LAMPIRAN 1

INSTRUMEN PENELITIAN

Lampiran 1.1 Kisi-Kisi Ketrampilan Berpikir Kritis yang Diujicobakan

Lampiran 1.2 Tes Ketrampilan Berpikir Kritis yang Diujicobakan

Lampiran 1.3 Kunci Jawaban Ketrampilan Berpikir Kritis yang

Diujicobakan

Lampiran 1.4 Kisi-Kisi Ketrampilan Berpikir Kritis

Lampiran 1.5 Ketrampilan Berpikir Kritis

Lampiran 1.6 Kunci Jawaban Tes Ketrampilan Berpikir Kritis

Lampiran 1.1 Kisi-Kisi Ketrampilan Berpiki Kritis yang Diujicobakan

KISI-KISI TES KETERAMPILAN BERPIKIR KRITIS

Satuan Pendidikan : SMA Negeri 1 Tabanan

Mata Pelajaran : Fisika

Kelas/Semester : XI/2

Pokok Bahasan : Gelombang Bunyi dan Gelombang Cahaya

Alokasi Waktu : 90 menit Jumlah Soal : 20 Butir

KI 3	Mema	hami, menerapkan, menganalisis pengetahuan faktual,			
	konse	ptual, procedural berdasarkan rasa ingintahunya tentang ilmu			
	pengetahuan, teknolog, seni, budaya, dan humaniora dengan wawasan				
	kema	nus <mark>ia</mark> an, kebangsaan, kenegaraan, dan peradaba <mark>nt</mark> erkait penyebab			
	fenon	ena dan kejadian, serta menerapkan pengetahuan prosedural			
	3.10	Menerapkan konsep dan prinsip gelombang bunyi dan cahaya			
		dalam teknologi			
KD	Melakukan percobaan tentang gelombang bunyi dan/atau cahaya,				
		berikut presentasi hasil percobaan dan makna fisisnya misalnya			
	1	sonometer, dan kisi difraksi			

Kisi-kisi Keterampilan Berpikir Kritis

No	Sub Materi Indikator		Dimensi Keterampilan Berpikir Kritis				Jumlah Soal		
			D1	D2	D3	D4	D 5	D6	
1	Gelombang Bunyi	Menganalisis karakteristik gelombang	1	2					2
		Menganalisis cepat rambat gelombang			3	14		5	3
		Menganalisis Azas Doppler		11			12		2

		Menganalisis	7	10	13				3
		fenomena dawai							
		dan pipa organa							
		Menganalis			9			4	2
		intensitas dan							
		taraf intensitas							
2	Gelombang	Menganalisis	8		15	6			3
	Cahaya	spektrum							
	-	cahaya							
		Menelaah					17		1
		proses							
		difraksi							
		Menelaah proses				20	18		2
		interferensi							
		Menggambarkan		The same of the sa	late.		19	16	2
		proses polarisasi			77/10				
	Jumla	h Butir	3	3	4	3	4	3	20 butir

Keterangan:

D1 : Merumuskan masalah

D2 : Memberikan argument

D3 : Melakukan deduksi

D4 : Melakukan induksi

D5 : Melakukan evaluasi

D6 : Melakukan dan melaksanakan

Lampiran 1.2 Tes Keterampilan Berpikir Kritis yang Diujicobakan

TES KETERAMPILAN BERPIKIR KRITIS

Mata Pelajaran : Fisika

Kelas/Semester : XI/2 (Genap)

Materi Pokok : Gelombang Bunyi dan Gelombang Cahaya

Waktu : 120 menit

Petunjuk Pengerjaan Soal

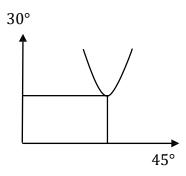
1. Isilah lembar jawaban yang telah disediakan dengan jawaban tepat dan benar.

- 2. Tulislah identitas peserta dan kode soal secara lengkap dan jelas pada lembar jawaban bagian pojok kanan atas.
- 3. Perhatikan seluruh soal dengan cermat, jika terdapat soal yang kurang jelas tanyakan pada pengawas ruangan.
- 4. Kerjakan soal yang lebih mudah terlebih dahulu.
- 5. Seluruh peserta tidak diperkenankan untuk merobek atau mecoret lembar soal yang diberikan.
- 6. Kerjakan soal secara mandiri.
- 7. Waktu pengerjaan soal 2×60 Menit

Kerjakan soal berikut dengan tepat dan benar!

- Ketika dalam suatu keadaan kalian berada pada ruangan tertutup kemudian mengeluarkan suara, maka kalian akan mendengarkan gema atau gaung. Akan tetapi proses terjadinya peristiwa gema ataupun gaung mengakibatkan suara asal yang dibuat tidak terdengar terlalu jelas. Berdasarkan hal tersebut, rumuskan permasalahan yang dapat dicarikan solusinya.
- 2. Fenomena yang terjadi dialam semesta ini sangatlah banyak, diantaranya fenomena yang terjadi di ruang angkasa seperti tabrakan antara

meteor dengan ledakan yang sangat besar. Namun dalam peristiwa ini terjadi apabila seorang pengamat berada di ruang angkasa mereka yang melihat peristiwa ter sebut tidak mendengar suara ledakan dari tabrakan meteor yang dilihat. Mengapa hal tersebut bisa terjadi?


3. Perhatikan hasil percobaan cepat rambat gelombang bunyi di udara pada bagian suhu beikut!

Suhu Udara	Lanju Bunyi
0° C	331 m/s
15 ° C	330 m/s
20° C	343 m/s
30° C	349 m/s

Berdasarkan hasil observasi yang telah anda lakukan, apakah tabel tersebut dapat digunakan untuk menarik kesimpulan bahwa cepat rambat gelombang bunyi akan meningkat pada suhu tinggi? Berikan kesimpulan sesuai hasil observasi anda!

- 4. Pada hari Rabu, Ibu menuju ke Pasar dengan mengendarai sebuah mobil. Ketika diperjalanan Ibu berpapasan dengan temannya Bu Riski dan mereka berdua saling menyapa dengan membunyikan klakson mobil. Bagaimanakah suara klakson yang di dengar oleh Ibu dan Bu Riski, apakah tidak terdengar atau terdengar lebih jelas ? Mengapa bisa demikian ?
- 5. Pada saat perayaan tahun baru Albert dan Rama menyalakan kembang api di lapangan desa yang terletak 1 km dari rumah Bayu, peristiwa meledaknya kembang api di udara dibarengi dengan suara ledakan yang cukup keras. Saat peristiwa tersebut, manakah yang terjadi terlebih dahulu, antara munculnya bunyi ledakan atau sinar dari kembang api apabila diamati dari rumah Rama? mengapa bisa demikian?

6. Perhatikan gambar dibawah ini!

Grafik diatas merupakan grafik pembiasan pada prisma yang menyatakan sudut deviasi (*D*) terhadap sudut datang (*i*). Berapakah besar sudut pembiasan prisma berdasarkan grafik diatas ?

- 7. "Salah satu contoh penerapan pipa oragana adalah flute. Ketika dimainkan bunyi yang dihasilkan dari alat musik flute tersebut berbeda setiap lubang yang ditiup." Rumuskan permasalahan yang mungkin terjadi berdasarkan pernyataan tersebut!
- 8. Pada siang hari seorang anak yang sedang bermain air dihalaman rumahnya dan tidak sengaja ia menyemprotkan air tersebut keudara. Setelah melakukan hal tersebut terlihatlah sebuah sinar warna-warni dari semprotan air yang disinari cahaya matahari." Rumuskan permasalahan yang mungkin terjadi berdasarkan pernyataan tersebut!
- 9. Pehatikan Tabel dibawah ini!

Sumb <mark>er Bunyi</mark>	Taraf Intensitas
Suara srigala mengaung	40 dB
Suara sirine polisi	60 dB
Suara petir	120 dB

Sebuah mesin truk menghasilkan taraf intensitas bunyi sebesar $TI = 20 \ dB(I_0 = 10^{-12} \ watt.m^2)$. Agar menghasilkan taraf intensitas yang sama (setara) dengan suara sirine polisi maka jumlah mesin truk diperlukan sebanyak ?

- 10. Seberkas cahaya monokromatis dijatuhkan pada dua celah sempit vertikal berdekatan dengan jarak d 0,01 mm. Pola interferensi yang terjadi ditangkap pada jarak 20 cm dari celah. Diketahui pada jarak antara garis gelap pertama disebelah kiri ke garis gelap pertama disebelah kanan adalah 7,2 mm. Hitunglah panjang gelombang bekas cahaya!
- 11. Arya sangat hobi bermain gitar. Pada saat dimainkan, senar gitar tersebut menimbulkan nada yang berbeda-beda. Apakah yang mempengaruhi perbedaan nada pada saat dipetik tersebut ? Jelaskan!
- 12. Bayu dan Ita sedang berada di dalam rumah, kemudian mereka berdua mendengar suara sirine ambulans. Bayu menghampiri sumber bunyi tersebut dan berlari kehalaman rumahnya meninggalkan Ita. Saat mobil ambulans melewati rumah mereka, maka Bayu mendengar lebih keras suara sirine ambulans tersebut dibandingkan dengan Ita. Apakah yang menyebabkan hal tersebut bisa terjadi?
- 13. Sebuah ambulan dengan sirine menyala yang berfrekuensi 840 Hz bergerak dengan kecepatan 72 km/jam mendekati seseorang yang sedang berdiri dipinggir jalan. Jika kecepatan suara di udara sebesar 240 m/s, hitunglah frekuensi bunyi sirine yang didengar oleh orang tersebut!

