

LAMPIRAN

Lampiran 1 Surat permohonan data ke UPA TIK Undiksha

Lampiran 2 Dokumentasi Foto Kegiatan

Lampiran 3 Siak Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
 name: laravel-app
 namespace: siak-system
spec:
 replicas: 2
 revisionHistoryLimit: 2
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 1
 maxSurge: 0
 selector:
 matchLabels:
 app: laravel-app
 template:
 metadata:
 labels:
 app: laravel-app
 spec:
 terminationGracePeriodSeconds: 3
 #"HA + scalable"
 topologySpreadConstraints:
 - maxSkew: 2
 topologyKey: "kubernetes.io/hostname"
 whenUnsatisfiable: "ScheduleAnyway"
 labelSelector:
 matchLabels:
 app: laravel-app
 affinity:

 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "role"
 operator: "In"
 values:
 - worker
 tolerations:
 - key: "node.kubernetes.io/not-ready"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 3
 - key: "node.kubernetes.io/unreachable"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 3
 containers:
 - name: laravel-app
 image: docker.io/saka8631/laravel-siak:latest
 ports:
 - containerPort: 9000
 envFrom:
 - configMapRef:
 name: laravel-env

Lampiran 4 Siak Service

apiVersion: v1
kind: Service
metadata:
 name: laravel-app
 namespace: siak-system
spec:
 selector:
 app: laravel-app
 ports:
 - protocol: TCP
 port: 9000
 targetPort: 9000

Lampiran 5 Konfigurasi Kubernetes Cluster

Langkah 1: Persiapan Sistem

Update System

sudo apt update && sudo apt upgrade -y

Disable Swap

sudo swapoff -a
sudo sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab

Load Kernel Modules

cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf
overlay
br_netfilter
EOF
sudo modprobe overlay
sudo modprobe br_netfilter

Configure Sysctl
cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-iptables = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.ipv4.ip_forward = 1
EOF

sudo sysctl --system

Langkah 2: Install CRI-O Container Runtime

Add CRI-O Repository

OS="xUbuntu_24.04"
VERSION="1.28"

echo "deb [signed-by=/usr/share/keyrings/libcontainers-
archive-keyring.gpg]
https://download.opensuse.org/repositories/devel:/kubic:/lib
containers:/stable/$OS/ /" | sudo tee
/etc/apt/sources.list.d/devel:kubic:libcontainers:stable.lis
t

echo "deb [signed-by=/usr/share/keyrings/libcontainers-crio-
archive-keyring.gpg]
https://download.opensuse.org/repositories/devel:/kubic:/lib
containers:/stable:/cri-o:/$VERSION/$OS/ /" | sudo tee
/etc/apt/sources.list.d/devel:kubic:libcontainers:stable:cri
-o:$VERSION.list

Install CRI-O

sudo apt update
sudo apt install cri-o cri-o-runc cri-tools -y

Start CRI-O Service

sudo systemctl enable crio
sudo systemctl start crio
sudo systemctl status crio

Langkah 3: Install Kubernetes Components

Add Kubernetes Repository

sudo curl -fsSL
https://pkgs.k8s.io/core:/stable:/v1.28/deb/Release.key |
sudo gpg --dearmor -o /etc/apt/keyrings/kubernetes-apt-
keyring.gpg
echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-
keyring.gpg] https://pkgs.k8s.io/core:/stable:/v1.28/deb/ /'
| sudo tee /etc/apt/sources.list.d/kubernetes.list

Install Packages

sudo apt update
sudo apt install -y kubelet kubeadm kubectl
sudo apt-mark hold kubelet kubeadm kubectl

Verify Installation

kubectl version --client

kubeadm version

Langkah 4: Initialize Master Node

Initialize Cluster

sudo kubeadm init --pod-network-cidr=192.168.0.0/16

Configure kubectl
mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Install Calico Network Plugin

kubectl create -f
https://raw.githubusercontent.com/projectcalico/calico/v3.26
.1/manifests/tigera-operator.yaml
kubectl create -f
https://raw.githubusercontent.com/projectcalico/calico/v3.26
.1/manifests/custom-resources.yaml

Verify Cluster

kubectl get nodes
kubectl get pods -n kube-system

Langkah 5: Join Worker Nodes

Get Join Command

On master node:
kubeadm token create --print-join-command

Join Worker Nodes

On each worker node:
sudo kubeadm join [MASTER_IP]:6443 --token [TOKEN] --
discovery-token-ca-cert-hash sha256:[HASH]

Langkah 6: Verifikasi Cluster

Check Node Status

kubectl get nodes -o wide

Deploy Test Application

kubectl create deployment nginx --image=nginx
kubectl expose deployment nginx --port=80 --type=LoadBalancer
kubectl get pods,svc

