

PEMODELAN

Lampiran 1 Langkah Melakukan Pemodelan Kendaraan Ganesha *Surface Water*.

Berikut ini adalah langkah-langkah analisisaliran fluida pada kendaraani Ganesha Surface Water pada software solidworks 2018.

1. Hal pertama yang harus dilakukan adalah dengan membuka aplikasi *Solidworks* 2018, berikut adalah tampilan menu utama *Solidworks* 2018

Tampilan New Document Solidworks 2018 (Tangkapan Layar Solidworks 2018, Solidworks 9000 0099 9999 7937 NB8W P4KC) 3. Pemilihan *sketch plane* pada *plane bar* dengan memilih *toolbar sketch* kemudian pilih *sketch* dan dilanjutkan dengan pemilihan plane.

Tampilan Pemilihan Satuan

(Tangkapan Layar Solidworks 2018, Solidworks 9000 0099 9999 7937 NB8W P4KC)

5. Proses penggambaran bodi pada grafik dengan menggunakan menu yang berada pada tools bar. Pada proses desain 3d ini menggunakan skala 1:1.

Sketch Bodi pada Plane (Tangkapan Layar Solidworks 2018, Solidworks 9000 0099 9999 7937 NB8W P4KC)

6. Kemudian klik menu *Features > Extrude Boss* dan *Extrude Cut*, pada menu *Extrude Boss* dan *Extrude Cut* ini bisa diatur arahnya serta ketebalan yang di ingginkan untuk melakukan *Boss* ataupun *Cut* seuai dengan sketch pada plane yang digunakan.

Tampilan Menu *Boss Extrude* (Tangkapan Layar *Solidworks* 2018, *Solidworks* 9000 0099 9999 7937 NB8W P4KC) Memilih *plane* baru untuk membuat *sketch*, dengan klik *Plane* > *Reference Geometry*, pada menu ini jarak *plane* dengan titik awal bisa diatur sesuai dengan kebutuhan

Penggunaan *Reference Geometry* (Tangkapan Layar *Solidworks* 2018, *Solidworks* 9000 0099 9999 7937 NB8W P4KC)

8. Pembuatan besi penyangga pada setang kendaraan dengan menggunakan menu *swept boss* yang dimana pada penggunaan menu ini memerlukan kombinasi antara *sketch* 2 dimensi dan 3 dimensi diamana pada sketch ini satu berperan sebagai sumbu tengah dan satu lagi berperan sebagai dasar dari bentuk yang akan digunakan.

Swept Boss (Tangkapan Layar Solidworks 2018, Solidworks 9000 0099 9999 7937 NB8W P4KC)

9. Penggunaan *Structural Member* dimana pada menu ini digunakan untuk membuat bentuk pipa dengan menggunakan klik menu *insert* pada

bagian tanda panah yang berada di pojok kiri atas kemudian memilih menu *Insert* > *Weldment* > *Structural Member* lalu dapat disesuaikan pada menu bentuk dan ukuran yang akan digunakan.

Structural Member (Tangkapan Layar Solidworks 2018, Solidworks 9000 0099 9999 7937 NB8W P4KC)

10. Pembuatan Setang pada kendaraan menggunakan *sketch* 3 dimensi hal ini diperlukan karena jumlah lekukan dan kedudukan pada setang terbilang berliku dengan letak titik pada sumbu x,y dan z yang berbeda-beda sehingga diperlukannya penggunaan *sketch* ini.

Penggunaan Structural Member dengan Sketch 3D (Tangkapan Layar Solidworks 2018, Solidworks 9000 0099 9999 7937 NB8W P4KC)

11. Pembuatan cadik kembali menggunakan kombinasi perubahan *plane* dan penggunaan *Extrude Boss* dan *Extrude Cut* seperti yang ditunjukan pada gambar berikut ini.