14. Perhatikan Tabel di bawah ini!

Nama Z <mark>a</mark> t	Massa Jenis	Cepat Rambat
Kuningan	8.400	0,0109
Besi	7.900	0.0112
Aluminium	2.700	0,02
Kayu	300	0,05

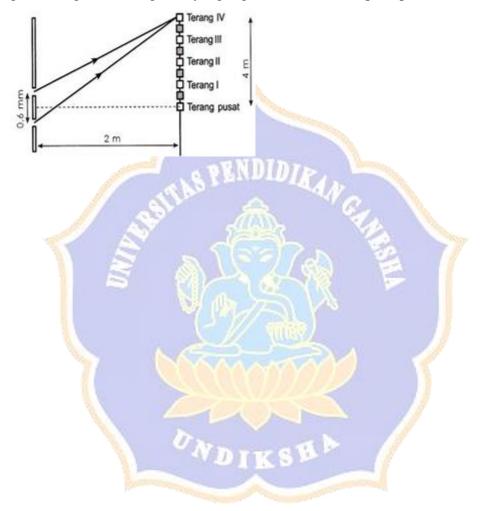
Tabel percobaan diatas terjadi pada Modulus Young (E). Dari percobaan tersebut apakah dapat dibuktikan bahwa cepat rambat gelombang bunyi pada zat padat dipengaruhi oleh massa jenis suatu benda padat dengan cepat rambat bunyinya?

- 15. Seberkas cahaya lewat celah sempit dan menghasilkan interferensi minimum orde kedua dengan sudut deviasi 90°. Apabila lebar celah 2,4 x 10⁻⁴ cm, maka hitunglah panjang gelombang cahaya tersebut!
- 16. Semara sedang melakukan sebuah pratikum materi gelombang bunyi dengan menggunakan senar dan diperoleh hasil percobaan sebagai berikut:

No	l(m)	M(g)
1	1	2,5
2	1	3
3	1	0,15

Berdasarkan data pada tabel tersebut, senar manakah yang menghasilkan frekuensi paling tinggi jika dipasangkan pada gitar jika diberi tegangan sebesar 25N?

- 17. Perhatikan gambar dibawah ini!
 - a) Sinar dari Matahari


b) Sinar dari Lampu

Berikan penjelasan anda apakah sinar matahari dan sinar lampu diatas merupakan cahaya polikromatik!

18. Polarisasi adalah peristiwa perubahan arah getar gelombang cahaya yang acak menjadi satu arah getar. Gelombang yang dapat mengalami polarisasi hanyalah gelombang transversal yang mempunyai arah getaran tegak lurus dengan arah perambatannya. Jelaskan menurut anda apakah polarisasi dapat terjadi pada gelombang cahaya?

- 19. Seberkas sinar di dalam air masuk ke dalam gelas sehingga terjadilah sinar yang terpolarisasi. Apabila indeks bias gelas 1,5 dan indeks bias air adalah 1,33, maka hitung sudut datang sinar tersebut!
- 20. Mirah melakukan percobaan interferensi celah ganda dan memperoleh data sebagai berikut. Berdasarkan hasil percobaan diatas, berapakah panjang gelombang elektromagnetik yang digunakan oleh Putri pada percobaan?

Lampiran 1.3 Kunci Jawaban Tes Kemampuan Berpikir Kritis yang Diujicobakan

KUNCI JAWABAN TES KETERAMPILAN BERPIKIR KRITIS

No	Soal	Jawaban
1	Merumuskan Masalah (Sifat-sifat	(Indikator 1 & 2)
	Gelombang Bunyi) Ketika dalam suatu keadaan kalian berada pada ruangan tertutup kemudian mengeluarkan suara, maka kalian akan mendengarkan gema atau gaung. Akan tetapi proses terjadinya peristiwa gema ataupun gaung mengakibatkan suara asal yang dibuat tidak terdengar terlalu jelas.	Mengapa pada saat berada diruangan tertutup bisa terjadinya peristiwa gema atau gaung ?
	Berdasarkan hal tersebut, rumuskan permasalahan yang dapat dicarikan solusinya.	CH
2	Memberikan Argumen (Sifat-sifat Gelombang Bunyi) Fenomena yang terjadi dialam semesta ini sangatlah banyak, diantaranya fenomena yang terjadi di ruang angkasa seperti tabrakan antara meteor dengan ledakan yang sangat besar. Namun dalam peristiwa ini terjadi apabila seorang pengamat berada di ruang angkasa mereka yang melihat peristiwa ter sebut tidak mendengar suara ledakan dari tabrakan meteor yang dilihat. Mengapa hal tersebut bisa terjadi?	(Indikator 1) Peristiwa tersebut terjadi dikarenakan tanpa adanya medium perantara (ruang hampa) maka gelombang bunyi tidak dapat merambat. (Indikator 2) Karena tidak ada medium yang merambat maka, ledakan yang terjadi diluar angkasa tidak terdengar oleh pengamat. Hal ini berbeda apabila pengamat berada di bumi. Bumi memiliki medium perantara berupa udara sehingga bunyi ledakan tersebut bisa terdengar.
3	Melakukan Deduksi (Menganalisis cepat rambat gelombang bunyi) Perhatikan hasil percobaan cepat rambat gelombang bunyi di udara pada bagian suhu beikut!	(Indikator 1) Suhu medium, semakin panas suhu medium yang dilalui maka

Suhu Udara	Lanju Bunyi
0° C	331 m/s
15 [°] €	330 m/s
20° C	343 m/s
30° C	349 m/s

Berdasarkan hasil observasi yang telah anda lakukan, apakah tabel tersebut dapat digunakan untuk menarik kesimpulan bahwa cepat rambat gelombang bunyi akan meningkat pada suhu tinggi? Berikan kesimpulan sesuai hasil observasi anda!

semakin cepat bunyi merambat. Hubungan ini dapat dirumuskan kedalam persamaan matematis

 $(v = v^0 + 0.6.t)$ dimana v^0 adalah cepat rambat pada suhu nol derajat dan t adalah suhu medium.

(Indikator 2)

Berdasarkan hasil observasi telah yang dilakukan, tabel dapat digunakan untuk menarik kesimpulan bahwa cepat rambat gelombang bunvi udara akan semakin mengingat pada suhu tinggi. Hasil percobaan pada tabel tersebut sudah sesuai dengan konsep cepat rambat gelombang bunyi.

4 Mem<mark>u</mark>tuskan dan Melak<mark>sanaka</mark>n (Intensitas dan Tar<mark>af Inte</mark>nsitas Bunyi)

Pada hari Rabu, Ibu menuju ke Pasar dengan mengendarai sebuah mobil. Ketika diperjalanan Ibu berpapasan dengan temannya Bu Riski dan mereka berdua saling menyapa dengan membunyikan klakson mobil. Bagaimanakah suara klakson yang di dengar oleh Ibu dan Bu Riski, apakah tidak terdengar atau terdengar lebih jelas ? Mengapa bisa demikian?

(Indikator 1)

Suara klakson terdengar lebih keras.

(Indikator 2)

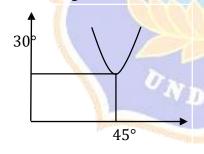
Yang menyebabkan suara klakson terdengar lebih keras dikarenakan saat sumber dan pendengar itu bergerak berdekatan atau berada pada jarak yang paling dekat maka, gelombang yang sampai pada pendengar semakin rapat sehingga frekuensi yang dihasilkan semakin besar.

5 Memutuskan dan Melaksanakan (Cepat rambat gelombang bunyi)

(Indik ator 1)

Pada saat perayaan tahun baru Albert dan Rama menyalakan kembang api di lapangan desa yang terletak 1 km dari rumah Bayu, peristiwa meledaknya kembang api di udara dibarengi dengan suara ledakan yang cukup keras. Saat peristiwa tersebut, manakah yang terjadi terlebih dahulu, antara munculnya bunyi ledakan atau sinar dari kembang api apabila diamati dari rumah Rama? mengapa bisa demikian?

Sinar kembang api terlihat terlebih dahulu


(Indik ator

2)

Hal ini dapat dijelaskan bahwa sinar kembang api merupakan gelombang cahaya dengan cepat rambat gelombangnya 3×10^8 m/s, sedangkan bunyi ledakan kembang api merupakan sendiri gelombang bunyi dengan cepat rambat gelombangnya 340 m/s. Sehingga dapat dinyatakan bahwa sinar dari kembang api lebih dlu muncul dari pada ledakan itu sendiri.

6 Memberikan Induksi (Pemantulan dan Pembiasan)

Perhatikan gambar dibawah ini!

Grafik diatas merupakan grafik pembiasan pada prisma yang menyatakan sudut deviasi (*D*) terhadap sudut datang (*i*). Berapakah besar sudut pembiasan prisma berdasarkan grafik diatas ?

(Indikator 1 & 2)

Diketahui:

$$D = 30^{\circ}$$

$$i = 45^{\circ}$$

Ditanya:

Sudut pembias prisma (β) ?

Penyelesaian:

$$D = 2i - \beta$$

$$30 = 2(45) - \beta$$

$$30 - 90 = -\beta$$

$$-60 = -\beta$$

$$60 = \beta$$

Maka diperoleh sudut pembias prisma adalah 60^{0}

7 Merumuskan Masalah (Fenomena gelombang bunyi pada pipa organa)

"Salah satu contoh penerapan pipa oragana adalah flute. Ketika dimainkan bunyi yang dihasilkan dari alat musik flute tersebut berbeda setiap lubang yang ditiup." Rumuskan permasalahan yang mungkin terjadi berdasarkan pernyataan tersebut!

