")

print (f" @ SMOTE berhasil diterapkan untuk membuat data sintetis bagi
kelas minoritas.")

Lampiran 14. Code Skenario 5

—_— J— J— J—

B} Import Library
#
import torch

import numpy as np

import pandas as pd

from torch.utils.data import Dataloader, TensorDataset, RandomSampler,
SequentialSampler

from sklearn.model selection import KFold

from sklearn.metrics import classification report, confusion matrix,
precision score, recall score, fl score

from transformers import BertTokenizer, BertForSequenceClassification
from torch.optim import AdamW

import matplotlib.pyplot as plt

import seaborn as sns

from tgdm import tgdm

from imblearn.under sampling import RandomUnderSampler

from collections import Counter

___________ - REAS

B Load Dataset

#

df = pd.read excel ("/content/3-Data Normalize.xlsx")
TEXT COLUMN = "normalize"

LABEL COLUMN = "label"

mapping label — angka

label map = {label: idx for idx, label in
enumerate (df [LABEL COLUMN] .unique ()) }
df["label_id"] = df[LABEL_COLUMN].map(label_map)

print ("Label mapping:", label map)

texts = df[TEXT COLUMN] .astype (str).tolist ()
labels = df["label id"].astype (int).tolist ()

Tampilkan distribusi kelas asli

print ("\n===== Distribusi Kelas Original =====")

label counts = Counter (labels)

for label, count in label counts.items() :
label name = [k for k, v in label map.items() if v == label][0]
print (f"{label name}: {count} ({count/len (labels) *100:.2f}%)")

tokenizer = BertTokenizer.from pretrained("indobenchmark/indobert-
base-pl")
encodings = tokenizer (
texts, truncation=True, padding=True, max length=128,
return tensors="pt"

154

)

input ids = encodings["input ids"]
attention mask = encodings["attention mask"]
labels tensor = torch.tensor (labels)

n —=
B Parameter Training

device = torch.device("cuda" if torch.cuda.is available() else "cpu")
num epochs = 100

num folds = 5

batch size = 16

lr = le-5

patience = 10

use_rus = True # GANTI: Aktifkan RUS

#

B Early Stopping Class
#
class EarlyStopping:
def init (self, patience=10, min delta=0, verbose=True):
self.patience = patience
self.min delta = min delta
self.verbose = verbose
self.counter = 0
self.best loss = None
self.early stop = False
self.best epoch = 0

def call (self, val loss, epoch):
if self.best loss is None:
self.best loss = val loss
self.best epoch = epoch
elif val loss > self.best loss - self.min delta:
self.counter += 1
if self.verbose:
print (f"EarlyStopping counter:
{self.counter}/{self.patience}")
if self.counter >= self.patience:
self.early stop = True

else:
self.best loss = val loss
self.best epoch = epoch
self.counter = 0

B K-Fold Cross Validation dengan Early Stopping + RUS

#
kfold = KFold(n splits=num folds, shuffle=True, random state=42)

fold train acc, fold val acc = [], []
fold prec, fold rec, fold fl [1, 1, [1
all preds, all labels = [], []

train acc_per epoch, val acc per epoch = [], []
train loss per epoch, val loss per epoch = [], []
epochs completed per fold = []

best epoch per fold = []

TAMBAHAN: Tracking info RUS per fold
rus_info per fold = []

for fold, (train idx, val idx) in

155

enumerate (kfold.split (range (len(labels)))):
print (£"\n{'="*60}")
print (f"========== Fold {fold+l} ==========")
print (£"{'="*60}")

LANGKAH 1: Ambil data train dan validation
train input ids = input ids[train idx]
train attention mask = attention mask[train idx]
train labels = labels tensor[train idx]

val input ids = input ids[val idx]
val attention mask = attention mask[val idx]
val labels = labels tensor[val idx]

print (f"\n--- Distribusi Sebelum RUS ---")
train label counts = Counter(train labels.numpy())
for label, count in sorted(train label counts.items()):
label name = [k for k, v in label map.items() if v ==
label] [0]
print (f" Train {label name}: {count}")

LANGKAH 2: Terapkan RUS pada Training Set
if use rus:

print (f"\n%" Menerapkan Random Under Sampling pada Training

Set...")

Gabungkan input ids dan attention mask untuk RUS

Karena RUS butuh format 2D, kita perlu flatten dan simpan
shape

original shape = train input ids.shape

Reshape untuk RUS: (num samples, features)

train data = torch.cat ([
train input ids,
train attention mask
], dim=1) .numpy ()

Apply RUS (GANTI dari ROS ke RUS)
rus = RandomUnderSampler (random state=42)
train data resampled, train labels resampled =
rus.fit resample (
train data,
train labels.numpy ()

)

Split kembali menjadi input ids dan attention mask

seq length = original shape[1]

train input ids = torch.tensor(train data resampled[:,
:seq_lengthl])

train attention mask = torch.tensor (train data resampled|:,
seq length:])

train labels = torch.tensor(train labels resampled)

print (f"\n--- Distribusi Setelah RUS ---")
train label counts after = Counter(train labels.numpy())
for label, count in sorted(train label counts after.items()):
label name = [k for k, v in label map.items() if v ==
label] [0]
print (f" Train {label name}: {count}")

print (£"\nhl Ukuran dataset:")

print (f" Training: {len(train labels)} samples (setelah
RUS) ™)

print (f" Validation: {len(val labels)} samples (TIDAK di-

156

RUS) ™)

Simpan info RUS
before count = len(train idx)
after count = len(train labels)
rus_info = {

'fold': fold + 1,

'before': before count,

'after': after count,
'reduction': before count - after count,
'reduction pct': ((before count - after count) /

before count) * 100

}

rus_info per fold.append(rus_info)

print (£" I, Data berkurang: {rus_info['reduction']} sampel
({rus_info['reduction pct']:.1£}%)")

LANGKAH 3: Buat DataLoader

train dataset = TensorDataset (train input ids,
train attention mask, train labels)

val dataset = TensorDataset(val input ids, val attention mask,
val labels)

train loader = Dataloader (train dataset,
sampler=RandomSampler (train dataset), batch size=batch size)

val loader = Dataloader (val dataset,
sampler=SequentialSampler (val dataset), batch size=batch size)

LANGKAH 4: Inisialisasi Model

model = BertForSequenceClassification.from pretrained (
"indobenchmark/indobert-base-pl",
num labels=len (label map)

) .to (device)

optimizer = AdamW (model.parameters (), lr=lr)
early stopping = EarlyStopping(patience=patience, verbose=True)

r [
(1, [1

fold train acc epoch, fold val acc epoch = []
fold train loss epoch, fold val loss epoch =

LANGKAH 5: Training Loop dengan Early Stopping
for epoch in range (num_epochs) :
-—--- Training ----
model.train ()
total loss, correct, total = 0, 0, O
for batch in tgdm(train loader, desc=f"Training Epoch
{epoch+1}"):
optimizer.zero grad()
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids batch,
attention mask=attention mask batch, labels=labels batch)
loss = outputs.loss
logits = outputs.logits
loss.backward()
optimizer.step ()

total loss += loss.item()

preds = torch.argmax(logits, dim=1)

correct += (preds == labels batch).sum().item/()
total += labels batch.size (0)

train acc = correct / total
avg train loss = total loss / len(train loader)

157

——--- Validation (pada data ASLI, tanpa RUS) ----
model.eval ()
val loss, val correct, val total = 0, 0, O
val preds, val true = [], []
with torch.no grad():
for batch in val loader:
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids batch,
attention mask=attention mask batch, labels=labels batch)
val loss += outputs.loss.item()
preds = torch.argmax (outputs.logits, dim=1)
val correct += (preds == labels batch) .sum() .item()
val total += labels batch.size (0)
val preds.extend(preds.cpu() .numpy())
val true.extend(labels batch.cpu() .numpy())

val acc = val correct / val total
avg val loss = val loss / len(val loader)

fold train acc_epoch.append(train acc)

fold val acc epoch.append(val acc)

fold train loss epoch.append(avg train loss)
fold val loss_epoch.append(avg val loss)

print (f"Epoch {epoch+l}/{num epochs} - Train Loss:
{avg train loss:.4f}, Val Loss: {avg val loss:.4f}, "
f"Train Acc: {train acc:.4f}, Val Acc: {val acc:.4f}")