Pembuatan Cadik menggunakan *Extrude Boss* (Tangkapan Layar *Solidworks* 2018, *Solidworks* 9000 0099 9999 7937 NB8W P4KC)

12. Penggambaran pada *drawing*, dengan klik *icon file* > *Make Drawing From Part/Assembly* sehingga akan langsung terlihat printah kerja drawing pada layar kerja *Solidworks* 2018

Tampilan Menu *Make Drawing From Part/Assembly* (Tangkapan Layar *Solidworks* 2018, *Solidworks* 9000 0099 9999 7937 NB8W P4KC)

13. Proses Assembly kendaraan dengan dengan pengendara menggunakan printah kerja assembly

LAMPIRAN 2

PERHITUNGAN LUAS FRONTAL DESAIN STANDAR

Lampiran 2 Perhitungan Luas Frontal pada Desain Standar Ganesha Surface Water

5	Lengan Bagian		Jajar Genjang
	Bawah		A = a.t
		4	A = 7,80.15,51
		40 ⁵ ///780	$120,98 cm^2$
			$A = \frac{10.000}{10.000}$
			$A = 0,012 m^2$
			Total Luas
			$A = 0.012 \text{ x} 2 = 0.024 m^2$
6	Lengan Bawah		Trapesium
	SIKU	8 60 / 1	$A = \frac{1}{a} (a + b)t$
			2
		• 4.1/	$A = \frac{1}{2} (4,77 + 8,60) 14,12$
			$A = \frac{1}{2} (13,37) 14,2$
			$A = \frac{1}{-189.85}$
			2
			$A = \frac{94,92 \ cm^2}{10,000}$
			10.000 $1 - 0.0094 m^2$
			A – 0,0074 m
			Total Luas
			$A = 0,0094 \text{x } 2 = 0.0188 \ m^2$
7	Tangan Pengendara	4 77	Trapesium
			$A = \frac{1}{2} (a + b)t$
		\sim -1	$A = \frac{1}{2} (4,77 + 9,76) 9,58$
		9./6	$1 = \frac{1}{(1453)} 0.58$
			A = 2 (14,33) 5,30
		Ť	$A = \frac{1}{2}$ 139,20
			2 69.6 cm ²
			$A = \frac{0.000 m}{10.000}$
			$A = 0,0069 m^2$
			Total Luas
			$A = 0.0069 \text{ x} 2 = 0.0138 m^2$
			-,

8	Pinggang		Trapesium
	Pengendara	20,62	$A = \frac{1}{2} (a+b)t$
		26,78	$A = \frac{1}{2} (20,62 + 26,78) 7,75$
			$A = \frac{1}{2} (47,4) 7,75$
			$A = \frac{1}{2}$ 367,35
			$A = \frac{183,675 \ cm^2}{10.000}$
			$A = 0,0183 m^2$
9	Paha		Trapesium
,	Pengendara	26,78	$A = \frac{1}{2} (a+b)t$
		<u>24,44</u>	$A = \frac{1}{2} (24,44 + 26,78) 24,13$
		54	$A = \frac{1}{2} (51,22) 24,13$
			$A = \frac{1}{2}$ 1.235,94
		() () () () () () () () () ()	$A = \frac{617,97 \ cm^2}{10.000}$
			$A = 0,061 m^2$

UNDIKSHA

10	Kaki	12 22	Persegi Panjang
	Pengendara		A = p x l
			<i>A</i> = 12,22 x 41,91
			$512,14 \ cm^2$
		$\overline{4}$ $\overline{6,00}$	$A = \frac{1}{10.000}$
			$A = 0,051 \ m^2$
			Segitiga
			a = a.t
			$A = \frac{1}{2}$
			$A = \frac{6.5,24}{2}$
			2 = 15.72
		SPENDIDIR	A = 15,72
		TTAD -	$A = \frac{15,72 \text{ cm}^2}{10,000}$
			$A = 0.0015 m^2$
			n = 0,0015 m
			Total Luga
			$1 = 0.051 \pm 0.0015 \pm 2$
			$A = 0,051 \pm 0,0015 \times 2 =$
			$0,105 m^2$
11	Dibawah Pijakan Kaki	\otimes (() /)	Persegi Panjang
	i jului i tuli		A = p x l
			$A = 36 \times 7$
			$A = \frac{252 \ cm^2}{2}$
			$A = 0,025 m^2$
		A Nurse	
12	Keranjang	60.00	Persegi Panjang
			$A = p \times l$
			$A = 60 \ge 41,31$
			$A = \frac{1.860 \ cm^2}{10.000}$
			10.000
			$A = 0,186 m^2$
			Total Luas
			$A = 0,186 \text{ x } 2 = 0,372 \ m^2$
13	Penyangga Cadik		Persegi Panjang A