(**Indikator 1 & 2**)

Apakah yang menyebabkan alat musik seruling tersebut menghasilkan nada yang berbeda-beda?

8 Merumuskan Masalah (Dispersi)

Pada siang hari seorang anak yang sedang bermain air dihalaman rumahnya dan tidak sengaja ia menyemprotkan air tersebut keudara. Setelah melakukan hal tersebut terlihatlah sebuah sinar warna-warni dari semprotan air yang disinari cahaya matahari." Rumuskan permasalahan yang mungkin terjadi berdasarkan pernyataan tersebut!

(Indikator 1 &2)

Bagaimana proses terjadinya pelangi?

9 Memberikan Deduksi (Taraf Intensitas Bunyi)

Pehatikan Tabel dibawah ini!

Sumber Bunyi	Taraf Intensitas
Suara s <mark>ri</mark> gala mengaung	40 dB
Suara sirine polisi	60 dB
Suara petir	120 dB

Sebuah mesin truk menghasilkan taraf intensitas bunyi sebesar $TI = 20 \ dB (I_0 = 10^{-12} \ watt.m^2)$. Agar menghasilkan taraf intensitas yang sama (setara) dengan suara sirine polisi maka jumlah mesin truk diperlukan sebanyak ?

(Indikator 1)

Diketahui:

Taraf intensitas mesin Truk,

 $TI_1 = 30 dB$

Taraf intensitas n mesin

 $TI_2 = 60 \text{ dB}$

Ditanya : jumlah mesin Truk yang diperlukan ?

Penyelesaian:

Jumlah mesin mobil yang diperlukan :

 $TI_2 = TI_1 + 10 \log n$

 $60 dB = 20 dB + 10 \log n$

 $10 \log n = 40 dB$

 $\log n = 4$

n = 10.4 = 10000

(Indikator 2)

Jumlah mesin yang diperlukan agar taraf intensitasnya setara dengan suara sirine ambulans adalah 10000 mesin.

10 | Memberikan Argumen (Dawai dan Pipa Organa)

Arya sangat hobi bermain gitar. Pada saat dimainkan, senar gitar tersebut menimbulkan nada yang berbeda-beda. Apakah yang mempengaruhi perbedaan nada pada saat dipetik tersebut ? Jelaskan!

(**Indikator 1 & 2**)

Terjadinya perbedaan nada yang dipetik pada gitar tersebut dikarenakan dawai dengan ketebalan, tekanan dan panjang yang berbeda akan menghasilkan gelombang bunyi dengan energi, frekuensi dan panjang gelombang yang berbeda.

11 Memberikan Argumen (Menganalisis Azas Doppler)

Bayu dan Ita sedang berada di dalam rumah, kemudian mereka berdua mendengar suara sirine ambulans. Bayu menghampiri sumber bunyi tersebut dan berlari kehalaman rumahnya meninggalkan Ita. Saat mobil ambulans melewati rumah mereka, maka Bayu mendengar lebih keras suara sirine ambulans tersebut dibandingkan dengan Ita. Apakah yang menyebabkan hal tersebut bisa terjadi?

(Indikator 1 & 2)

Apabila sumber bunyi dan pendengar saling bergerak relatif, frekuensi vang didengar kedua belah pihak tidak sama. Hal ini dikarenakan mendekati sumber bunyi sedangkan Ita menjauhi sumber bunyi. Frekuensi meningkat apabila sumber bunyi tersebut bergerak mendekati pengamat, begitupula sebaliknya apabila sumber bunyi menjauhi pengamat maka frekuensi akan menurun.

12 Melakukan Evaluasi (Menganalisis Azas Doppler)

Sebuah ambulan dengan sirine menyala yang berfrekuensi 840 Hz bergerak dengan kecepatan 72 km/jam mendekati seseorang yang sedang berdiri dipinggir jalan. Jika kecepatan suara di udara sebesar 240 m/s, hitunglah frekuensi bunyi sirine yang

(Indikator 1)

Diketahui bahwa $v_s = 72$ km/jam = 20 m/s. Karena sumber suara mendekati pendengar, maka v_s (-). Kemudian pendengar dalam kondisi diam, maka

didengar oleh orang tersebut!

		\sim
17	_	
v p	_	U

Dengan demikian rumus untuk mencari menggunakan:

$$f_p = \left[\frac{v + v_p}{v - v_s}\right] f_s$$

(Indikator 2)

Penyelesaian:

$$f_p = \left[\frac{v + v_p}{v - v_s}\right] f_s$$

$$f_p = \frac{240 + 0}{240 - 20} \times 72$$

$$f_p = \frac{240}{220} \times 72$$

$$f_p = 78,5 \; Hz$$

13 Melakukan Deduksi (Fenomena Dawai dan Pipa Organa)

Semara sedang melakukan sebuah pratikum materi gelombang bunyi dengan menggunakan senar dan diperoleh hasil percobaan sebagai berikut:

No	l(m)	M(g)
1	1	2,5
2	1	3
3	1	0,15

Berdasarkan data pada tabel tersebut, senar manakah yang menghasilkan frekuensi paling tinggi jika dipasangkan pada gitar jika diberi tegangan sebesar 25N?

(Indikator 1)

Diketahui:

$$l_1 = l_2 = l_3 = 1 m$$

$$M_1 = 2.5 g$$

$$M_2 = 3 g$$

$$M_3 = 0.15 g$$

Ditanya:

Frekuensi tertinggi apabila F = 25 N

Penyelesaian:

$$f = \frac{1}{2t} \sqrt{\frac{f}{\varphi}}$$

Kita akan mencari nilai φ dari masing-masing senar terlebih dahulu sebelum mencari frekuensi.

$\varphi_2 = 3$ $\varphi_3 = 0.15$ Maka diperoleh hasil : $f_1 = \frac{1}{2} \sqrt{\frac{25}{2.5}}$ $f_1 = \frac{1}{2} \sqrt{10}$ $f_1 = 1.58 Hz$ $f_2 = \frac{1}{2} \sqrt{\frac{25}{3}}$ $f_2 = \frac{1}{2} \sqrt{8.3}$ $f_2 = 1.44 Hz$ $f_3 = \frac{1}{2} \sqrt{\frac{25}{0.15}}$ $f_3 = 6.45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6.45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi)			$\varphi = \frac{m}{l}$ $\varphi_1 = 2.5$
$\varphi_3 = 0.15$ Maka diperoleh hasil : $f_1 = \frac{1}{2} \sqrt{\frac{25}{2.5}}$ $f_1 = \frac{1}{2} \sqrt{10}$ $f_1 = 1.58 Hz$ $f_2 = \frac{1}{2} \sqrt{\frac{25}{3}}$ $f_2 = \frac{1}{2} \sqrt{\frac{25}{3}}$ $f_3 = \frac{1}{2} \sqrt{166.6}$ $f_3 = 6.45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6.45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi)			_
Maka diperoleh hasil : $f_1 = \frac{1}{2} \sqrt{\frac{25}{2.5}}$ $f_1 = \frac{1}{2} \sqrt{10}$ $f_1 = 1,58 Hz$ $f_2 = \frac{1}{2} \sqrt{\frac{25}{3}}$ $f_2 = \frac{1}{2} \sqrt{\frac{25}{3}}$ $f_2 = \frac{1}{2} \sqrt{\frac{25}{0.15}}$ $f_3 = \frac{1}{2} \sqrt{\frac{25}{0.15}}$ $f_3 = \frac{1}{2} \sqrt{\frac{166.6}{0}}$ $f_3 = 6,45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil nilai ϕ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi)			_
$f_1 = \frac{1}{2}\sqrt{10}$ $f_1 = 1,58 Hz$ $f_2 = \frac{1}{2}\sqrt{\frac{25}{3}}$ $f_2 = \frac{1}{2}\sqrt{8,3}$ $f_2 = 1,44 Hz$ $f_3 = \frac{1}{2}\sqrt{\frac{25}{0,15}}$ $f_3 = 6,45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan			J
$f_1 = 1,58 Hz$ $f_2 = \frac{1}{2} \sqrt{\frac{25}{3}}$ $f_2 = \frac{1}{2} \sqrt{8,3}$ $f_2 = 1,44 Hz$ $f_3 = \frac{1}{2} \sqrt{\frac{25}{0,15}}$ $f_3 = \frac{1}{2} \sqrt{166,6}$ $f_3 = 6,45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan			$f_1 = \frac{1}{2} \sqrt{\frac{25}{2,5}}$
$f_2 = \frac{1}{2} \sqrt{\frac{25}{3}}$ $f_2 = \frac{1}{2} \sqrt{8.3}$ $f_2 = 1.44 Hz$ $f_3 = \frac{1}{2} \sqrt{\frac{25}{0.15}}$ $f_3 = \frac{1}{2} \sqrt{166.6}$ $f_3 = 6.45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6.45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan			$f_1 = \frac{1}{2}\sqrt{10}$
$f_2 = \frac{1}{2} \sqrt{8.3}$ $f_2 = 1.44 Hz$ $f_3 = \frac{1}{2} \sqrt{\frac{25}{0.15}}$ $f_3 = \frac{1}{2} \sqrt{166.6}$ $f_3 = 6.45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6.45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan			$f_1 = 1,58 Hz$
$f_2 = \frac{1}{2} \sqrt{8.3}$ $f_2 = 1.44 Hz$ $f_3 = \frac{1}{2} \sqrt{\frac{25}{0.15}}$ $f_3 = \frac{1}{2} \sqrt{166.6}$ $f_3 = 6.45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6.45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan		STIAS PENDIDIA	$f_2 = \frac{1}{2} \sqrt{\frac{25}{3}}$
$f_3 = \frac{1}{2} \sqrt{\frac{25}{0,15}}$ $f_3 = \frac{1}{2} \sqrt{166,6}$ $f_3 = 6,45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan			W
$f_3 = \frac{1}{2} \sqrt{166,6}$ $f_3 = 6,45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan			$f_2 = 1,44 \text{ Hz}$
$f_3 = \frac{1}{2} \sqrt{166,6}$ $f_3 = 6,45 Hz$ (Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan			$f_3 = \frac{1}{2} \sqrt{\frac{25}{0,15}}$
(Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan			$f_3 = \frac{1}{2} \sqrt{166,6}$
(Indikator 2) Frekuensi tertinggi didapat pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan		ADIKSE	$f_3 = 6,45 Hz$
pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar tersebut. 14 Melakukan Induksi (Menganalisis Cepat Rambat Gelombang Bunyi) Indikator 1 & 2) Dari hasil percobaan			(Indikator 2)
Rambat Gelombang Bunyi) Dari hasil percobaan			pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil nilai φ senar, maka semakin besar frekuensi yang dihasilkan oleh senar
Dari hasil percobaan	14		Indikator 1 & 2)
		Kambat Gelombang Bunyi)	Dari hasil percobaan tersebut, dapat dibuktikan

Perhatikan Tabel di bawah ini!