&4 LANGKAH 6: Early Stopping memantau validation loss
early stopping(avg val loss, epoch+l)

if early stopping.early stop:
print (f" ! Early stopping triggered at epoch {epoch+1}")
print (f"# Best validation loss was
{early stopping.best loss:.4f} at epoch {early stopping.best epoch}")
break

epochs completed = len(fold train acc epoch)

epochs completed per fold.append(epochs completed)

best epoch per fold.append(early stopping.best epoch)

print (f" Il Fold {fold+l} completed {epochs completed} epochs
(best at epoch {early stopping.best epoch})")

Metrics per fold

precision = precision score(val true, val preds,
average="weighted", zero division=0)
recall = recall score(val true, val preds, average="weighted",

zero division=0)
f1 = f1 score(val_true, val preds, average="weighted",
zero division=0)

fold train acc.append(train_acc)
fold val acc.append(val acc)
fold prec.append (precision)

fold rec.append(recall)

fold fl.append(£fl)

all preds.extend(val preds)
all labels.extend(val true)

train _acc_per epoch.append(fold train acc_epoch)
val acc per epoch.append(fold val acc epoch)

158

train loss per epoch.append(fold train loss_ epoch)
val loss per epoch.append(fold val loss epoch)

print (f"Fold {fold+l} - Train Acc: {train acc:.4f} | Val Acc:
{val acc:.4f} | "
f"Prec: {precision:.4f} | Rec: {recall:.4f} | Fl: {fl:.4f}")
_______ [—— _— _— [——
!’ Informasi RUS (Random Under Sampling)
_______ R R R [—

if use rus:
print ("\n===== |} Informasi Random Under Sampling (RUS) =====")
rus_df = pd.DataFrame (rus info per fold)
print (rus_df.to string(index=False))
print (f"\nRata-rata pengurangan data:

{rus_df['reduction'].mean():.1f} sampel
({rus_df['reduction pct'].mean():.1f}%)")
print (f"Total data training sebelum RUS:
{rus _df['before'].mean():.0£}")
print (f"Total data training setelah RUS:
{rus df['after'].mean():.0£}")
#
B Informasi Early Stopping
—_—————
print ("\n===== (Informasi Early Stopping =====")

print (f"Epoch minimum: {min(epochs completed per fold)}")

print (f"Epoch maksimum: {max(epochs completed per fold)}")

print (f"Rata-rata epoch: {np.mean(epochs completed per fold):.2f} £
{np.std(epochs completed per fold):.2f}")

print (f"Epoch per fold: {epochs completed per fold}")

print (f"\nBest epoch per fold: ({best epoch per fold}")

print (f"Rata-rata best epoch: {np.mean(best epoch per fold):.2f} +
{np.std(best epoch per fold):.2f}")

print (f"Best epoch minimum: {min (best epoch per fold)}")

print (f"Best epoch maksimum: {max(best epoch per fold)}")

B Rata-rata Akhir 5 Fold

#

print ("\n===== ,/ Rata-Rata Hasil 5 Fold =====")

print (f"Random Under Sampling: {'AKTIF' if use rus else 'TIDAK
AKTIF'}"™)

print (f"Train Acc: {np.mean(fold train acc):.4f}")
print (£f"Val Acc: {np.mean (fold val acc):.4f}")
print (f"Precision: {np.mean(fold prec):.4f}")
print (f"Recall: {np.mean(fold rec):.4f}")

print (f"F1 Score: {np.mean(fold_fl):.4f}")

#

B} Grafik Akurasi & Loss Rata-rata per Epoch (TANPA MARKER)
#

min epochs = min(epochs completed per fold)

train acc_trimmed = [fold[:min epochs] for fold in

train acc_per epoch]

val acc trimmed = [fold[:min epochs] for fold in val acc per epoch]
train loss trimmed = [fold[:min epochs] for fold in

train loss per epoch]

val loss trimmed = [fold[:min epochs] for fold in val loss per epoch]

avg train acc = np.mean(train acc trimmed, axis=0)
avg val acc = np.mean(val acc trimmed, axis=0)
avg train loss = np.mean(train loss trimmed, axis=0)

159

avg _val loss = np.mean(val loss trimmed, axis=0)

epochs range range (1, min epochs + 1)

Grafik Akurasi (TANPA MARKER, garis mulus)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train acc, label="Train Accuracy",
linewidth=2.5, color="#1£77b4")

plt.plot (epochs range, avg val acc, label="Validation Accuracy",
linewidth=2.5, color="#ff7f0e"'")

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Accuracy", fontsize=12)

rus_status = "dengan RUS" if use rus else "tanpa RUS"
plt.title(f"Rata-rata Akurasi per Epoch (5 Fold, Early Stop
{rus_status})", fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout()

plt.savefig("avg accuracy epoch rus.png", dpi=300)

plt.show ()

Grafik Loss (TANPA MARKER, garis mulus)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train loss, label="Train Loss",
linewidth=2.5, color='#1£f77b4"')

plt.plot (epochs range, avg val loss, label="Validation Loss",
linewidth=2.5, color='#£ff7£f0e")

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Loss", fontsize=12)

plt.title (f"Rata-rata Loss per Epoch (5 Fold, Early Stop
{rus_status})", fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()

plt.savefig("avg loss epoch rus.png", dpi=300)

plt.show ()

#

[confusion Matrix & Classification Report
#

cm = confusion matrix(all labels, all preds)
plt.figure(figsize=(8,6))

sns.heatmap (cm, annot=True, fmt="d", cmap="Blues",

xticklabels=label map.keys (), yticklabels=label map.keys())
plt.xlabel ("Predicted", fontsize=12)

plt.ylabel ("True", fontsize=12)

plt.title("Confusion Matrix (Keseluruhan - dengan RUS)", fontsize=14)
plt.tight layout ()

plt.savefig("confusion matrix overall rus.png", dpi=300)

plt.show ()

target names = list(label map.keys())

MODIFIKASI: Buat custom classification report dengan nilai bulat
(persentase)

report dict = classification report(all labels, all preds,

target names=target names, output dict=True, zero division=0)

print ("\n===== Classification Report Final (dengan RUS) =====")
print (f"{'Class':<15} {'Precision':<12} {'Recall':<12} {'F1l-
Score':<12} {'Support':<10}")

print ("=" * 65)

Print per kelas

160

for label name in target names:
prec = report dict[label name] ['precision'] * 100 # Convert ke

persentase

rec = report dict[label name]['recall'] * 100

fl = report dict[label name] ['fl-score'] * 100

sup = int(report dict[label name] ['support'])

print (f"{label name:<15}
{prec:>6.0f}% {rec:>6.0£f}% {fl:>6.0f}% {sup:>6}")
print("-" * 65)

Print accuracy

acc = report dict['accuracy'] * 100

total support = int(report dict['weighted avg']['support'])
print (f"{'Accuracy':<15} {'':<12} {'':<12}

{acc:>6.0f}% {total support:>6}")

print("-" * 65)

Print macro avg

macro prec = report dict['macro avg']['precision'] * 100

macro_rec = report dict['macro avg']['recall'] * 100

macro fl = report dict['macro avg']['fl-score'] * 100

print (f"{'Macro Avg':<15}

{macro prec:>6.0f}% {macro_rec:>6.0f}% {macro f1:>6.0f}%

{total support:>6}")

Print weighted avg
weighted prec = report dict['weighted avg']['precision'] * 100
weighted rec = report dict['weighted avg']['recall'] * 100

weighted fl = report dict['weighted avg']['fl-score'] * 100

print (f"{'Weighted Avg':<15}

{weighted prec:>6.0f}% {weighted rec:>6.0f}% {weighted f1:
>6.0f1% {total support:>6}")

Simpan ke CSV dengan format persentase bulat
report df = pd.DataFrame (report dict) .transpose ()
report df pct = report df.copy()
for col in ['precision', 'recall', 'fl-score']:

if col in report df pct.columns:

report df pct[col] = (report df pct[col] *

100) .round (0) .astype (int) .astype (str) + 'S$'
report df pct.to csv("classification report overall rus.csv",
index=True)

print (f"\nf@ Panjang sumbu X pada grafik: {min epochs} epoch")
print(f"!l Semua hasil (grafik & laporan) sudah tersimpan dan tampil
di output Colab.")

print(f" RUS berhasil diterapkan pada setiap fold untuk
menyeimbangkan kelas minoritas dan mayoritas.")