		1		
			Perhitungan Bidang Frontal pada Ca	adik
No	Bagian		Gambar	Perhitungan
1	Cadik Kendara	an		$A = \pi r^2$
				$A = \frac{7}{7} \frac{7^2}{22}$
				$A = \frac{22}{7} 49$
				$A = 22.7^{2}$
				$A = \frac{154 \ cm^2}{10.000}$
				$A = 0,0154 \ge 4 = 0,0616 m^2$

LAMPIRAN 3

PERHITUNGAN LUAS FRONTAL DESAIN MODIFIKASI

Lampiran 3 Perhitungan Luas Frontal pada Desain Modifikasi Ganesha *Surface Water*.

5	Lengan Bagian		Jajar Genjang
	Bawah		A = a.t
		4	A = 7,80.15,51
		<u>45</u> / 7,80	$120,98 \ cm^2$
			A =
			$A = 0,012 \ m^2$
			//Total Luas
			$A = 0,012 \ \mathrm{x} \ 2 = 0.024 \ m^2$
6	Lengan Bawah		Trapesium
	Siku	8,60	$A = \frac{1}{2} (a+b)t$
		4,77	$A = \frac{1}{2} (4,77 + 8,60) 14,12$
			$\Box A = \frac{1}{2}$ (13,37) 14,2
			$A = \frac{1}{2}$ 189,85
			$A = \frac{94,92 \ cm^2}{1000000000000000000000000000000000000$
			$ \begin{array}{l} 10.000 \\ A = 0,0094 m^2 \end{array} $
			Total Luas
			A = 0,0094 x 2 =
			$0.0188 m^2$
-			
/	Tangan Pengendara		Trapesium
	C	0 4,17	$A = \frac{1}{2} (a + b)t$
		976	$A = \frac{1}{2} (4,77 + 9,76) 9,58$
			$A = \frac{1}{2} \ (14,53) \ 9,58$
			$A = \frac{1}{2}$ 139,20
			$A = \frac{69,6\ cm^2}{10.000}$

			$A = \frac{478,35 \ cm^2}{10.000}$ $A = 0,0478 \ m^2$ Total Luas $A = 0,00085 + 0,0078 + 0,0018 + 0,098 + 0,028 + 0,0478 = 0,184 \ m^2$
9	Kaki Pengendara	AOG AOG AOG AOG AOG AOG AOG AOG AOG AOG	Segitiga A $A = \frac{a.t}{2}$ $A = \frac{10,88.8,94}{2}$ $A = 48,63 \ cm^{2}$ $A = 48,63 \ cm^{2}$ $A = \frac{48,63 \ cm^{2}}{10.000}$ $A = 0,0048 \ x 2$ $= 0,0096 \ m^{2}$ Segitiga B $A = \frac{a.t}{2}$ $A = \frac{28,04.4,06}{2}$ $A = 56,92 \ cm^{2}$ $A = \frac{56,92 \ cm^{2}}{10.000}$ $A = 0,0056 \ x 2$ $= 0,0112 \ m^{2}$
			Total Luas A = 0,0096 + 0,0112 = $0,0208 m^2$

	Perhitungan Bidang Frontal pada Cadik					
No	<mark>Ba</mark> gian	Gambar	S Perhitungan			
1	Cadik Kendaraan		$A = \pi r^{2}$ $A = \frac{22}{7} 7^{2}$ $A = \frac{22}{7} 49$ $A = 22.7^{2}$ $A = \frac{154 \ cm^{2}}{10.000}$ $A = 0,0154 \ x 4$ $= 0,0616 \ m^{2}$			

LAMPIRAN 4

HASIL JUDGES AHLI ISI

UNDIKSHA

Lampiran 4 Hasil Judges Ahli Isi pada Instrumen Desain Modifikasi Ganesha *Surface Water*.