Nama Zat	Massa Jenis	Cepat Rambat
Kuningan	8.400	0,0109
Besi	7.900	0.0112
Aluminium	2.700	0,02
Kayu	300	0,05

Tabel percobaan diatas terjadi pada Modulus Young (E). Dari percobaan tersebut apakah dapat dibuktikan bahwa cepat rambat gelombang bunyi pada zat padat dipengaruhi oleh massa jenis suatu benda padat dengan cepat rambat bunyinya?

bahwa massa jenis suatu zat mempengaruhi cepat rambat bunyi. Apabila massa jenis zat kecil maka cepat rambat bunyinya semakin besar. Sebaliknya, apabila massa jenis zar besar maka cepat rambat bunyinya akan semakin kecil. Senada dengan konsep cepat rambat gelombang yang menyatakan bunyi berbanding terbalik dengan akar massa jenisnya.

15 Memberikan Deduksi (Spektrum Gelombang Elektromagnetik

Perhatikan gambar dibawah ini!

a.Sinar dari Matahari

b. Sinar dari Lampu

Berikan penjelasan anda apakah sinar matahari dan sinar lampu diatas merupakan cahaya polikromatik!

(Indikator 1)

Sinar matahari dan sinar lampu merupakan cahaya polikromatik, polikromatik yang dimaksud adalah cahaya putih. Cahaya polikromatik adalah cahaya yang terdiri dari banyak warna dan panjang gelombang.

(Indikator 2)

Maka dapat disimpulkan bahwa sinar matahari dan sinar lampu merupakan cahaya polikromatik (cahaya putih) , dimana cahaya tersbut terdiri dari banyak warna.

16 Memutuskan dan Melaksanakan (Polarisasi Cahaya)

(Indikator 1)

Sebuah cahaya dapat

Polarisasi adalah peristiwa perubahan arah getar gelombang cahaya yang acak menjadi satu arah getar. Gelombang yang dapat mengalami polarisasi hanyalah gelombang transversal yang mempunyai arah getaran tegak lurus dengan arah perambatannya. Jelaskan menurut anda apakah polarisasi dapat terjadi pada gelombang cahaya?

mengalami polarisasi

(Indikator 2)

Sebagai gelombang transversal, cahaya dapat mengalami polarisasi. Polarisasi cahaya dapat disebabkan oleh empat cara, yaitu refleksi, absorbsi, pembiasan ganda dan hamburan.

17 Memberikan Evaluasi (Difraksi Cahaya)

Seberkas cahaya lewat celah sempit dan menghasilkan interferensi minimum orde kedua dengan sudut deviasi 90°. Apabila lebar celah 2,4 x 10⁻⁴ cm, maka hitunglah panjang gelombang cahaya tersebut!

(Indikator 1)

Penyelesaian:

Panjang gelombang cahaya dapat dihitung dengan rumus :

$$d \sin \theta = m \lambda$$

(Indikator 2)

Diketahui:

m = 2 (orde dua)

 $\theta = 90^{\circ}$

 $\frac{d}{d} = 2.4 \times 10^{-4} \text{ cm} = 2.4.$ 10^{-6} m

Ditanya: panjang gelombang cahaya (λ) ?

Jawab:

$$d \sin \theta = m \lambda$$

$$2,4.\ 10^{-6}\sin 90^0 = 2.\ \lambda$$

2,4.
$$10^{-6}$$
. $1 = 2$. λ

$$\lambda = 2,4 \cdot 10^{-6} = \frac{2,4 \cdot 10^{-6}}{10^{-10}}$$

$$\lambda = 24.000 \text{ A}$$

18 | Melakukan Evaluasi (Menelaah Proses

(Indikator 1)

Interferensi)

Seberkas cahaya monokromatis dijatuhkan pada dua celah sempit vertikal berdekatan dengan jarak d 0,01 mm. Pola interferensi yang terjadi ditangkap pada jarak 20 cm dari celah. Diketahui pada jarak antara garis gelap pertama disebelah kiri ke garis gelap pertama disebelah kanan adalah 7,2 mm. Hitunglah panjang gelombang bekas cahaya!

Penyelesaian : lokasi pita terang ke m dapat dicari dengan rumus

$$m\lambda = \frac{dP_m}{l}$$

$$P_m = \frac{m\lambda l}{d}$$

Panjang gelombang cahaya yang berinterferensi dapat dicari dengan rumus

$$\lambda = \frac{d\Delta p}{l}$$

(Indikator 2)

Diketahui:

$$d = 0.01 \text{ mm} = 1 \times 10^{-5} \text{ m}$$

$$1 = 20 \text{ cm} = 0.2 \text{ m}$$

$$\Delta p = 7.2 \ mm$$

= 7.2 x 10⁻³ m

Ditanya:

$$\lambda = ?$$

Jawaban:

$$\lambda = \frac{d\Delta p}{l}$$

$$\lambda = \frac{1 \times 10^{-5}.7,2 \times 10^{-3}}{0,2}$$

$$\lambda = \frac{7.2 \times 10^{-8}}{0.2}$$

$$\lambda = 3.6 \times 10^{-7} \text{ m}$$

Memberikan Evaluasi (Polarisasi)

Seberkas sinar di dalam air masuk ke dalam | Agar sinar pantul dapat

(Indikator 1)

gelas sehingga terjadilah sinar yang terpolarisasi. Apabila indeks bias gelas 1,5 dan indeks bias air adalah 1,33, maka hitung sudut datang sinar tersebut!

terpolarisasi maka sinar harus datang dengan sudut polarisasi yang dapat dicari dengan rumus Brewster.

(Indikator 2)

Diketahui:

Sinar datang dari air ke gelas, maka:

$$n_1 = n_{air} = 1.33$$

$$n_2 = n_{gelas} = 1.5$$

Ditanya:

Sudut datang dan sudut bias?

Penyelesaian:

$$tan i_p = n_{12}$$

$$tan i_p = \frac{n_2}{n_1}$$

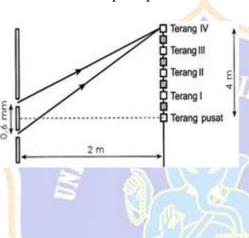
$$tan i_p = \frac{1,5}{1,33}$$

$$i_p = 48,44^{\circ}$$

Sedangkan sudut bias dapat dihitung dengan rumus $r = 90 - i_p$

Atau bisa juga dengan rumus shellius :

$$\frac{\sin i}{\sin r} = n_{12}$$


$$\sin r = \frac{\sin i}{n_{12}}$$

sin r =	sin 48,44°
	1,5
	1,33

$$r = 41,56^{\circ}$$

20 Memberikan Induksi (Interferensi Cahaya)

Mirah melakukan percobaan interferensi celah ganda dan memperoleh data sebagai berikut. Berdasarkan hasil percobaan diatas, berapakah panjang gelombang elektromagnetik yang digunakan oleh Putri pada percobaan?

(Indikator 1 & 2)

Diketahui:

$$d = 0.6 \ mm = 6 \times 10^{-4} m$$

$$L = 2m$$

$$p = 4mm = -4 \times 10^{-3}m$$

$$n = 3$$

Ditanya:

Panjang gelombang elektromagnetik yang digunakan oleh Putri pada percobaan (λ) ?