161

Lampiran 15. Code Skenario 6

#
E) Import Library

—_ J— J— J— J— P ——

import torch

import numpy as np

import pandas as pd

from torch.utils.data import Dataloader, TensorDataset, RandomSampler,
SequentialSampler

from sklearn.model selection import KFold

from sklearn.metrics import classification report, confusion matrix,
precision score, recall score, fl score

from transformers import BertTokenizer, BertForSequenceClassification
from torch.optim import AdamW

import matplotlib.pyplot as plt

import seaborn as sns

from tgdm import tqgdm

from imblearn.under sampling import RandomUnderSampler

from collections import Counter

—— J— [—
B Load Dataset

#

df = pd.read excel ("/content/3-Data Normalize.xlsx")
TEXT COLUMN = "normalize"

LABEL COLUMN = "label"

mapping label - angka

label map = {label: idx for idx, label in
enumerate (df [LABEL COLUMN] .unique()) }

df ["label id"] = df[LABEL COLUMN].map (label map)
print ("Label mapping:", label map)

texts = df[TEXT COLUMN].astype (str).tolist ()
labels = df["label id"].astype (int) .tolist ()

Tampilkan distribusi kelas asli

print ("\n===== Distribusi Kelas Original =====")

label counts = Counter (labels)

for label, count in label counts.items() :
label name = [k for k, v in label map.items() if v == label] [0]
print (f"{label name}: {count} ({count/len(labels)*100:.2f}%)")

tokenizer = BertTokenizer.from pretrained("indobenchmark/indobert-
base-pl")
encodings tokenizer (
texts, truncation=True, padding=True, max length=128,
return tensors="pt"

)

input ids = encodings["input ids"]
attention mask = encodings["attention mask"]
labels tensor = torch.tensor (labels)

7777777

B Parameter Training

#

device = torch.device("cuda" if torch.cuda.is available() else "cpu")
num _epochs = 100

num_folds = 5
batch size = 32
lr = le-5

162

patience = 10
use_rus = True # GANTI: Aktifkan RUS

#

+ O Early Stopping Class
#

class EarlyStopping:

def init (self, patience=10, min delta=0, verbose=True):
self.patience = patience
self.min delta = min delta
self.verbose = verbose
self.counter = 0
self.best loss = None
self.early stop = False
self.best epoch = 0

def call (self, val loss, epoch):
if self.best loss is None:
self.best loss = val loss
self.best epoch = epoch
elif val loss > self.best loss - self.min delta:
self.counter += 1
if self.verbose:
print (f"EarlyStopping counter:
{self.counter}/{self.patience}")
if self.counter >= self.patience:
self.early stop = True
else:
self.best loss = val loss
self.best epoch = epoch
self.counter = 0

B K-Fold Cross Validation dengan Early Stopping + RUS
#
kfold = KFold(n splits=num folds, shuffle=True, random state=42)

fold train acc, fold val acc = [], []
fold prec, fold rec, fold f1 = [], [], []
all preds, all labels = [], []

train _acc_per epoch, val acc per epoch = [], []
train loss per epoch, val loss per epoch = [], []
epochs completed per fold = []

best epoch per fold = []

TAMBAHAN: Tracking info RUS per fold
rus_info per fold = []

for fold, (train idx, val idx) in

enumerate (kfold.split (range (len(labels)))):
print (£"\n{'="'*60}")
print (f"========== Fold {fold+l} ==========")
print (£"{'="'%60}")

LANGKAH 1: Ambil data train dan validation
train input ids = input ids[train idx]
train attention mask = attention mask[train idx]
train labels = labels tensor[train idx]

val input ids = input ids([val idx]
val attention mask = attention mask([val idx]
val labels = labels tensor[val idx]

163

print (f"\n--- Distribusi Sebelum RUS ---")
train label counts = Counter (train labels.numpy())
for label, count in sorted(train label counts.items()):
label name = [k for k, v in label map.items() if v ==
label] [0]
print (f" Train {label name}: {count}")

LANGKAH 2: Terapkan RUS pada Training Set
if use rus:
print (f"\n%F Menerapkan Random Under Sampling pada Training
Set...")

Gabungkan input ids dan attention mask untuk RUS

Karena RUS butuh format 2D, kita perlu flatten dan simpan
shape

original shape = train input ids.shape

Reshape untuk RUS: (num samples, features)
train data = torch.cat([

train input ids,

train attention mask
], dim=1) .numpy ()

Apply RUS (GANTI dari ROS ke RUS)
rus = RandomUnderSampler (random state=42)
train data resampled, train labels resampled =
rus.fit resample (
train data,
train labels.numpy ()

)

Split kembali menjadi input ids dan attention mask
seq length = original shape[1]
train input ids = torch.tensor(train data resampled[:,

:seq_length])
train attention mask = torch.tensor (train data resampled[:,
seq length:])

train labels = torch.tensor(train labels resampled)

print (£"\n--- Distribusi Setelah RUS ---")
train label counts after = Counter (train labels.numpy())
for label, count in sorted(train label counts after.items()):
label name = [k for k, v in label map.items () if v ==
label] [0]
print (f" Train {label name}: {count}")

print (£"\nk} Ukuran dataset:")

print (f" Training: {len(train labels)} samples (setelah
RUS) ™)

print (f" Validation: {len(val labels)} samples (TIDAK di-
RUS) ™)

Simpan info RUS
before count = len(train idx)
after count = len(train_labels)
rus_info = {

'fold': fold + 1,

'before': before count,

'after': after count,
'reduction': before count - after count,
'reduction pct': ((before count - after count) /

before count) * 100

}

rus info per fold.append(rus info)

164

print (£" I, Data berkurang: {rus info['reduction']} sampel
({rus_info['reduction pct']:.1£f}%)")

LANGKAH 3: Buat DataLoader

train dataset = TensorDataset (train input ids,
train attention mask, train labels)

val dataset = TensorDataset(val input ids, val attention mask,
val labels)

train loader = DatalLoader (train dataset,
sampler=RandomSampler (train dataset), batch size=batch size)

val loader = Dataloader (val dataset,
sampler=SequentialSampler (val dataset), batch size=batch size)

LANGKAH 4: Inisialisasi Model
model = BertForSequenceClassification.from pretrained/(
"indobenchmark/indobert-base-pl",
num_ labels=len (label map)
) .to(device)

optimizer = AdamW (model.parameters (), lr=1lr)
early stopping = EarlyStopping(patience=patience, verbose=True)

fold train acc_epoch, fold val acc epoch = [], []
fold train loss epoch, fold val loss epoch = [], T[]

@ LANGKAH 5: Training Loop dengan Early Stopping
for epoch in range (num epochs) :
———- Training ----
model.train ()
total loss, correct, total =0, 0, O
for batch in tgdm(train loader, desc=f"Training Epoch
{epoch+1}"):
optimizer.zero grad()
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids batch,
attention mask=attention mask batch, labels=labels batch)
loss = outputs.loss
logits = outputs.logits
loss.backward/()
optimizer.step ()

total loss += loss.item()

preds = torch.argmax(logits, dim=1)

correct += (preds == labels batch) .sum().item/()
total += labels batch.size (0)

train _acc = correct / total

avg train loss = total loss / len(train loader)

-—-—- Validation (pada data ASLI, tanpa RUS) ----
model.eval ()

val loss, val correct, val total = 0, 0, 0

val preds, val true = [], []
with torch.no grad():
for batch in val loader:
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input_ids_batch,
attention mask=attention mask batch, labels=labels batch)
val loss += outputs.loss.item()
preds = torch.argmax (outputs.logits, dim=1)
val correct += (preds == labels batch) .sum() .item()

165

val total += labels batch.size (0)
val preds.extend(preds.cpu() .numpy())
val true.extend(labels batch.cpu() .numpy())

val acc = val correct / val total
avg val loss = val loss / len(val loader)

fold train acc_epoch.append(train acc)

fold val acc epoch.append(val acc)

fold train loss_epoch.append(avg train loss)
fold val loss epoch.append(avg val loss)

print (f"Epoch {epoch+1l}/{num epochs} - Train Loss:
{avg_train loss:.4f}, Val Loss: {avg val loss:.4f}, "
f"Train Acc: {train acc:.4f}, Val Acc: {val acc:.4f}")