UJI VALIDITAS INSTRUMEN AHLI DESAIN RANCANGAN DESAIN MODIFIKASI PADA KENDARAAN GANESHA ELECTRIC WATER CYCLE

Sehubungan dengan angket validitas ahli desain yang akan diujikan sebelum melakukan modifikasi untuk dapat mengoptimalkan aliran fluida pada desain ganesha *electric water cycle*, dimohonkan kepada bapak/ibu ahli dapat melakukan validasi terhadap instrumen ahli desain ini (sebagai judges) dengan mengisi angket ini sesuai dengan petunjuk pengisian.

Petunjuk Pengisian

- Berilah tanda centang (√) pada kolom untuk peryataan yang paling sesuai dengan pilihan Anda.
- 2. Keterangan
 - S = Setuju
 - TS = Tidak Setuju

Kisi-Kisi Angket Uji Ahli Desain

No Komponen		Komponen Indikator	
		Nilai estetika	1
1	Karakteristik Desain Bodi Kendaraan	Bentuk Kendaraan Aerodinamis	2,3,4,5
	Ketepatan Modifikasi	Ketepatan penyesuaian bentuk kendaraan	6,7,8,9
2		Perubahan tata letak bagian frontal kendaraan	10

Angket Validasi Instrumen

No	Komponen Penilaian	Indikator Penilaian	
110		S	TS
Kel	ayakan Instrumen Ahli Desain		
Kar	akteristik Desain Bodi Kendaraan	and the second	
1	Rancangan desain hasil modifikasi pada kendaraan ganesha <i>electric water cycle</i> memiliki bentuk estetika yang menarik	~	
2	Rancangan desain hasil modifikasi kendaraan memiliki bentuk yang streamline schingga fluida dapat mengalir mengikuti bentuk kendaraan	~	

3	Rancangan desain hasil				
	modifikasi kendaraan ganesha			1	
	bentuk yang landai sehingga			\checkmark	
	distribusi aliran fluida lehih				
	merata.				
4	Rancangan desain hasil				
	modifikasi kendaraan ganesha				
	electric water cycle memiliki			\checkmark	
	bidang frontal yang minimum				
	seningga pressure yang terjadi				
5	Bentuk rancangan desain hasil				
	modifikasi ganesha electric water	/			
	cycle sudah proporsional dari	~			
	segi kebutuhan.				
Kete	Papagan desain modifikasi		1		•
0	kendaraan ganesha electric water				
	cvcle sudah sesuai dalam	V			
	mengurangi gaya hambat pada				æ
	bidang frontal kendaraan				
7	Rancangan desain hasil modifikasi pada kandaraan				
	ganesha electric water cycle	/			
	memiliki komposisi yang stabil	\checkmark			
	untuk menjaga keseimbangan				
-	kendaraan				
8	Modifikasi yang penambahan komponen dilakukan sudah				
	sesuai untuk memperkecil gava	\checkmark			
	drag yang timbul akibat	*	1		
	tumbukan fluida				
9	Rancangan desain hasil				
	electric water cycle memiliki	./			
	bentuk yang menyesuaikan	V			
	dengan desain standar kendaraan				
10	Perubahan tata letak keranjang				
	pada bagian frontal kendaraan	V	1		
	meminimalisir gava hambat				
	memininansii gaya nambat		1		

Kesimpulan

Instrumen ahli desain ini dinyatakan*:

1. Layak digunakan tanpa revisi

2. Layak digunakan dengan revisi sesuai saran

3. Tidak layak digunakan

*(Mohon beri tanda lingkaran pada nomor sesuai dengan kesimpulan

Bapak/Ibu)

Masukan dan Saran

bisa dimulat dalam satu - Poin 1 day 2 cobenarry ponyataa Kendaraan - Penagunaan Kindavaan apa dipurplay young dimakend Setup permyataan, apalocia karanya momeriukan kataranga tambahan (gambar, dll) scharkinga ditambahkan schungga maksud pornyataan dapat ditanghap dengan baik.