Jawaban:

$$d\sin\theta = n\lambda$$

$$\sin\theta = \frac{4 \times 10^{-3} m}{2}$$

$$\sin\theta = 2 \times 10^{-3} m$$

$$d\sin\theta = n\lambda$$

$$6 \times 10^{-4}.2 \times 10^{-3} = 3.\lambda$$

$$\frac{12\times10^{-7}}{3}=2$$

$$4 \times 10^{-7} = \lambda$$

Panjang gelombang elektromagnetik yang digunakan oleh Putri pada percobaan (λ) = 4×10^{-7} m

Lampiran 1.4 Kisi-Kisi Ketrampilan Berpiki Kritis

KISI-KISI TES KETERAMPILAN BERPIKIR KRITIS

Satuan Pendidikan : SMA Negeri 1 Tabanan

Mata Pelajaran : Fisika Kelas/Semester : XI/2

Pokok Bahasan : Gelombang Bunyi dan Gelombang Cahaya

Alokasi Waktu : 90 menit Jumlah Soal : 15 Butir

KI 3	Mema	hami, <mark>me</mark> nerapkan, menganalisis pengetahuan faktual,						
	konsep	konseptual, procedural berdasarkan rasa ingintahunya tentang ilmu						
	penget	ahuan, teknolog, seni, budaya, dan humaniora dengan wawasan						
	keman	usiaan, kebangsaan, kenegaraan, dan peradabanterkait penyebab						
	fenom	ena dan kejadi <mark>an,</mark> serta menerap <mark>kan</mark> pengetahuan prosedural						
	3.10	Menerapkan konsep dan prinsip gelombang bunyi dan cahaya						
		dalam teknologi						
KD	4.11	Melakukan percobaan tentang gelombang bunyi dan/atau						
		cahaya, ber <mark>ikut presentasi hasil percoba</mark> an dan m <mark>a</mark> kna fisisnya						
		misalnya sonometer, dan kisi difraksi						

Kisi-kisi Keterampilan Berpikir Kritis

No	Sub Materi	Indikator	Dimensi Keterampilan Berpikir Kritis			Jumla h So			
			D1	D2	D3	D4	D5	D6	al
1	Gelombang Bunyi	Menganalisis karakteristik gelombang	1	2					2
		Menganalisis cepat rambat gelombang			3				1

		Menganalisis Azas		11					1
		Doppler							
		Menganalisis	7		13				2
		fenomena dawai							
		dan pipa organa							
		Menganalis			9			4	2
		intensitas dan							
		taraf intensitas							
2	Gelombang	Menganalisis	8			6			2
	Cahaya	spektrum							
		cahaya							
		Menelaah					17		1
		proses							
		difraksi							
		Menelaah proses		The same	lan.	20	18		2
		interferensi			7				
		Menggambarkan	7575		-7/		19	16	2
	A	proses polarisasi	1111				Sa.		
	Ju <mark>m</mark> lah Butir			2	3	2	3	2	15

Keterangan:

D1 : Merumuskan masalah

D2 : Memberikan argument

D3 : Melakukan deduksi

D4 : Melakukan induksi

D5 : Melakukan evaluasi

D6 : Melakukan dan melaksanakan

Lampiran 1.5 Tes Keterampilan Berpikir Kritis

Mata Pelajaran : Fisika

Materi Pokok : Gelombang Bunyi dan Gelombang Cahaya

Waktu : 90 menit

Jumlah Soal : 15 Soal

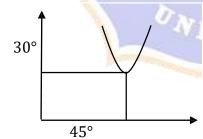
Petunjuk Pengerjaan Soal

1. Isilah lembar jawaban yang telah disediakan dengan jawaban tepat dan benar.

- 2. Tulislah identitas peserta dan kode soal secara lengkap dan jelas pada lembar jawaban bagian pojok kanan atas.
- 3. Perhatikan seluruh soal dengan cermat, jika terdapat soal yang kurang jelas tanyakan pada pengawas ruangan.
- 4. Kerjakan soal yang lebih mudah terlebih dahulu.
- 5. Kerjakan soal secara mandiri.
- 6. Waktu pengerjaan soal 1×90 Menit
- 7. Periksa kembali soal dan pekerjaan anda sebelum dikumpulkan dalam bentuk pdf melalui google form

Kerjakan soal berikut dengan tepat dan benar!

- 1. Ketika dalam suatu keadaan kalian berada pada ruangan tertutup kemudian mengeluarkan suara, maka kalian akan mendengarkan gema atau gaung. Akan tetapi proses terjadinya peristiwa gema ataupun gaung mengakibatkan suara asal yang dibuat tidak terdengar terlalu jelas. Berdasarkan hal tersebut, rumuskan permasalahan yang dapat dicarikan solusinya. (D1, Merumuskan Masalah)
- 2. Fenomena yang terjadi dialam semesta ini sangatlah banyak, diantaranya fenomena yang terjadi di ruang angkasa seperti tabrakan antara meteor dengan ledakan yang sangat besar. Namun dalam peristiwa ini terjadi apabila seorang pengamat berada di ruang angkasa mereka yang melihat peristiwa ter sebut tidak mendengar suara ledakan dari tabrakan meteor


yang dilihat. Mengapa hal tersebut bisa terjadi? (**D2**, **Memberikan Argument**)

3. Perhatikan hasil percobaan cepat rambat gelombang bunyi di udara pada bagian suhu beikut!

Suhu Udara	Lanju Bunyi
0° C	331 m/s
15° C	330 m/s
20° C	343 m/s
30 ° <i>C</i>	349 m/s

Berdasarkan hasil observasi yang telah anda lakukan, apakah tabel tersebut dapat digunakan untuk menarik kesimpulan bahwa cepat rambat gelombang bunyi akan meningkat pada suhu tinggi? Berikan kesimpulan sesuai hasil observasi anda! (D3, Melakukan deduksi)

- 4. Pada hari Rabu, Ibu menuju ke Pasar dengan mengendarai sebuah mobil. Ketika diperjalanan Ibu berpapasan dengan temannya Bu Riski dan mereka berdua saling menyapa dengan membunyikan klakson mobil. Bagaimanakah suara klakson yang di dengar oleh Ibu dan Bu Riski, apakah tidak terdengar atau terdengar lebih jelas ? Mengapa bisa demikian ? (D6, Melakukan dan Melaksanakan)
- 5. Perhatikan gambar dibawah ini!

Grafik diatas merupakan grafik pembiasan pada prisma yang menyatakan sudut deviasi (D) terhadap sudut datang (i). Berapakah besar sudut pembiasan prisma berdasarkan grafik diatas ? (**D4, Melakukan Induksi**)

6. "Salah satu contoh penerapan pipa oragana adalah flute. Ketika dimainkan bunyi yang dihasilkan dari alat musik flute tersebut berbeda setiap lubang yang

- ditiup." Rumuskan permasalahan yang mungkin terjadi berdasarkan pernyataan tersebut! (**D1, Merumuskan Masalah**)
- 7. Pada siang hari seorang anak yang sedang bermain air dihalaman rumahnya dan tidak sengaja ia menyemprotkan air tersebut keudara. Setelah melakukan hal tersebut terlihatlah sebuah sinar warna-warni dari semprotan air yang disinari cahaya matahari." Rumuskan permasalahan yang mungkin terjadi berdasarkan pernyataan tersebut! (**D1**, **Merumuskan Masalah**)
- 8. Pehatikan Tabel dibawah ini!

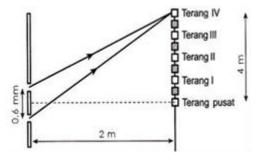
Sumber Bunyi	Taraf Intensitas
Suara srigala mengaung	40 dB
Suara sirine polisi	60 dB
Suara petir	120 dB

Sebuah mesin truk menghasilkan taraf intensitas bunyi sebesar $TI = 20 \ dB(I_0 = 10^{-12} \ watt.m^2)$. Agar menghasilkan taraf intensitas yang sama (setara) dengan suara sirine polisi maka jumlah mesin truk diperlukan sebanyak ? (D3, Melakukan deduksi)

- 9. Arya sangat hobi bermain gitar. Pada saat gitar dimainkan, senar gitar tersebut menimbulkan nada yang berbeda-beda. Apakah yang mempengaruhi perbedaan nada pada saat dipetik tersebut ? Jelaskan! (D2, Memberikan Argument)
- 10. Sebuah ambulan dengan sirine menyala yang berfrekuensi 840 Hz bergerak dengan kecepatan 72 km/jam mendekati seseorang yang sedang berdiri dipinggir jalan. Jika kecepatan suara di udara sebesar 240 m/s, hitunglah frekuensi bunyi sirine yang didengar oleh orang tersebut ! (D5, Melakukan Evaluasi)
- 11. Semara sedang melakukan sebuah pratikum materi gelombang bunyi dengan menggunakan senar dan diperoleh hasil percobaan sebagai berikut:

No	l(m)	M(g)
1	1	2,5
2	1	3
3	1	0,15

Berdasarkan data pada tabel tersebut, senar manakah yang menghasilkan frekuensi paling tinggi jika dipasangkan pada gitar jika diberi tegangan sebesar


25N? (D3, Melakukan deduksi)

12. Perhatikan gambar dibawah ini!

Berikan penjelasan anda apakah sinar matahari dan sinar lampu diatas merupakan cahaya polikromatik ! (D3, Melakukan deduksi)

- 13. Polarisasi adalah peristiwa perubahan arah getar gelombang cahaya yang acak menjadi satu arah getar. Gelombang yang dapat mengalami polarisasi hanyalah gelombang transversal yang mempunyai arah getaran tegak lurus dengan arah perambatannya. Jelaskan menurut anda apakah polarisasi dapat terjadi pada gelombang cahaya? (**D6, Melakukan dan Melaksanakan**)
- 14. Seberkas sinar di dalam air masuk ke dalam gelas sehingga terjadilah sinar yang terpolarisasi. Apabila indeks bias gelas 1,5 dan indeks bias air adalah 1,33, maka hitung sudut datang sinar tersebut! (**D5, Melakukan Evaluasi**)
- 15. Mirah melakukan percobaan interferensi celah ganda dan memperoleh data sebagai berikut. Berdasarkan hasil percobaan diatas, berapakah panjang gelombang elektromagnetik yang digunakan oleh Mirah pada percobaan? (D4, Melakukan Induksi)