LANGKAH 6: Early Stopping memantau validation loss
early stopping(avg val loss, epoch+l)

if early stopping.early stop:
print (f" A Early stopping triggered at epoch {epoch+1}")
print (f"# Best validation loss was
{early stopping.best loss:.4f} at epoch {early stopping.best epoch}")
break

epochs completed = len(fold train acc_ epoch)

epochs completed per fold.append(epochs completed)

best epoch per fold.append(early stopping.best epoch)

print (£" Il Fold {fold+l} completed {epochs completed} epochs
(best at epoch {early stopping.best epoch})")

Metrics per fold

precision = precision score(val true, val preds,
average="weighted", zero division=0)

recall = recall score(val true, val preds, average="weighted",
zero_division=0) b 3 0

fl = fl1 score(val true, val preds, average="weighted",
zero_division=0)

fold train acc.append(train_acc)
fold val acc.append(val acc)
fold prec.append (precision)

fold rec.append(recall)

fold fl.append(£fl)

all preds.extend(val preds)
all labels.extend(val true)

train _acc_per epoch.append(fold train acc epoch)
val acc per epoch.append(fold val acc_epoch)

train loss_per_ epoch.append(fold train_ loss_epoch)
val loss per epoch.append(fold val loss epoch)

print (f"Fold {fold+l} - Train Acc: {train acc:.4f} | Val Acc:
{val acc:.4f} | "

f"Prec: {precision:.4f} | Rec: {recall:.4f} | Fl: {fl:.4f}")
#
B Informasi RUS (Random Under Sampling)
#
if use rus:
print ("\n===== [} Informasi Random Under Sampling (RUS) =====")

rus_df = pd.DataFrame (rus info per fold)
print(rus df.to string(index=False))

166

print (f"\nRata-rata pengurangan data:

{rus df['reduction'].mean():.1f} sampel
({rus_df['reduction pct'].mean():.1£}%)")
print (f"Total data training sebelum RUS:
{rus _df['before'].mean():.0£}")
print (f"Total data training setelah RUS:
{rus df['after'].mean():.0£}")
—— e
B Informasi Early Stopping
#
print ("\n===== ® Informasi Early Stopping =====")

print (f"Epoch minimum: {min (epochs completed per fold)}")

print (f"Epoch maksimum: {max(epochs completed per fold)}")

print (f"Rata-rata epoch: {np.mean(epochs completed per fold):.2f} £
{np.std(epochs completed per fold):.2f}")

print (f"Epoch per fold: {epochs completed per fold}")

print (f"\nBest epoch per fold: {best epoch per fold}")

print (f"Rata-rata best epoch: {np.mean(best epoch per fold):.2f} £
{np.std(best epoch per fold):.2f}")

print (f"Best epoch minimum: {min (best epoch per fold)}")

print (f"Best epoch maksimum: {max(best epoch per fold)}")

#

B Rata-rata Akhir 5 Fold

#

print ("\n===== ,/ Rata-Rata Hasil 5 Fold =====")

print (f"Random Under Sampling: {'AKTIF' if use rus else 'TIDAK
AKTIF'}")

print (f"Train Acc: {np.mean(fold train acc):.4f}")
print (£f"Val Acc: {np.mean (fold val acc):.4f}")
print (f"Precision: {np.mean (fold prec):.4f}")
print (f"Recall: {np.mean (fold rec):.4f}")

print (f"F1 Score: {np.mean (fold f1):.4f}")

_______ ~ WERN
B} Grafik Akurasi & Loss Rata-rata per Epoch (TANPA MARKER)
#

min epochs = min (epochs completed per fold)

train_acc_trimmed = [fold[:min_epochs] for fold in
train acc per epoch]

val_acc_trimmed = [fold[:min epochs] for fold in val acc per_ epoch]
train loss trimmed = [fold[:min epochs] for fold in

train loss per epoch]

val loss trimmed = [fold[:min epochs] for fold in val loss per epoch]

avg_train acc = np.mean(train acc trimmed, axis=0)
avg val acc = np.mean(val acc_trimmed, axis=0)
avg_train loss = np.mean(train loss trimmed, axis=0)
avg _val loss = np.mean(val loss_trimmed, axis=0)

epochs range = range(l, min epochs + 1)

Grafik Akurasi (TANPA MARKER, garis mulus)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train acc, label="Train Accuracy",
linewidth=2.5, color="#1£f77b4")

plt.plot (epochs range, avg val acc, label="Validation Accuracy",
linewidth=2.5, color="#ff7f0e"')

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Accuracy", fontsize=12)

rus_status = "dengan RUS" if use rus else "tanpa RUS"
plt.title(f"Rata-rata Akurasi per Epoch (5 Fold, Early Stop

167

{rus_status})", fontsize=14)
plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()
plt.savefig("avg accuracy epoch rus.png", dpi=300)
plt.show ()

Grafik Loss (TANPA MARKER, garis mulus)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train loss, label="Train Loss",
linewidth=2.5, color='#1£f77b4")

plt.plot (epochs range, avg val loss, label="Validation Loss",
linewidth=2.5, color="#ff7f0e')

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Loss", fontsize=12)

plt.title(f"Rata-rata Loss per Epoch (5 Fold, Early Stop
{rus_status})", fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout()

plt.savefig("avg loss epoch rus.png", dpi=300)

plt.show ()

$ ======= == 2 ==
[confusion Matrix & Classification Report

#

cm = confusion matrix(all labels, all preds)
plt.figure(figsize=(8,6))

sns.heatmap (cm, annot=True, fmt="d", cmap="Blues",
xticklabels=label map.keys (), yticklabels=label map.keys())
plt.xlabel ("Predicted", fontsize=12)

plt.ylabel ("True", fontsize=12)

plt.title("Confusion Matrix (Keseluruhan - dengan RUS)", fontsize=14)

plt.tight layout ()
plt.savefig("confusion matrix overall rus.png", dpi=300)
plt.show ()

target names = list (label map.keys())

MODIFIKASI: Buat custom classification report dengan nilai bulat

(persentase)
report_dict = classification report(all labels, all preds,
target names=target names, output dict=True, zero division=0)

print ("\n===== Classification Report Final (dengan RUS) =====")
print (f"{'Class':<15} {'Precision':<12} {'Recall':<12} {'F1l-
Score':<12} {'Support':<10}")

print ("=" * 65)

Print per kelas
for label name in target names:

prec = report dict[label name] ['precision'] * 100 # Convert ke
persentase

rec = report dict[label name] ['recall'] * 100

fl = report dict[label name] ['fl-score'] * 100

sup = int(report dict[label name] ['support'])

print (f"{label name:<15}
{prec:>6.0£f}% {rec:>6.0f}% {fl:>6.0f}% {sup:>6}")
print("-" * 65)

Print accuracy
acc = report dict['accuracy'] * 100
total support = int (report dict['weighted avg']['support'])

168

print (f"{'Accuracy':<15} {'':<12} {'':<12}
{acc:>6.0f}% {total support:>6}")

print ("-" * 65)

Print macro avg

macro_prec = report dict['macro avg']['precision'] * 100

macro_rec = report dict['macro avg']['recall'] * 100

macro fl = report dict['macro avg']['fl-score'] * 100

print (f"{'Macro Avg':<15}

{macro prec:>6.0f}% {macro rec:>6.0f}% {macro f1:>6.0f}%

{total support:>6}")

Print weighted avg

weighted prec = report dict['weighted avg']['precision'] * 100
weighted rec = report dict['weighted avg'](['recall'] * 100
weighted fl = report dict['weighted avg']['fl-score'] * 100

print (f"{'Weighted Avg':<15}

{weighted prec:>6.0f}5% {weighted rec:>6.0f}% {weighted f1:
>6.0f}% {total support:>6}")

Simpan ke CSV dengan format persentase bulat
report df = pd.DataFrame (report dict) .transpose ()
report df pct = report df.copy()

for col in ['precision', 'recall', 'fl-score']:
if col in report df pct.columns:
report df pctlcol] = (report df pctlcol] *

100) .round (0) .astype (int) .astype (str) + 'S$'
report df pct.to csv("classification report overall rus.csv",
index=True)

print (f"\nf4 Panjang sumbu X pada grafik: {min epochs} epoch")
print(f" Semua hasil (grafik & laporan) sudah tersimpan dan tampil
di output Colab.")

print (£" 3 RUS berhasil diterapkan pada setiap fold untuk
menyeimbangkan kelas minoritas dan mayoritas.")