Singaraja, 11 Januari 2000 Ahli 2,

Gede April 10. S.Pd., M.Pd. NIR- : 192092980170201276

UJI VALIDITAS INSTRUMEN AHLI DESAIN RANCANGAN DESAIN MODIFIKASI PADA KENDARAAN GANESHA ELECTRIC WATER CYCLE

Sehubungan dengan angket validitas ahli desain yang akan diujikan sebelum melakukan modifikasi untuk dapat mengoptimalkan aliran fluida pada desain ganesha *electric water cycle*, dimohonkan kepada bapak/ibu ahli dapat melakukan validasi terhadap instrumen ahli desain ini (sebagai judges) dengan mengisi angket ini sesuai dengan petunjuk pengisian.

Petunjuk Pengisian

- Berilah tanda centang (√) pada kolom untuk peryataan yang paling sesuai dengan pilihan Anda.
- 2. Keterangan
 - S = Setuju
 - TS = Tidak Setuju

Kisi-Kisi Angket Uji Ahli Desain

No	Komponen	Indikator	No Soal
		Nilai estetika	1
1	Karakteristik Desain Bodi Kendaraan	Bentuk Kendaraan Aerodinamis	2,3,4,5
	Ketepatan Modifikasi	Ketepatan penyesuaian bentuk kendaraan	6,7,8,9
2		Perubahan tata letak bagian frontal kendaraan	10

Angket Validasi Instrumen

No	Komponen Penilaian	Indikator Penilaian		
		S	TS	
Kela	ayakan Instrumen Ahli Desain			
Kar	akteristik Desain Bodi Kendaraan			
1	Rancangan desain hasil modifikasi pada kendaraan ganesha <i>electric water cycle</i> memiliki bentuk estetika yang menarik			
2	Rancangan desain hasil modifikasi kendaraan memiliki bentuk yang streamline sehingga fluida dapat mengalir mengikuti bentuk kendaraan	~		

1	Rangandan damin best		-	
	wancangan desam hasil modifikasi kendaraan ganesha electric water cycle memiliki bentuk yang landai sehingga distribusi aliran fluida lebih merata.	\checkmark	,	
4	Rancangan desain hasil modifikasi kendaraan ganesha electric water cycle memiliki bidang frontal yang minimum schingga pressure yang terjadi lebih rendah	V		
5	Bentuk rancangan desain hasil modifikasi ganesha <i>electric water</i> ere <i>le</i> sudah proporsional dari segi kebutuhan.	\checkmark	-	
Ket	epatan Modifikasi			
0	Rancangan desain modifikasi kendaraan ganesha <i>electric water</i> cycle sudah sesuai dalam mengurangi gaya hambat pada bidang frontal kendaraan	\checkmark		
7	Rancangan desain hasil modifikasi pada kendaraan ganesha electric water cycle memiliki komposisi yang stabil untuk menjaga keseimbangan kendaraan	V		
8	Modifikasi yang penambahan komponen dilakukan sudah sesuai untuk memperkecil gaya drag yang timbul akibat tumbukan fluida	\checkmark		
9	Rancangan desain hasil modifikasi kendaraan ganesha electric water cycle memiliki bentuk yang menyesuaikan dengan desain standar kendaraan	\checkmark		
10	Perubahan tata letak keranjang pada bagian frontal kendaraan sudah sesuai dalam usaha meminimalisir gaya hambat	\checkmark		