Clean Up

kubectl delete deployment nginx
kubectl delete service nginx

Troubleshooting

Common Issues

CRI-O not starting: Check logs with journalctl -u crio
Node NotReady: Verify network connectivity and firewall rules
Pod stuck in Pending: Check resource availability and network
plugin status

Useful Commands

Check cluster status

kubectl cluster-info
kubectl get componentstatuses

Check node details

kubectl describe node [NODE_NAME]

Check pod logs

kubectl logs [POD_NAME] -n [NAMESPACE]

Lampiran 6 Konfigurasi Promotheus dan Grafana

Langkah 1 – Instalasi Node Exporter Di Setiap Node (Master & Worker)
Wget
https://github.com/prometheus/node_exporter/releases/downloa
d/v1.7.0/node_exporter-1.7.0.linux-amd64.tar.gz
tar xvfz node_exporter-1.7.0.linux-amd64.tar.gz
sudo cp node_exporter-1.7.0.linux-amd64/node_exporter
/usr/local/bin/

Buat service

sudo tee /etc/systemd/system/node_exporter.service >
/dev/null <<EOF
[Unit]
Description=Node Exporter
After=network.target

[Service]
User=nobody
ExecStart=/usr/local/bin/node_exporter
Restart=on-failure

[Install]
WantedBy=default.target
EOF

Jalankan
sudo systemctl daemon-reexec
sudo systemctl enable --now node_exporter

Cek:

curl http://localhost:9100/metrics(atau via IP dari server
monitoring nanti)

LANGKAH 2 – Instalasi Prometheus di Server Monitoring

sudo useradd --no-create-home --shell /bin/false prometheus

Download & install
wget
https://github.com/prometheus/prometheus/releases/download/v
2.52.0/prometheus-2.52.0.linux-amd64.tar.gz
tar xvf prometheus-2.52.0.linux-amd64.tar.gz
cd prometheus-2.52.0.linux-amd64

sudo cp prometheus promtool /usr/local/bin/
sudo mkdir -p /etc/prometheus /var/lib/prometheus
sudo cp -r consoles console_libraries /etc/prometheus/

LANGKAH 3 – Konfigurasi Prometheus untuk Scrape Remote Nodes

nano /etc/prometheus/prometheus.yml

Edit file konfigurasi seperti berikut:

global:
 scrape_interval: 15s
 evaluation_interval: 15s

scrape_configs:
 - job_name: 'node-exporter'
 static_configs:
 - targets: ['192.168.1.1:9100', '192.168.1.2:9100',
'192.168.1.3:9100']

 - job_name: 'cadvisor'
 static_configs:

 - targets: ['192.168.1.1:30180', '192.168.1.2:30180',
'192.168.1.3:30180']
 - job_name: 'kubernetes-apiserver'

 scheme: https
 tls_config:
 insecure_skip_verify: true
 authorization:

 credentials:
eyJhbGciOiJSUzI1NiIsImtpZCI6InB5YzlScGhtTXhfenBQYzJ0VGJzLUVs
SEJ6ZEtuQzNudHNXck9i>
 static_configs:
 - targets: ['192.168.1.1:6443']

LANGKAH 4 – Jalankan Prometheus Sebagai Service

nano /etc/systemd/system/prometheus.service

Edit file konfigurasi seperti berikut:
[Unit]
Description=Prometheus Monitoring
Wants=network-online.target
After=network-online.target

[Service]
User=prometheus
ExecStart=/usr/local/bin/prometheus \
 --config.file=/etc/prometheus/prometheus.yml \
 --storage.tsdb.path=/var/lib/prometheus \
 --web.console.templates=/etc/prometheus/consoles \
 --web.console.libraries=/etc/prometheus/console_libraries

[Install]
WantedBy=multi-user.target

Berikan kepemilikan untuk file yang sudah dibuat lalu restart daemin dan enable
promotheus :
sudo chown -R prometheus:prometheus /etc/prometheus
/var/lib/prometheus
sudo systemctl daemon-reexec

sudo systemctl enable --now Prometheus

LANGKAH 5 – Instalasi Grafana

1. Buat folder keyring (jika belum ada)

sudo mkdir -p /etc/apt/keyrings

2. Download dan simpan GPG key Grafana

curl -fsSL https://packages.grafana.com/gpg.key | gpg --
dearmor | sudo tee /etc/apt/keyrings/grafana.gpg > /dev/null

3. Tambahkan repository Grafana dengan signed-by

echo "deb [signed-by=/etc/apt/keyrings/grafana.gpg]
https://packages.grafana.com/oss/deb stable main" | sudo tee
/etc/apt/sources.list.d/grafana.list

4. Update & install Grafana

sudo apt update
sudo apt install grafana -y

5. Jalankan Grafana

sudo systemctl enable --now grafana-server

Setelah ini, kamu bisa akses Grafana di:

http://<IP-SERVER>:3000

Login: admin / admin