Lampiran 16. Code Skenario 7

—_ e
+ B Import Library

import torch

import numpy as np

import pandas as pd

from torch.utils.data import DatalLoader, TensorDataset, RandomSampler,
SequentialSampler

from sklearn.model selection import KFold

from sklearn.metrics import classification report, confusion matrix,
precision score, recall score, fl score

from transformers import BertTokenizer, BertForSequenceClassification
from torch.optim import AdamW

import matplotlib.pyplot as plt

import seaborn as sns

from tgdm import tgdm

from imblearn.over sampling import RandomOverSampler

from collections import Counter

#

B Load Dataset
#

df = pd.read excel ("/content/3-Data Normalize.xlsx")

169

TEXT COLUMN = "normalize"
LABEL COLUMN = "label"

mapping label - angka

label map = {label: idx for idx, label in
enumerate (df [LABEL COLUMN] .unique()) }
df ["label id"] = df[LABEL COLUMN] .map (label map)

print ("Label mapping:", label map)

texts = df [TEXT COLUMN].astype (str).tolist ()
labels = df["label id"].astype (int).tolist()

Tampilkan distribusi kelas asli

print ("\n===== Distribusi Kelas Original =====")
label counts = Counter (labels)
for label, count in label counts.items():

label name = [k for k, v in label map.items() if v == label] [0]

print (f"{label name}: {count} ({count/len(labels)*100:.2f}%)")
tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert—
base-pl")
encodings = tokenizer (

texts, truncation=True, padding=True, max length=128,

return tensors="pt"

)

input ids = encodings["input ids"]
attention mask = encodings["attention mask"]
labels tensor = torch.tensor (labels)

#
B pParameter Training

device = torch.device("cuda" if torch.cuda.is available() else "cpu")
num_epochs = 100

num_ folds = 5

batch size = 16

lr = le-5

patience = 10

use ros = True

7777777

[Early Stopping Class
#

class EarlyStopping:
def init (self, patience=10, min delta=0, verbose=True):

self.patience = patience
self.min delta = min delta
self.verbose = verbose
self.counter = 0
self.best loss = None
self.early stop = False
self.best epoch = 0

def call (self, val loss, epoch):
if self.best loss is None:

self.best loss = val loss
self.best epoch = epoch
elif val loss > self.best loss - self.min delta:

self.counter += 1
if self.verbose:
print (f"EarlyStopping counter:
{self.counter}/{self.patience}")
if self.counter >= self.patience:
self.early stop = True

170

else:
self.best loss = val loss
self.best epoch = epoch
self.counter = 0

B K-Fold Cross Validation dengan Early Stopping + ROS

_______ P —— J— J— J— P ——

kfold = KFold(n splits=num folds, shuffle=True, random state=42)

fold train acc, fold val acc = [], []
fold prec, fold rec, fold f1 = [], [], T[]
all preds, all labels = [], []

train acc per epoch, val acc per epoch = [], []
train loss per epoch, val loss per epoch = [], []
epochs completed per fold = []

best epoch per fold = []

TAMBAHAN: Tracking info ROS per fold
ros_info per fold = []

for fold, (train idx, val idx) in
enumerate (kfold.split (range (len(labels)))):

print (£"\n{'="'*60}")

print (f"========== Fold {fold+l} ==========")

print (£"{'="*60}")

LANGKAH 1: Ambil data train dan validation

train input ids = input ids[train idx]
train attention mask = attention mask[train idx]
train labels = labels tensor[train idx]
val input ids = input ids[val idx]
val attention mask = attention mask[val idx]
val labels = labels tensor[val idx]
print (f"\n--- Distribusi Sebelum ROS ---")
train label counts = Counter(train labels.numpy ())
for label, count in sorted(train label counts.items()) :
label name = [k for k, v in label map.items () if v == label][0]

print (f" Train {label name}: {count}")

LANGKAH 2: Terapkan ROS pada Training Set
if use ros:

print (f"\n%* Menerapkan Random Over Sampling pada Training
Set...")

Gabungkan input ids dan attention mask untuk ROS

original shape = train input ids.shape
Reshape untuk ROS: (num samples, features)
train data = torch.cat([

train input ids,
train attention mask
1, dim=1) .numpy ()

Apply ROS
ros = RandomOverSampler (random state=42)
train data_ resampled, train labels resampled =
ros.fit resample (
train data,
train labels.numpy ()

171

Split kembali menjadi input ids dan attention mask
seq length = original shape[1l]

train input ids = torch.tensor (train data resampledl[:,
:seq lengthl])
train attention mask = torch.tensor(train data resampled][:,
seq_length:])
train labels = torch.tensor(train labels resampled)
print (f"\n--- Distribusi Setelah ROS ---")

train label counts after = Counter(train labels.numpy())
for label, count in sorted(train label counts after.items()):
label name = [k for k, v in label map.items() if v ==

label] [0]
print (f" Train {label name}: {count}")

print (f"\nkh} Ukuran dataset:™)
print (f" Training: {len(train labels)} samples (setelah ROS)")
print (f" Validation: {len(val labels)} samples (TIDAK di-ROS)")

Simpan info ROS

before count = len(train idx)
after count = len(train labels)
ros_info = {

' foilld R RCNNCINET, |
'before': before count,

RERC Ccic ! o ERw=1c colinit,
'addition': after count - before count,
'addition pct': ((after count - before count) /

before count) * 100

}

ros_info per fold.append(ros info)
print (£" Data bertambah: ({ros info['addition']} sampel
({ros info['addition pct']:.1f}%)")

LANGKAH 3: Buat Dataloader

train dataset = TensorDataset (train_ input ids,
train attention mask, train labels)
val dataset = TensorDataset(val input ids, wval attention mask,
val labels)
train loader = DatalLoader (train dataset,
sampler=RandomSampler (train dataset), batch size=batch size)
val loader = DatalLoader (val dataset,

sampler=SequentialSampler (val dataset), batch size=batch size)

LANGKAH 4: Inisialisasi Model

model = BertForSequenceClassification.from pretrained/(
"indobenchmark/indobert-base-pl",
num labels=len (label map)

) .to (device)

optimizer = AdamW (model.parameters (), lr=1lr)
early stopping = EarlyStopping(patience=patience, verbose=True)

fold train acc_epoch, fold val acc epoch = [], []
fold train loss_epoch, fold val loss epoch = [], []

& LANGKAH 5: Training Loop dengan Early Stopping
for epoch in range (num_epochs) :
-—--- Training ----
model.train ()
total loss, correct, total =0, 0, 0
for batch 1in tgdm(train loader, desc=f"Training Epoch

172

{epoch+1}"):
optimizer.zero grad()
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids batch,
attention mask=attention mask batch, labels=labels batch)
loss = outputs.loss
logits = outputs.logits
loss.backward()
optimizer.step ()

total loss += loss.item()

preds = torch.argmax(logits, dim=1)

correct += (preds == labels batch).sum().item/()
total += labels batch.size(0)

train acc = correct / total
avg_train loss = total loss / len(train loader)

-—-—- Validation (pada data ASLI, tanpa ROS) ----
model.eval ()
val loss, val correct, val total = 0, 0, O
val preds, val true = [], []
with torch.no grad() :
for batch in val loader:
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids batch,
attention mask=attention mask batch, labels=labels batch)
val loss += outputs.loss.item()
preds = torch.argmax (outputs.logits, dim=1)
val correct += (preds == labels batch).sum() .item()
val total += labels batch.size(0)
val preds.extend (preds.cpu() .numpy ())
val true.extend(labels batch.cpu () .numpy ())

val acc = val correct / val total
avg_val loss = val loss / len(val loader)

fold train acc epoch.append(train acc)

fold val acc epoch.append(val acc)

fold train loss epoch.append(avg train_loss)
fold val loss epoch.append(avg val loss)

print (£"Epoch {epoch+1}/{num epochs} = Train Loss:

{avg_train loss:.4f}, Val Loss: {avg val loss:.4f}, "
f"Train Acc: {train acc:.4f}, Val Acc: {val acc:.4f}")