Kesimpulan

Instrumen ahli desain ini dinyatakan*:

1. Layak digunakan tanpa revisi

2. Layak digunakan dengan revisi sesuai saran

3. Tidak layak digunakan

*(Mohon beri tanda lingkaran pada nomor sesuai dengan kesimpulan

Bapak/lbu)

Masukan dan Saran

1) Pananjan Desin body hase mostilion pasa hendariaan Ganeslea Electric Water Cycle (plini in Selerzai awalan Ingownen auglet

Singaraja, 12 Jahuari 2021 Ahli 1,

| Gede NIP. 19881028 201903 1 009

LAMPIRAN 5

HASIL JUDGES AHLI DESAIN

NDIKSHA

Lampiran 5 Hasil Judges Ahli Desain Modifikasi Ganesha Surface Water

DESAIN STANDAR

KENDARAAN GANESHA SURFACE WATER

Gambar Asumsi Jenis fluida

Asumsi Jenis Aliran Fluida pada Simulasi Analisis menggunakan fluida udara dengan masa jenis 1,201027 Kg/m³ dan fluida air laut dengan masa jenis 1027

Kg/m³ pada kecepatan fluida 20 Km/jam atau 5,55 m/s

Gambar Desain Standar Kendaraan dan Cadik Tampak Depan

Gambar Desain Standar Surface Plot Kendaraan

Simulasi Analisis dengan Menggunakan Software Solidworks 2018

Gambar Desain Standar *Surface Plot* Cadik Simulasi Analisis dengan Menggunakan *Software* Solidworks 2018

DESAIN MODIFIKASI

KENDARAAN GANESHA SURFACE WATER

Gambar Desain Modifikasi Kendaraan Tampak Isometric Simulasi Analisis dengan Menggunakan *Software* Solidworks 2018

Gambar Desain Modifikasi *Surface Plot* Kendaraan Simulasi Analisis dengan Menggunakan *Software* Solidworks 2018

Grafik Komparasi Coeficient Of Drag

Desain Cadik Standar dan Desain Cadik Modifikasi

ANGKET VALIDITAS AHLI DESAIN RANCANGAN DESAIN MODIFIKASI PADA KENDARAAN GANESHA *SURFACE WATER*

Sehubungan dengan proses perancangan desain modifikasi yang akan dilakukan pada kendaraan ganesha *surface water* untuk dapat mengoptimalisasikan aliran fluida, dimohonkan kepada bapak/ibu ahli dapat melakukan validasi terhadap instrumen ahli desain ini (sebagai judges) dengan mengisi angket ini sesuai dengan petunjuk pengisian.

Petunjuk Pengisian

- Berilah tanda centang (√) pada kolom untuk peryataan yang paling sesuai dengan pilihan Anda.
- 2. Berikan nilai
 - 5 = Sangat Sesuai
 - 4 = Sesuai
 - 3 = Kurang Sesuai
 - 2 = Tidak Sesuai
 - 1 = Sangat Tidak Sesuai

No	Komponen Penilaian	Indikator Penilaian					
		SS	S	KS	TS	STS	
Kela	yakan Instrumen Ahli Desain					010	
Kar	akteristik Desain Bodi Kendar	raan					
1	Rancangan desain hasil modifikasi pada kendaraan ganesha <i>surface water</i> memiliki bentuk estetika yang menarik	\checkmark	ĺ				
2	Rancangan desain hasil modifikasi kendaraan memiliki bentuk yang streamline sehingga fluida dapat mengalir mengikuti bentuk kendaraan		1	,			
3	Rancangan desain hasil modifikasi kendaraan ganesha surface water memiliki bentuk yang landai sehingga distribusi aliran fluida lebih merata.		V				