Lampiran 1.6 Kunci Jawaban Tes Kemampuan Berpikir Kritis

KUNCI JAWABAN TES KETERAMPILAN BERPIKIR KRITIS

No	Soal	Jawaban
1	Merumuskan Masalah (Sifat-sifat	(Indikator 1 & 2)
	Gelombang Bunyi) Ketika dalam suatu keadaan kalian berada pada ruangan tertutup kemudian mengeluarkan suara, maka kalian akan mendengarkan gema atau gaung. Akan tetapi proses terjadinya peristiwa gema	Mengapa pada saat berada diruangan tertutup bisa terjadinya peristiwa gema atau gaung ?
	ataupun gaung mengakibatkan suara asal yang dibuat tidak terdengar terlalu jelas. Berdasarkan hal tersebut, rumuskan permasalahan yang dapat dicarikan solusinya.	GI
2	Memberikan Argumen (Sifat-sifat Gelombang Bunyi)	(Indikator 1)
	Fenomena yang terjadi dialam semesta ini sangatlah banyak, diantaranya fenomena yang terjadi di ruang angkasa seperti tabrakan antara meteor dengan ledakan yang sangat besar. Namun dalam peristiwa ini terjadi apabila seorang pengamat berada di ruang angkasa mereka yang melihat peristiwa ter sebut tidak mendengar suara ledakan dari tabrakan meteor yang dilihat. Mengapa hal tersebut bisa terjadi?	Peristiwa tersebut terjadi dikarenakan tanpa adanya medium perantara (ruang hampa) maka gelombang bunyi tidak dapat merambat. (Indikator 2) Karena tidak ada medium yang merambat maka, ledakan yang terjadi diluar angkasa tidak terdengar oleh pengamat. Hal ini berbeda apabila pengamat berada di bumi. Bumi memiliki medium perantara berupa udara sehingga bunyi ledakan tersebut bisa terdengar.
3	Melakukan Deduksi (Menganalisis cepat rambat gelombang bunyi) Perhatikan hasil percobaan cepat rambat gelombang bunyi di udara pada bagian suhu beikut!	(Indikator 1) Suhu medium, semakin panas suhu medium yang dilalui maka

Suhu Udara	Lanju Bunyi
0°C	331 m/s
15° C	330 m/s
20° C	343 m/s
30° C	349 m/s

Berdasarkan hasil observasi yang telah anda lakukan, apakah tabel tersebut dapat digunakan untuk menarik kesimpulan bahwa cepat rambat gelombang bunyi akan meningkat pada suhu tinggi? Berikan kesimpulan sesuai hasil observasi anda!

semakin cepat bunyi merambat. Hubungan ini dapat dirumuskan kedalam persamaan matematis

 $(v = v^0 + 0.6.t)$ dimana v^0 adalah cepat rambat pada suhu nol derajat dan t adalah suhu medium.

(Indikator 2)

Berdasarkan hasil observasi telah yang dilakukan, tabel dapat digunakan untuk menarik kesimpulan bahwa cepat rambat gelombang bunyi di udara akan semakin mengingat pada suhu tinggi. Hasil percobaan pada tabel tersebut sudah sesuai dengan konsep cepat rambat gelombang bunyi.

4 Memutuskan dan Melaksanakan (Intensitas dan Taraf Intensitas Bunyi)

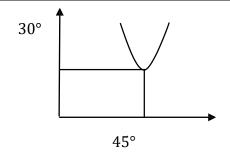
Pada hari Rabu, Ibu menuju ke Pasar dengan mengendarai sebuah mobil. Ketika diperjalanan Ibu berpapasan dengan temannya Bu Riski dan mereka berdua saling menyapa dengan membunyikan klakson mobil. Bagaimanakah suara klakson yang di dengar oleh Ibu dan Bu Riski, apakah tidak terdengar atau terdengar lebih jelas ? Mengapa bisa demikian ?

(Indikator 1)

Suara klakson terdengar lebih keras.

(Indikator 2)

Yang menyebabkan suara klakson terdengar lebih keras dikarenakan saat sumber dan pendengar itu bergerak berdekatan atau berada pada jarak yang paling dekat maka, gelombang yang sampai pada pendengar semakin rapat sehingga frekuensi yang dihasilkan semakin besar.


5 Memberikan Induksi (Pemantulan dan Pembiasan)

Perhatikan gambar dibawah ini!

(Indikator 1 & 2)

Diketahui:

 $D = 30^{\circ}$

Grafik diatas merupakan grafik pembiasan pada prisma yang menyatakan sudut deviasi (*D*) terhadap sudut datang (*i*). Berapakah besar sudut pembiasan prisma berdasarkan grafik diatas ?

 $i = 45^{\circ}$

Ditanya:

Sudut pembias prisma (β)

Penyelesaian:

$$D = 2i - \beta$$

$$30 = 2(45) - \beta$$

$$30 - 90 = -\beta$$

$$-60 = -\beta$$

$$60 = \beta$$

Maka diperoleh sudut pembias prisma adalah 60°

6 Merumuskan Masalah (Fenomena gelombang bunyi pada pipa organa)

"Salah satu contoh penerapan pipa oragana adalah flute. Ketika dimainkan bunyi yang dihasilkan dari alat musik flute tersebut berbeda setiap lubang yang ditiup." Rumuskan permasalahan yang mungkin terjadi berdasarkan pernyataan tersebut!

(Indikator 1 & 2)

Apakah yang menyebabkan alat musik seruling tersebut menghasilkan nada yang berbeda-beda?

7 Merumuskan Masalah (Dispersi)

Pada siang hari seorang anak yang sedang bermain air dihalaman rumahnya dan tidak sengaja ia menyemprotkan air tersebut keudara. Setelah melakukan hal tersebut terlihatlah sebuah sinar warna-warni dari semprotan air yang disinari cahaya matahari." Rumuskan permasalahan yang mungkin terjadi berdasarkan pernyataan tersebut!

(Indikator 1 &2)

Bagaimana proses terjadinya pelangi ?

8 | Memberikan Deduksi (Taraf Intensitas Bunyi)

Pehatikan Tabel dibawah ini!

Sumber Bunyi	Taraf Intensitas
Suara srigala	40 dB
mengaung	
Suara sirine polisi	60 dB
Suara petir	120 dB

Sebuah mesin truk menghasilkan taraf intensitas bunyi sebesar $TI = 20 \ dB (I_0 = 10^{-12} \ watt.m^2)$. Agar menghasilkan taraf intensitas yang sama (setara) dengan suara sirine polisi maka jumlah mesin truk diperlukan sebanyak ?

(Indikator 1)

Diketahui:

Taraf intensitas mesin Truk,

 $TI_1 = 30 dB$

Taraf intensitas n mesin

 $TI_2 = 60 dB$

Ditanya : jumlah mesin Truk yang diperlukan ?

Penyelesaian:

Jumlah mesin mobil yang diperlukan :

 $TI_2 = TI_1 + 10 \log n$

 $60 \text{ dB} = 20 \text{ dB} + 10 \log n$

 $10 \log n = 40 dB$

log n = 4

n = 10.4 = 10000

(Indikator 2)

Jumlah mesin yang diperlukan agar taraf intensitasnya setara dengan suara sirine ambulans adalah 10000 mesin.

9 Memberikan Argumen (Dawai dan Pipa Organa)

Arya sangat hobi bermain gitar. Pada saat dimainkan, senar gitar tersebut menimbulkan nada yang berbeda-beda. Apakah yang mempengaruhi perbedaan nada pada saat dipetik tersebut ? Jelaskan!

(Indikator 1 & 2)

Terjadinya perbedaan nada yang dipetik pada gitar tersebut dikarenakan dawai dengan ketebalan, tekanan dan panjang yang berbeda akan menghasilkan gelombang bunyi dengan energi, frekuensi dan panjang gelombang yang berbeda.

10 | Melakukan Evaluasi (Menganalisis Azas Doppler)

Sebuah ambulan dengan sirine menyala yang berfrekuensi 840 Hz bergerak dengan kecepatan 72 km/jam mendekati seseorang yang sedang berdiri dipinggir jalan. Jika kecepatan suara di udara sebesar 240 m/s, hitunglah frekuensi bunyi sirine yang didengar oleh orang tersebut!

(Indikator 1)

Diketahui bahwa $v_s = 72$ km/jam = 20 m/s. Karena sumber suara mendekati pendengar, maka v_s (-). Kemudian pendengar dalam kondisi diam, maka $v_p = 0$

Dengan demikian rumus untuk mencari menggunakan :

$$f_p = \left[\frac{v + v_p}{v - v_s}\right] f_s$$

(Indikator 2)

Penyelesaian:

$$f_p = \left[\frac{v + v_p}{v - v_s}\right] f_s$$

$$f_p = \frac{240+0}{240-20} \times 840$$

$$f_p = \frac{240}{220} \times 840$$

$$f_p = 916,36 \, Hz$$

11 Melakukan Deduksi (Fenomena Dawai dan Pipa Organa)

Semara sedang melakukan sebuah pratikum materi gelombang bunyi dengan menggunakan senar dan diperoleh hasil percobaan sebagai berikut:

No	l(m)	M(g)
1	1	2,5
2	1	3
3	1	0,15

Berdasarkan data pada tabel tersebut, senar manakah yang menghasilkan frekuensi paling tinggi jika dipasangkan pada gitar jika diberi tegangan sebesar 25N?