LANGKAH 6: Early Stopping memantau validation loss
early stopping(avg val loss, epoch+l)

if early stopping.early stop:

print (f" A Early stopping triggered at epoch {epoch+1}")
print(f" Best validation loss was
{early stopping.best loss:.4f} at epoch {early stopping.best epoch}")
break

epochs completed = len(fold train acc epoch)

epochs completed per fold.append(epochs completed)

best epoch per fold.append(early stopping.best epoch)

print (£" il Fold {fold+l} completed {epochs completed} epochs (best
at epoch {early stopping.best epoch})")

Metrics per fold

173

precision = precision score(val true, val preds,
average="weighted", zero division=0)

recall = recall score(val true, val preds, average="weighted",
zero division=0)
f1l = fl score(val true, val preds, average="weighted",

zero division=0)

fold train acc.append(train_acc)
fold val acc.append(val acc)
fold prec.append (precision)

fold rec.append(recall)

fold fl.append(fl)

all preds.extend(val preds)
all labels.extend(val true)

train acc per epoch.append(fold train acc epoch)
val acc_per_epoch.append(fold val acc_epoch)

train loss per epoch.append(fold train loss epoch)
val loss per epoch.append(fold val loss epoch)

print (f"Fold ({fold+l} - Train Acc: {train acc:.4f} | Val Acc:
{val acc:.4f} "
f"Prec: {precision:.4f} | Rec: {recall:.4f} | Fl: {fl:.4£f}")
#
B Informasi ROS (Random Over Sampling)

if use ros:
print ("\n===== Jj] Informasi Random Over Sampling (ROS) =====")
ros df = pd.DataFrame (ros info per fold)
print (ros df.to string(index=False))

print (f"\nRata-rata penambahan data:

{ros df['addition'].mean():.1f} sampel
({ros_df['addition pct'].mean():.1£f}%)")

print (f"Total data training sebelum ROS:
{ros df['before'].mean():.0£}")

print (f"Total data training setelah ROS:
{ros df['after'].mean():.0£f}")
#
B Informasi Early Stopping
—
print ("\n===== ® Informasi Early Stopping =====")

print (f"Epoch minimum: {min (epochs completed per fold)}")

print (f"Epoch maksimum: {max(epochs completed per fold)}")

print (f"Rata-rata epoch: {np.mean(epochs completed per fold):.2f}")
print (f"Epoch per fold: {epochs completed per fold}")

print (f"\nBest epoch per fold: {best epoch per fold}")

print (f"Rata-rata best epoch: {np.mean(best epoch per fold):.2f}")
print (f"Best epoch minimum: {min(best epoch per fold)}")

print (f"Best epoch maksimum: {max(best epoch per fold)}")

#

B Rata-rata Akhir 5 Fold

—_—

print ("\n===== ,/ Rata-Rata Hasil 5 Fold =====")

print (f"Random Over Sampling: {'AKTIF' if use ros else 'TIDAK AKTIF'}")
print (f"Train Acc: {np.mean(fold train acc):.4f}")

print (£"Val Acc: {np.mean (fold val acc):.4f}")
print (f"Precision: {np.mean(fold prec):.4£f}")
print (f"Recall: {np.mean (fold rec):.4f}")
print (£"F1 Score: {np.mean (fold f1):.4£f}")

174

#

" Grafik Akurasi & Loss Rata-rata per Epoch (TANPA MARKER - SMOOTH)
#

min epochs = min (epochs completed per fold)

train acc trimmed = [fold[:min epochs] for fold in train acc per epoch]
val acc trimmed = [fold[:min epochs] for fold in val acc per epoch]
train loss trimmed = [fold[:min epochs] for fold in
train loss per epoch]

val loss_trimmed = [fold[:min_epochs] for fold in val loss_per_ epoch]

avg_train acc = np.mean(train acc trimmed, axis=0)

avg val acc = np.mean(val acc trimmed, axis=0)
avg_train loss = np.mean(train loss trimmed, axis=0)
avg _val loss = np.mean(val loss trimmed, axis=0)
epochs range = range(l, min epochs + 1)

Grafik Akurasi (TANPA MARKER - garis mulus)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train acc, label="Train Accuracy",
linewidth=2.5, color="#1£77b4"')
plt.plot (epochs range, avg val acc, label="Validation Accuracy",

linewidth=2.5, color='#£ff7f0e"')

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Accuracy", fontsize=12)

ros status = "dengan ROS" if use ros else "tanpa ROS"
plt.title(f"Rata-rata Akurasi per Epoch (5 Fold, Early Stop
{ros status})", fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()
plt.savefig("avg accuracy epoch ros.png", dpi=300)
plt.show ()

Grafik Loss (TANPA MARKER - garis mulus)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train loss, label="Train Loss",
linewidth=2.5, color='#1£f77b4")
plt.plot (epochs range, avg val loss, label="Validation Loss",

linewidth=2.5, color="#ff7f0e"')

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Loss", fontsize=12)

plt.title(f"Rata-rata Loss per Epoch (5 Fold, Early Stop {ros_status})",
fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()

plt.savefig("avg loss epoch ros.png", dpi=300)

plt.show ()

#

M@ confusion Matrix & Classification Report

cm = confusion matrix(all labels, all preds)

plt.figure(figsize=(8,6))

sns.heatmap (cm, annot=True, fmt="d", cmap="Blues",
xticklabels=label map.keys (), yticklabels=label map.keys())

plt.xlabel ("Predicted", fontsize=12)

plt.ylabel ("True", fontsize=12)

plt.title("Confusion Matrix (Keseluruhan - dengan ROS)", fontsize=14)
plt.tight layout()

plt.savefig("confusion matrix overall ros.png", dpi=300)

plt.show ()

175

target names = list(label map.keys())

0@ MODIFIKASI: Buat custom classification report dengan nilai bulat
(persentase)

report dict = classification report(all labels, all preds,
target names=target names, output dict=True, zero division=0)

print ("\n===== Classification Report Final (dengan ROS) =====")
print (f"{'Class':<15} {'Precision':<12} {'"Recall':<12} {'"F1-
Score':<12} {'Support':<10}")

print ("=" * 65)

Print per kelas
for label name in target names:

prec = report dict[label name] ['precision'] * 100 # Convert ke
persentase

rec = report dict[label name]['recall'] * 100

fl = report dict[label name] ['fl-score'] * 100

sup = int(report dict[label name] ['support'])
print (f"{label name:<15}
{prec:>6.0£f}% {rec:>6.0f}% {fl:>6.0f}% {sup:>6}")
print("-" * 65)

Print accuracy
acc = report dict['accuracy'] * 100
total support = int(report dict['weighted avg'] ['support'])

print (f"{'Accuracy':<15} {"":<12} {'':<12}
{acc:>6.0f}% {total support:>6}")
print ("-" * 65)

Print macro avg
macro_prec = report dict['macro avg']['precision'] * 100
macro_rec = report dict['macro avg']['recall'] * 100

macro fl = report dict['macro avg']['fl-score'] * 100
print (£f"{'Macro Avg':<15}
{macro prec:>6.0f}% {macro rec:>6.0f}% {macro f1:>6.0f}%

{total support:>6}")

Print weighted avg
weighted prec = report dict['weighted avg']['precision'] * 100
weighted rec = report dict['weighted avg']['recall'] * 100

weighted fl = report dict['weighted avg']['fl-score'] * 100

print (f"{'Weighted Avg':<15}
{weighted prec:>6.0f}% {weighted rec:>6.0£f}% {weighted f1l:
>6.0f1% {total support:>6}")

Simpan ke CSV dengan format persentase bulat
report df = pd.DataFrame (report dict) .transpose()
report df pct = report df.copy()
for col in ['precision', 'recall', 'fl-score']:

if col in report df pct.columns:

report df pctlcol] = (report df pctlcol] *

100) .round (0) .astype (int) .astype (str) + 'S’
report df pct.to csv("classification report overall ros.csv",
index=True)

print(f"\n!ﬂ Panjang sumbu X pada grafik: {min epochs} epoch")

print (£"84 Semua hasil (grafik & laporan) sudah tersimpan dan tampil
di output Colab.")

print (£" ROS berhasil diterapkan pada setiap fold untuk
menyeimbangkan kelas minoritas dan mayoritas.")