4	Rancangan desain hasil modifikasi kendaraan ganesha <i>surface water</i> memiliki bidang frontal yang minimum sehingga <i>pressure</i> yang terjadi lebih rendah		\checkmark		
5	Bentuk rancangan desain hasil modifikasi ganesha surface water sudah proporsional dari segi kebutuhan.		\checkmark		
Ket	epatan Modifikasi				
6	Rancangan desain modifikasi kendaraan ganesha <i>surface water</i> sudah sesuai dalam mengurangi gaya hambat pada bidang frontal kendaraan		\checkmark		
7	Rancangan desain hasil modifikasi pada kendaraan ganesha surface water memiliki komposisi yang stabil untuk menjaga keseimbangan kendaraan	J			
8	Modifikasi yang penambahan komponen dilakukan sudah sesuai untuk memperkecil gaya drag yang timbul akibat tumbukan fluida	\checkmark			
9	Rancangan desain hasil modifikasi kendaraan ganesha <i>surface water</i> memiliki bentuk yang menyesuaikan dengan desain standar kendaraan		\checkmark		
10	Perubahan tata letak keranjang pada bagian frontal kendaraan sudah sesuai dalam usaha meminimalisir gaya hambat (drag)	\checkmark			

Kesimpulan

Desain modifikasi ganesha surface waterini dinyatakan*:

1. Layak digunakan tanpa revisi

- 2. Layak digunakan dengan revisi sesuai saran
- 3. Tidak layak digunakan

*(Mohon beri tanda lingkaran pada nomor sesuai dengan kesimpulan

Bapak/Ibu)

Masukan dan Saran

 ••••
 ••••

Singaraja, Selasce 25 - 01 - 2021 Ahli 1,

Dr. I Nyoman Pasek Nugraha., S.T., M.T. NIP. 19770721 2006041 1 001

DESAIN STANDAR

KENDARAAN GANESHA SURFACE WATER

Gambar Desain Standar Kendaraan dan Cadik Tampak Depan

Gambar Desain Standar Surface Plot Kendaraan

Simulasi Analisis dengan Menggunakan Software Solidworks 2018

Gambar Desain Standar *Surface Plot* Cadik Simulasi Analisis dengan Menggunakan *Software* Solidworks 2018

DESAIN MODIFIKASI

KENDARAAN GANESHA SURFACE WATER

Gambar Desain Modifikasi Kendaraan Tampak Isometric Simulasi Analisis dengan Menggunakan *Software* Solidworks 2018

Gambar Desain Modifikasi *Surface Plot* Kendaraan Simulasi Analisis dengan Menggunakan *Software* Solidworks 2018

Grafik Komparasi Coeficient Of Drag

Desain Cadik Standar dan Desain Cadik Modifikasi

ANGKET VALIDITAS AHLI DESAIN RANCANGAN DESAIN MODIFIKASI PADA KENDARAAN GANESHA *SURFACE WATER*

Sehubungan dengan proses perancangan desain modifikasi yang akan dilakukan pada kendaraan ganesha *surface water* untuk dapat mengoptimalisasikan aliran fluida, dimohonkan kepada bapak/ibu ahli dapat melakukan validasi terhadap instrumen ahli desain ini (sebagai judges) dengan mengisi angket ini sesuai dengan petunjuk pengisian.

Petunjuk Pengisian

- Berilah tanda centang (√) pada kolom untuk peryataan yang paling sesuai dengan pilihan Anda.
- 2. Berikan nilai
 - 5 = Sangat Sesuai
 - 4 = Sesuai
 - 3 = Kurang Sesuai
 - 2 = Tidak Sesuai
 - 1 = Sangat Tidak Sesuai

No	Komponen Penilaian	Indikator Penilaian					
		SS	S	KS	TS	STS	
Kel	ayakan Instrumen Ahli Desain						
Kar	akteristik Desain Bodi Kendar	aan					
1	Rancangan desain hasil modifikasi pada kendaraan ganesha <i>surface water</i> memiliki bentuk estetika yang menarik		\checkmark				
2	Rancangan desain hasil modifikasi kendaraan memiliki bentuk yang streamline sehingga fluida dapat mengalir mengikuti bentuk kendaraan		~				
3	Rancangan desain hasil modifikasi kendaraan ganesha <i>surface water</i> memiliki bentuk yang landai sehingga distribusi aliran fluida lebih merata.		~				