(Indikator 1)

Diketahui:

$$l_1 = l_2 = l_3 = 1 m$$

 $M_1 = 2.5 g$
 $M_2 = 3 g$
 $M_3 = 0.15 g$

Ditanya:

Frekuensi tertinggi apabila F = 25 N

Penyelesaian:

Kita akan mencari nilai φ dari masing-masing senar terlebih dahulu sebelum mencari frekuensi.

$$\varphi = \frac{m}{l}$$

$$\varphi_1 = 2,5$$

$$\varphi_2 = 3$$

$$\varphi_3 = 0.15$$

Maka diperoleh hasil:

$$f_1 = \frac{1}{2} \sqrt{\frac{25}{2,5}}$$

$$f_1 = \frac{1}{2}\sqrt{10}$$

$$f_1 = 1,58 \, Hz$$

$$f_2 = \frac{1}{2} \sqrt{\frac{25}{3}}$$

$$f_2 = \frac{1}{2} \sqrt{8.3}$$

$$f_2 = 1,44 \, Hz$$

$$f_3 = \frac{1}{2} \sqrt{\frac{25}{0,15}}$$

$$f_3 = \frac{1}{2} \sqrt{166,6}$$

$$f_3 = 6,45 \, Hz$$

(Indikator 2)

Frekuensi tertinggi didapat pada senar ketiga yaitu 6,45 Hz. Dapat disimpulkan semakin kecil

nilai φ senar, maka semakin besar frekuensi vang dihasilkan oleh senar tersebut. 12 | Memberikan Deduksi (Spektrum (Indikator 1) **Gelombang Elektromagnetik** Sinar matahari dan sinar Perhatikan gambar dibawah ini! lampu merupakan cahaya polikromatik, c.Sinar dari Matahari polikromatik yang dimaksud adalah cahaya putih. Cahaya polikromatik adalah cahaya yang terdiri dari banyak warna dan panjang gelombang. (Indikator 2) d. Sinar dari Lampu Maka dapat disimpulkan bahwa sinar matahari dan sinar lampu merupakan polikromatik cahaya (cahaya putih), dimana cahaya tersbut terdiri dari banyak warna. Berikan penjelasan anda apakah matahari dan sinar lampu diatas merupakan cahaya polikromatik! 13 Memutuskan dan Melaksanakan (Indikator 1) (Polarisasi Cahaya) Sebuah dapat cahaya mengalami polarisasi Polarisasi adalah peristiwa perubahan arah getar gelombang cahaya yang acak menjadi (Indikator 2) satu arah getar. Gelombang yang dapat mengalami polarisasi hanyalah gelombang Sebagai gelombang transversal yang mempunyai arah getaran transversal, cahaya dapat tegak lurus dengan arah perambatannya. mengalami polarisasi. Jelaskan menurut anda apakah polarisasi dapat Polarisasi cahaya dapat terjadi pada gelombang cahaya? disebabkan oleh empat cara, yaitu refleksi, absorbsi, pembiasan ganda dan hamburan. 14 Memberikan Evaluasi (Polarisasi) (Indikator 1) Seberkas sinar di dalam air masuk ke dalam | Agar sinar pantul dapat gelas sehingga terjadilah sinar yang terpolarisasi. Apabila indeks bias gelas 1,5 dan indeks bias air adalah 1,33, maka hitung sudut datang sinar tersebut!

terpolarisasi maka sinar harus datang dengan sudut polarisasi yang dapat dicari dengan rumus Brewster.

(Indikator 2)

Diketahui:

Sinar datang dari air ke gelas, maka:

$$n_1 = n_{air} = 1.33$$

$$n_2 = n_{gelas} = 1.5$$

Ditanya:

Sudut datang dan sudut bias?

Penyelesaian:

$$tan i_p = n_{12}$$

$$tan i_p = \frac{n_2}{n_1}$$

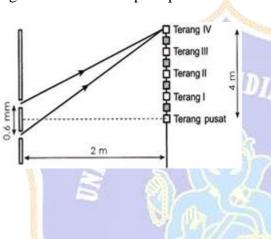
$$tan i_p = \frac{1,5}{1,33}$$

$$i_p = 48,44^{\circ}$$

Sedangkan sudut bias dapat dihitung dengan rumus $r = 90 - i_p$

Atau bisa juga dengan rumus shellius :

$$\frac{\sin i}{\sin r} = n_{12}$$


$$\sin r = \frac{\sin i}{n_{12}}$$

sin r =	sin 48,44°	
31111 —	1,5	
	1,33	
	41 FC0	

$$r = 41,56^{\circ}$$

15 Memberikan Induksi (Interferensi Cahaya)

Mirah melakukan percobaan interferensi celah ganda dan memperoleh data sebagai berikut. Berdasarkan hasil percobaan diatas, berapakah panjang gelombang elektromagnetik yang digunakan oleh Putri pada percobaan?

(Indikator 1 & 2)

Diketahui:

$$d = 0.6 \ mm = 6 \times 10^{-4} m$$

$$L = 2m$$

$$p = 4mm = -4 \times 10^{-3}m$$

$$n = 3$$

Ditanya:

Panjang gelombang elektromagnetik yang digunakan oleh Putri pada percobaan (λ) ?

Jawaban:

$$d\sin\theta = n\lambda$$

$$\sin\theta = \frac{4 \times 10^{-3} m}{2}$$

$$\sin\theta = 2 \times 10^{-3} m$$

$$d\sin\theta = n\lambda$$

$$6 \times 10^{-4}.2 \times 10^{-3} = 3.\lambda$$

$$\frac{12\times10^{-7}}{3}=\lambda$$

$$4 \times 10^{-7} = \lambda$$

Panjang gelombang elektromagnetik yang digunakan oleh Putri pada percobaan (λ) = 4×10^{-7} m

LAMPIRAN 2

HASIL UJI COBA INTRUMEN

Lampiran 2.1 Data Hasil Uji Coba Tes Keterampilan Berpikir Kritis

Lampiran 2.2 Analisis Indeks Daya Beda dan Tingkat Kesukaran Butir Tes Keterampilan Berpikir Kritis

Lampiran 2.3 Analisis Konsistensi Internal Butir Tes Keterampilan Berpikir Kritis

Lampiran 2.4 Reliabilitas Tes Keterampilan Berpikir Kritis

Lampiran 2.5 Rekapitulasi Hasil Uji Coba Tes Keterampilan Berpikir Kriti

2.1 Data Hasil Uji Coba Tes Keterampilan Berpikir Kritis

HASIL TEST XII IPA 1

NO	NAMA										JAW	ABAN	1									NILAI
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
1	A NAK A GUNG SA GUNG MIRAH INDIRA WARDHANA	3	3	3	3	3	3	3	3	3	4	3	3	3	3	3	2	2	2	3	2	57
2	ARTHUR DWIE YURINDA	2	4	3	4	4	3	4	4	2	3	2	4	2	3	2	2	2	2	2	2	56
3	DEWA AYU WINA SARASWATI	2	3	3	3	3	3	3	3	2	3	3	3	2	3	2	3	3	3	3	3	56
4	GEDE ODIANGGA KASIKA WIJAYA	3	3	3	3	3	2	3	3	2	3	2	3	3	3	2	3	3	3	2	3	55
5	GUSTI AYU MADE KUMALA CIPTA DEWI	3	3	3	3	3	2	2	3	3	4	3	2	3	4	3	2	2	2	3	2	55
6	I DEWA AYU CINTYA DHAMAYANTI	3	3	3	3	2	3	3	2	3	2	3	2	3	3	3	3	3	3	2	3	55
7	I DEWA GDE SRIWISNU AJI KESAWA	2	3	3	3	2	2	3	2	3	2	3	2	2	3	1	4	4	4	3	4	55
8	I GEDE DEDY SETIAWAN	2	3	2	3	4	2	3	3	2	3	2	4	2	3	2	3	3	3	2	3	54
9	I GEDE OKKY CHANDRA PURANA	2	3	3	3	3	3	3	3	3	1	3	3	2	3	1	3	3	3	3	3	54
10	I GUSTI A GUNG PUTU KRISHNA A DITYA PRA TAMA	3	4	1	1	4	3	2	2	1	2	2	4	3	3	1	4	4	4	2	4	54
11	I GUSTI KOMANG DUTA MAHESA PUTRA	3	2	2	2	3	2	2	2	2	3	2	3	3	3	1	4	4	4	3	4	54
12	I MADE SUKMA YASA	3	3	3	3	3	3	3	3	2	1	2	3	3	3	1	3	3	3	2	3	53
13	I PUTU ANGGA PRATAMA PUTRA	4	3	3	3	2	3	3	3	1	4	1	2	4	3	3	2	2	2	2	2	52
14	I PUTU SANTA KUMARA	3	3	3	3	2	3	3	3	1	4	1	2	3	3	2	3	3	3	1	3	52
15	I PUTU TRISNA ADIPUTRA	3	2	2	2	3	2	2	2	2	3	2	3	3	3	1	4	4	4	2	4	53
16	I PUTU WIDYA PRANATHA	3	2	2	2	2	2	2	2	2	4	4	2	1	4	2	3	3	3	4	3	52
17	KADEK INDAH ARISANDHI	2	3	3	3	2	3	3	3	2	2	2	1	2	3	4	3	3	3	2	3	52
18	KADEK SILVIA <mark>D</mark> ITA PRATIWI	3	3	2	3	2	2	3	3	1	1	1	2	3	4	2	4	4	4	1	4	52
19	LUH MADE MA <mark>YU</mark> RA GITA KIRANA	4	2	3	2	3	3	2	2	2	- 3	2	3	4	3	3	2	2	2	2	2	51
20	NI KADEK DIAH <mark>P</mark> UTRI HARIANI	3	3	3	3	3	2	3	3	2	3	2	3	3	4	1	2	2	2	2	2	51
21	NI KADEK SIND <mark>y</mark> PRADNYA DEWI	2	3	3	3	3	3	3	3	1	4	1	3	2	3	1	3	3	3	1	3	51
22	NI KOMANG SAD <mark>h</mark> u dhammasari	3	3	2	3	3	2	3	3	-2	1	2	3	3	3	2	3	3	2	2	3	51
23	NI KOMANG VIRA WINTARI	4	3	2	3	2	2	3	3	4	3	4	2	1	3	3	7 2	2	2	4	2	54
24	NI LUH PUTU ERIKA Y <mark>UL</mark> IYANTI	4	3	4	3	2	4	3	3	1	2	1	2	4	4	1	2	2	2	2	2	51
25	NI LUH PUTU INDAH ANAS <mark>TA</mark> SIA KIRANA TRIAPSARI	3	2	2	2	4	2	2	2	3	2	3	3	3	3	3	2	2	2	3	2	50
26	NI MADE AMELIA MARSYA	2	3	3	3	4	3	3	3	1	0	1	4	2	4	1	3	3	3	1	3	50
27	NI NYOMAN AYU NIRMALA <mark>LUK</mark> ITA	2	3	3	3	3	3	3	3	2	4	2	3	2	3	1	2	2	2	2	2	50
28	NI NYOMAN AYU TRISNA ANGGARINI	2	2	3	2	4	3	2	2	1	0	1	4	2	4	2	3	4	4	1	4	50
29	NI PUTU DILA HERLIANA MAHARANI PUTRI	4	2	2	2	3	2	2	2	2	2	2	3	4	3	1	3	3	3	2	3	50
30	PANDE KADEK PERDI DIANTARA	2	3	3	3	2	3	3	2	3	2	3	2	1	4	3	2	2	2	3	2	50