176

Lampiran 17. Code Skenario 8

#
E) Import Library

$ ======= —= —= —= —= —=

import torch

import numpy as np

import pandas as pd

from torch.utils.data import Dataloader, TensorDataset, RandomSampler,
SequentialSampler

from sklearn.model selection import KFold

from sklearn.metrics import classification report, confusion matrix,
precision score, recall score, fl score

from transformers import BertTokenizer, BertForSequenceClassification
from torch.optim import AdamW

import matplotlib.pyplot as plt

import seaborn as sns

from tgdm import tgdm

from imblearn.over sampling import RandomOverSampler

from collections import Counter

_____ S

B Load Dataset

df = pd.read excel ("/content/3-Data Normalize.xlsx")
TEXT COLUMN = "normalize"

LABEL COLUMN = "label"

mapping label - angka

label map = {label: idx for idx, label in
enumerate (df [LABEL COLUMN] .unique())}

df["label id"] = df [LABEL COLUMN] .map (label map)
print ("Label mapping:", label map)

texts = df[TEXT COLUMN] .astype (str).tolist ()
labels = df["label id"].astype (int) .tolist ()

Tampilkan distribusi kelas asli

print ("\n===== Distribusi Kelas Original =====")

label counts = Counter (labels)

for label, count in label counts.items() :
label name = [k for k, v in label map.items() if v == label][0]
print (f"{label name}: {count} ({count/len (labels) *100:.2£}%)")

tokenizer = BertTokenizer.from pretrained("indobenchmark/indobert-
base-pl")
encodings = tokenizer (
texts, truncation=True, padding=True, max length=128,
return tensors="pt"

)

input ids = encodings["input ids"]
attention mask = encodings["attention mask"]
labels tensor = torch.tensor (labels)

#

B Parameter Training

device = torch.device("cuda" if torch.cuda.is available() else "cpu")
num epochs = 100

177

num folds = 5
batch size = 32

lr = le-5

patience = 10

use ros = True

==

[Early Stopping Class
pE——————

class EarlyStopping:
def init (self, patience=10, min delta=0, verbose=True):

self.patience = patience
self.min delta = min delta
self.verbose = verbose
self.counter = 0
self.best loss = None
self.early stop = False
self.best epoch = 0

def call (self, val loss, epoch):
if self.best loss is None:

self.best loss = val loss
self.best epoch = epoch
elif val loss > self.best loss - self.min delta:

self.counter += 1
if self.verbose:
print (f"EarlyStopping counter:
{self.counter}/{self.patience}")
if self.counter >= self.patience:
self.early stop = True

el sel
self.best loss = val loss
self.best epoch = epoch
self.counter = 0

#

B K-Fold Cross Validation dengan Early Stopping + ROS
#
kfold = KFold(n splits=num folds, shuffle=True, random state=42)

fold train acc, fold val acc = [], []
fold prec, fold rec, fold f1 = [], [], []
all preds, all labels = [], []

train _acc_per epoch, val acc per epoch = [],
train loss per epoch, val loss per epoch = [], []
epochs completed per fold = []

best epoch per fold = []

TAMBAHAN: Tracking info ROS per fold
ros _info per fold = []

for fold, (train idx, val idx) in

enumerate (kfold.split (range (len(labels)))):
print (£"\n{'='*60}")
print (f"========== Fold {fold+l} ==========")
print (£"{'="*60}")

LANGKAH 1: Ambil data train dan validation
train_input ids = input_ids[train_idx]
train attention mask = attention mask[train idx]
train labels = labels tensor[train idx]

val input ids = input ids[val idx]

178

val attention mask = attention mask[val idx]
val labels = labels tensor[val idx]

print (f"\n--- Distribusi Sebelum ROS ---")
train label counts = Counter (train labels.numpy())
for label, count in sorted(train label counts.items()):
label name = [k for k, v in label map.items () if v ==
label] [0]
print (f" Train {label name}: {count}")

LANGKAH 2: Terapkan ROS pada Training Set
if use ros:

print (f"\n%F Menerapkan Random Over Sampling pada Training
Set...")

Gabungkan input ids dan attention mask untuk ROS
original shape = train input ids.shape

Reshape untuk ROS: (num samples, features)
train data = torch.cat ([

train_ input ids,

train attention mask
], dim=1) .numpy ()

Apply ROS
ros = RandomOverSampler (random state=42)
train data resampled, train labels resampled =
ros.fit resample (
train data,
train labels.numpy ()

)

Split kembali menjadi input ids dan attention mask

seq length = original shape[1l]

train input ids = torch.tensor (train_data resampled[:,
:seq_length])

train attention mask = torch.tensor(train data resampled[:,
seq length:])

train labels = torch.tensor(train labels resampled)

print (f"\n--- Distribusi Setelah ROS ---")
train label counts after = Counter (train labels.numpy())
for label, count in sorted(train label counts after.items()):
label name = [k for k, v in label map.items() if v ==
label] [0]
print (f" Train {label name}: {count}")

print (f"\n i} Ukuran dataset:")

print (f" Training: {len(train labels)} samples (setelah
ROS) ™)

print (f" Validation: {len(val labels)} samples (TIDAK di-
ROS) ™)

Simpan info ROS

before count = len(train idx)
after count = len(train labels)
ros_info = {

'fold': fold + 1,
'before': before count,
'after': after count,
'addition': after count - before count,
'addition pct': ((after count - before count) /
before count) * 100
}

ros info per fold.append(ros info)

179

print (£" Data bertambah: {ros info['addition']} sampel
({ros _info['addition pct']:.1£f}%)")

LANGKAH 3: Buat DataLoader

train dataset = TensorDataset (train input ids,
train attention mask, train labels)

val dataset = TensorDataset(val input ids, val attention mask,
val labels)

train loader = DatalLoader (train dataset,
sampler=RandomSampler (train dataset), batch size=batch size)

val loader = Dataloader (val dataset,
sampler=SequentialSampler (val dataset), batch size=batch size)

LANGKAH 4: Inisialisasi Model
model = BertForSequenceClassification.from pretrained(
"indobenchmark/indobert-base-pl",
num_ labels=len (label map)
) .to(device)

optimizer = AdamW (model.parameters (), lr=1lr)
early stopping = EarlyStopping (patience=patience, verbose=True)

fold train _acc_epoch, fold val acc epoch = [], []
fold train loss epoch, fold val loss epoch = [], []

LANGKAH 5: Training Loop dengan Early Stopping
for epoch in range (num epochs) :
———- Training ----
model.train ()
total loss, correct, total =0, 0, O
for batch in tgdm(train loader, desc=f"Training Epoch
{epoch+1}"):
optimizer.zero grad()
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input ids batch,
attention mask=attention mask batch, labels=labels batch)
loss = outputs.loss
logits = outputs.logits
loss.backward()
optimizer.step ()

total loss += loss.item()

preds = torch.argmax(logits, dim=1)

correct += (preds == labels batch) .sum().item/()
total += labels batch.size (0)

train _acc = correct / total

avg train loss = total loss / len(train loader)

-—-—- Validation (pada data ASLI, tanpa ROS) ----
model.eval ()

val loss, val correct, wval total = 0, 0, 0O

val preds, val true = [], []
with torch.no grad():
for batch in val loader:
input ids batch, attention mask batch, labels batch =
[b.to(device) for b in batch]
outputs = model (input_ids_batch,
attention mask=attention mask batch, labels=labels batch)
val loss += outputs.loss.item()
preds = torch.argmax (outputs.logits, dim=1)
val correct += (preds == labels_batch).sum().item()

180

val total += labels batch.size (0)
val preds.extend(preds.cpu () .numpy())
val true.extend(labels batch.cpu() .numpy())

val acc = val correct / val total
avg val loss = val loss / len(val loader)

fold train acc_epoch.append(train acc)

fold val acc epoch.append(val acc)

fold train loss_epoch.append(avg train loss)
fold val loss epoch.append(avg val loss)

print (f"Epoch {epoch+1l}/{num epochs} - Train Loss:
{avg_train loss:.4f}, Val Loss: {avg val loss:.4f}, "
f"Train Acc: {train acc:.4f}, Val Acc: {val acc:.4f}")