4	Rancangan desain hasil modifikasi kendaraan ganesha <i>surface water</i> memiliki bidang frontal yang minimum sehingga <i>pressure</i> yang terjadi lebih rendah	~			
5	Bentuk rancangan desain hasil modifikasi ganesha surface water sudah proporsional dari segi kebutuhan.		\checkmark		
Ket	epatan Modifikasi			II	 L
6	Rancangan desain modifikasi kendaraan ganesha <i>surface water</i> sudah sesuai dalam mengurangi gaya hambat pada bidang frontal kendaraan		~		
7	Rancangan desain hasil modifikasi pada kendaraan ganesha <i>surface water</i> memiliki komposisi yang stabil untuk menjaga keseimbangan kendaraan	+	\checkmark		
8	Modifikasi yang penambahan komponen dilakukan sudah sesuai untuk memperkecil gaya drag yang timbul akibat tumbukan fluida		v		
9	Rancangan desain hasil modifikasi kendaraan ganesha surface water memiliki bentuk yang menyesuaikan dengan desain standar kendaraan		~	-	
10	Perubahan tata letak keranjang pada bagian frontal kendaraan sudah sesuai dalam usaha meminimalisir gaya hambat (drag)	~			

Kesimpulan

Desain modifikasi ganesha surface waterini dinyatakan*;

(1) Layak digunakan tanpa revisi

- 2. Layak digunakan dengan revisi sesuai saran
- 3. Tidak layak digunakan

*(Mohon beri tanda lingkaran pada nomor sesuai dengan kesimpulan Bapak/Ibu)

Masukan dan Saran

Singaraja, tan't 20 januar 2021 Ahli 2,

(Ketut Gunawan, S.T., M.T. NIP. 197) 1225 2016 041 002

LAMPIRAN 6

SERIAL NUMBER SOLIDWORKS

ONDIKSHA

Lampiran 6 Serial Number Solidwoks 2018

LAMPIRAN 7

DOKUMENTASI PENGUKURAN

UNDIKSHA

Lampiran 7 Dokumentasi Observasi Kendaraan Ganesha Surface Water

Gambar Pengukuran Berat Kendaraan Ganesha Surface Water

Gambar Pengukuran Berat Kendaraan Ganesha Surface Water

Gambar Pengukuran Geometry Kendaraan Ganesha Surface Water

Gambar Pengukuran Geometry Kendaraan Ganesha Surface Water

BIOGRAFI PENULIS

Dewa Gede Oka Sastrawan, lahir di Denpasar, 20 September 1998, yang dimana penulis lahir dari pasangan suami istri atas nama I Dewa Gede Subagia dan Ni Made Sukarini. Peneliti berkebangsaan Indonesia dan beragama Hindu. Penulis tinggal di Jalan Laksamana, Gang Sri Rama BTN Sri Rama Blok A No 1. Penulis berasal dari Banjar Kembang Merta, Desa

Candikuning, Kecamatan Baturiti, Kabupaten Tabanan, Provinsi Bali. Penulis mengenyam pendidikan Sekolah Dasar di SD Negeri 5 Tegallalang dari tahun 2005-2011, dan berlanjut ke Sekolah Menengah Pertama di SMP Negeri 3 Tegallalang pada tahun 2011-2014 dan pada jenjang selanjutnya penulis menempuh pendidikan di Sekolah Menengah Kejuruan di SMK Negeri 1 Tegallalang Jurusan Teknik Kendaraan Ringan (TKR) pada tahun 2014-2017, dan saat ini melanjutkan pendidikan di perguruan tinggi negeri, Universitas Pendidikan Ganesha pada tahun 2017 memilih Program Studi S1 Pendidikan Teknik Mesin, Jurusan Teknologi Industri, Fakultas Teknik dan Kejuruan.