LANGKAH 6: Early Stopping memantau validation loss
early stopping(avg val loss, epoch+l)

if early stopping.early stop:
print (f" A4 Early stopping triggered at epoch {epoch+1}")
print (f"# Best validation loss was
{early stopping.best loss:.4f} at epoch {early stopping.best epoch}")
break

epochs completed = len(fold train acc epoch)

epochs completed per fold.append(epochs completed)

best epoch per fold.append(early stopping.best epoch)

print (£" il Fold {fold+l} completed {epochs completed} epochs
(best at epoch {early stopping.best epoch})")

Metrics per fold

precision = precision score(val true, val preds,
average="weighted", zero division=0)

recall = recall score(val true, val preds, average="weighted",
zero_division=0) b 3 0

fl = fl score(val true, val preds, average="weighted",
zero_division=0)

fold train acc.append(train_acc)
fold val acc.append(val acc)
fold prec.append (precision)

fold rec.append(recall)

fold fl.append(£fl)

all preds.extend(val preds)
all labels.extend(val true)

train _acc per epoch.append(fold train acc epoch)
val acc per epoch.append(fold val acc_epoch)
train_ loss_per_ epoch.append(fold train_ loss_epoch)
val loss per epoch.append(fold val loss epoch)

print (f"Fold {fold+l} - Train Acc: {train acc:.4f} | Val Acc:
{val acc:.4f} | "

f"Prec: {precision:.4f} | Rec: {recall:.4f} | Fl: {fl:.4f}")
#
B Informasi ROS (Random Over Sampling)
#
if use ros:
print ("\n===== Jj] Informasi Random Over Sampling (ROS) =====")

ros df = pd.DataFrame (ros info per fold)
print (ros df.to string(index=False))

181

print (f"\nRata-rata penambahan data:

{ros df['addition'].mean():.1f} sampel
({ros_df['addition pct'].mean():.1£f}%)")
print (f"Total data training sebelum ROS:
{ros df['before'].mean():.0£}")
print (f"Total data training setelah ROS:
{ros df['after'].mean():.0£}")
== == ==
B Informasi Early Stopping
#
print ("\n===== ® Informasi Early Stopping =====")

print (f"Epoch minimum: {min (epochs completed per fold)}")

print (f"Epoch maksimum: {max(epochs completed per fold)}")

print (f"Rata-rata epoch: {np.mean(epochs completed per fold):.2f}")
print (f"Epoch per fold: {epochs completed per fold}")

print (f"\nBest epoch per fold: {best epoch per fold}")

print (f"Rata-rata best epoch: {np.mean(best epoch per fold):.2f}")
print (f"Best epoch minimum: {min (best epoch per fold)}")

print (f"Best epoch maksimum: {max(best epoch per fold)}")

[Rata-rata Akhir 5 Fold

[—— o

print ("\n===== ,/ Rata-Rata Hasil 5 Fold =====")

print (f"Random Over Sampling: {'AKTIF' if use ros else 'TIDAK
AKTIF'}"™)

print (f"Train Acc: {np.mean(fold train acc):.4f}")

print (f"Val Acc: {np.mean (fold val acc):.4f}")

print (f"Precision: {np.mean(fold prec):.4£f}")

print (f"Recall: {np.mean (fold rec):.4f}")

print (f"F1 Score: {np.mean(fold f1):.4f}")

#
B} Grafik Akurasi & Loss Rata-rata per Epoch (TANPA MARKER -
SMOOTH)

#

min epochs = min (epochs completed per fold)

train acc trimmed = [fold[:min epochs] for fold in
train acc _per epoch]

val acc trimmed = [fold[:min epochs] for fold in val acc per epoch]
train loss_trimmed = [fold[:min epochs] for fold in

train loss per epoch]

val loss trimmed = [fold[:min epochs] for fold in val loss_per_ epoch]

avg_train acc = np.mean(train acc_ trimmed, axis=0)
avg val acc = np.mean(val acc_ trimmed, axis=0)
avg_train loss = np.mean(train loss trimmed, axis=0)
avg val loss = np.mean(val loss trimmed, axis=0)

epochs range = range(l, min epochs + 1)

Grafik Akurasi (TANPA MARKER - garis mulus)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train acc, label="Train Accuracy",
linewidth=2.5, color="#1£f77b4")

plt.plot (epochs range, avg val acc, label="Validation Accuracy",
linewidth=2.5, color="#ff7£f0e")

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Accuracy", fontsize=12)

ros_status = "dengan ROS" if use ros else "tanpa ROS"
plt.title(f"Rata-rata Akurasi per Epoch (5 Fold, Early Stop
{ros status})", fontsize=14)

182

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()
plt.savefig("avg accuracy epoch ros.png", dpi=300)
plt.show ()

Grafik Loss (TANPA MARKER - garis mulus)
plt.figure(figsize=(10,5))

plt.plot (epochs range, avg train loss, label="Train Loss",
linewidth=2.5, color="#1£f77b4")

plt.plot (epochs range, avg val loss, label="Validation Loss",
linewidth=2.5, color="#ff7f0e")

plt.xlabel ("Epoch", fontsize=12)

plt.ylabel ("Loss", fontsize=12)

plt.title(f"Rata-rata Loss per Epoch (5 Fold, Early Stop
{ros_status})", fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, alpha=0.3)

plt.tight layout ()

plt.savefig("avg loss epoch ros.png", dpi=300)

plt.show ()

#

[confusion Matrix & Classification Report
I —a

cm = confusion matrix(all labels, all preds)
plt.figure(figsize=(8,06))

sns.heatmap (cm, annot=True, fmt="d", cmap="Blues",

xticklabels=label map.keys (), yticklabels=label map.keys())
plt.xlabel ("Predicted", fontsize=12)

plt.ylabel ("True", fontsize=12)

plt.title("Confusion Matrix (Keseluruhan - dengan ROS)", fontsize=14)
plt.tight layout ()

plt.savefig("confusion matrix overall ros.png", dpi=300)

plt.show ()

target names = list (label map.keys())

B MODIFIKASI: Buat custom classification report dengan nilai bulat
(persentase)

report dict = classification report(all labels, all preds,

target names=target names, output dict=True, zero division=0)

print ("\n===== Classification Report Final (dengan ROS) =====")
print (f"{'Class':<15} {'Precision':<12} {'Recall':<12} {'Fl-
Score':<12} {'Support':<10}")

print ("=" * 65)

Print per kelas
for label name in target names:

prec = report dict[label name] ['precision'] * 100 # Convert ke
persentase

rec = report dict[label name]['recall'] * 100

fl = report dict[label name] ['fl-score'] * 100

sup = int (report dict[label name] ['support'])

print (f"{label name:<15}
{prec:>6.0£f}% {rec:>6.0f}% {fl:>6.0f}% {sup:>6}")
print ("-" * 65)

Print accuracy

acc = report dict['accuracy'] * 100

total support = int (report dict['weighted avg']['support'])
print (£"{'Accuracy':<15} {'':<12} {'':<12}

183

{acc:>6.0f}% {total support:>6}")
print ("-" * 65)

Print macro avg

macro_prec = report dict['macro avg']['precision'] * 100

macro_rec = report dict['macro avg']['recall'] * 100

macro_ fl = report dict['macro avg']['fl-score'] * 100

print (f"{'Macro Avg':<15}

{macro prec:>6.0f}% {macro rec:>6.0f}% {macro f1:>6.0f}%

{total support:>6}")

Print weighted avg

weighted prec = report dict['weighted avg']['precision'] * 100
weighted rec = report dict['weighted avg'](['recall'] * 100
weighted fl = report dict['weighted avg']['fl-score'] * 100

print (f"{'Weighted Avg':<15}

{weighted prec:>6.0f}% {weighted rec:>6.0f}% {weighted f1:
>6.0f}% {total support:>6}")

Simpan ke CSV dengan format persentase bulat
report df = pd.DataFrame (report dict) .transpose ()
report df pct = report df.copy()
for col in ['precision', 'recall', 'fl-score']:

if col in report df pct.columns:

report df pct[col] = (report df pctlcol] *

100) .round(0) .astype (int) .astype (str) + 'S’
report df pct.to csv("classification report overall ros.csv",
index=True)

print(f"\n Panjang sumbu X pada grafik: {min epochs} epoch")
print (£"§4 Semua hasil (grafik & laporan) sudah tersimpan dan tampil
di output Colab.")

print (£" ROS berhasil diterapkan pada setiap fold untuk
menyeimbangkan kelas minoritas dan mayoritas.")

184