HASIL TEST XII IPA 2

NO	NAMA										JAW	ABAN										NILAI
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
1	ADE PRASETYA PUTRA WIBAWA	4	3	3	3	4	3	4	3	3	4	4	4	4	4	4	4	4	3	4	3	72
2	ANAK AGUNG AYU SRI WULANDARI	2	4	4	4	4	4	4	4	4	3	3	4	2	3	4	4	3	4	3	4	71
3	BAGUS MADE DHARMA SATYA PARAMAHAMSA	3	4	4	4	4	4	4	3	4	3	4	4	3	3	2	3	3	3	4	3	69
4	DEBORA AYU JESSICA PUTRI	3	4	4	4	3	4	4	4	4	3	4	3	3	3	4	2	2	2	4	2	66
5	DESAK GEDE FITRI PATRICIA	3	3	3	3	3	3	3	3	3	2	4	3	3	4	3	4	4	4	4	4	66
6	DESTA CHRISTINA FONATABA	4	4	4	4	3	4	4	3	4	3	2	4	4	2	4	3	3	2	2	3	66
7	GUSTI AYU AGUNG MANIK PURWANTINI	4	3	3	3	4	3	3	3	3	4	3	3	4	4	3	3	3	3	3	3	65
8	GUSTI AYU MADE NANDA FRISKA DEWI	1	2	4	4	3	4	4	4	4	2	4	2	1	3	4	3	3	3	4	3	62
9	I GEDE BAGAS ALBI PRAMUDYA	4	4	4	4	3	4	4	4	3	2	3	2	1	4	1	3	3	3	3	3	62
10	I GEDE RAMADHITA RAHAJENG JELANTIK	4	3	3	3	4	2	3	3	3	4	3	4	4	3	3	2	2	2	3	2	60
11	I GUSTI AGUNG AYU ANDIRA PRAMIYANTI DINAR	3	1	2	2	3	-2	2	2	2	2	2	3	3	3	2	2	2	2	2	2	44
12	I GUSTI AYU DYANKA NAMIRA PUTRI ARYA	2	2	2	2	3	2	2	2	2	3	2	3	2	4	1	2	2	2	2	2	44
13	I KADEK SANTIKA HARTAWAN	3	3	2	3	2	2	3	3	-1	2	1	2	3	3	2	2	2	2	1	2	44
14	I KETUT GEDE ANANDA KUSUMA	John	1	2	2	3	2	2	2	2	3	2	3	1	2	2	3	3	3	2	3	44
15	I MADE BAYU SASTRA WIGUNA	2	2	2	2	3	2	2	2	2	3	2	2	2	3	2	2	2	2	2	2	43
16	I MADE KRESNA DANA	4	1	1	1	3	1	1	1	2	3	2	- 3	- 4	3	3	2	2	2	2	2	43
17	I NYOMAN CITTA DIATMIKA	4	- 2	3	2	2	3	2	2	1	1	1	2	4	4	1	2	2	2	1	2	43
18	IDA AYU YANTI ADNYANI	2	1	2	2	2	2	2	2	2	4	2	2	2	3	3	2	2	2	2	2	43
19	KADEK DINDA WULAN PURNAMA	2	1	2	2	2	2	2	2	4	2	4	2	1	3	3	2	2	0	4	2	44
20	KADEK LISTIA LIANTANIA	2	1	1	1	3	1	1	2	2	3	2	1	2	3	3	3	3	3	2	3	42
21	LUH KADE <mark>SURYA</mark> DWIANGGRENI	1	1	3	2	3	3	2	2	2	2	2	3	1	3	1	2	2	<u>2</u>	2	2	41
22	NI LUH WAY <mark>AN S</mark> UKARTINI	2	2	1	2	2	1	2	2	2	4	2	2	2	3	2	2	2	2	2	2	41
23	NI MADE DEWI <mark>PU</mark> SPITA SARI	2	2	2	2	3	2	2	2	2	2	2	3	2	3	3	1	1	1	2	1	40
24	NI MADE MUST <mark>IKA</mark> WIDIARI	2	3	3	2	2	3	2	2	1	2	0	2	2	4	2	2	2	2	0	2	40
25	NI NYOMAN TR <mark>I A</mark> NDANI	2	1	2	2	4	2	2	2	2	2	2	4	2	0	3	1	1	1	2	1	38
26	NI PUTU RANI N <mark>A</mark> DYA SWARI	2	1	2	2	2	2	2	2	1	2	1	2	2	4	2	2	- 2	2	1	2	38
27	NI WAYAN SAVI <mark>TR</mark> I SATYAVATI	3	2	1	2	0	1	2	2	2	2	2	1	3	3	2	2	2	2	2	2	38
28	PAULINA ARIANCE KLASJOK	2	2	2	2	3	2	2	2	2	3	2	3	2	3	3	0 -	0	0	2	0	37
29	PUTU AGUS PRATAMA PUTRA	3	1	2	2	2	2	2	2	1	3	1	2	3	4	2	1	1	1	1	1	37
30	PUTU AYU SARININGSIH	2	3	2	3	2	2	3	3	1	3	1	2	0	3	3	1	1	1	1	1	38
31	PUTU BRAM ADI SANJAYA	1	2	2	2	1	2	2	2	2	2	2	0	1	3	2	2	2	2	2	2	36
32	PUTU GEDE AGUS ARTHA WIJAYA	2	2	1	2	3	1	2	2	2	3	2	3	2	3	1	0	0	0	2	0	33
33	RIO RAHONAHOLIL	1	1	2	2	3	2	2	2	2	3	2	3	1	3	1	0	0	0	2	0	32
34	NI PUTU VINA ADI FRIYANTIDEWI*	2	1	-1	1	2	1	1	1	2	1	2	0	2	0	2	3	3	3	2	3	33
35	I DEWA GEDE RADIKA SATRIA WIBAWA*	2	2	1	2	1	1	2	2	1	0	0	0	2	3	2	2	2	2	0	2	29
36	I GEDE EKO WIBAWA*	2	2	1	2	2	1	2	2	0	4	0	0	2	0	2	1	0	0	0	0	23

HASIL TEST XII IPA 3

NO	NAMA										JAW	ABAN										NILAI
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
1	A.A. NGURAH DHARMA KUSUMA A	3	4	4	4	3	4	4	4	2	2	2	3	3	4	4	2	2	2	2	2	60
2	ALFRED JOANDRA PRATOYO PUTRA	3	3	3	3	3	3	3	3	3	3	3	4	3	3	3	3	3	3	2	3	60
3	DINDA SAMHITA PANDE	3	3	3	3	3	3	3	3	3	2	3	4	3	4	3	3	3	2	3	3	60
4	ERO NANDA SAPUTRA	3	3	3	3	2	3	3	3	3	4	3	2	3	4	3	3	3	3	3	3	60
5	FITRIANA	3	4	4	4	4	4	4	4	2	2	2	4	3	0	2	2	3	3	2	3	59
6	GUSTI AGUNG AYU PRASINTYA PARAMITHA WETAN	4	3	3	3	2	3	3	3	3	4	3	2	4	3	2	2	3	3	3	3	59
7	I DEWA MADE SATRIYA WIBAWA	3	3	3	3	4	3	3	3	3	3	2	4	3	3	1	3	3	3	2	3	58
8	I GEDE BAGUS ARYA MERTA TIKA	4	3	3	3	3	3	3	3	3	2	3	3	4	3	4	2	2	2	3	2	58
9	I GUSTI BAGUS MADE BRAMANTA DANISWARA	4	3	4	3	3	4	3	3	2	1	2	3	4	3	2	3	3	3	2	3	58
10	I GUSTI GEDE AGUNG DWIPAYANA	4	3	3	3	2	2	3	3	3	4	3	2	4	3	1	3	3	3	3	3	58
11	I MADE GUNAWAN SINDHU NATA	2	2	2	2	2	2	2	2	2	4	2	2	2	3	1	4	4	4	2	4	50
12	I MADE RIZAL SANNUGRAHA	3	3	2	3	3	2	3	3	1	- 4	1	2	3	4	2	2	2	2	2	2	49
13	I PUTU AGUS ADI SASTRAWAN	2	2	2	2	4	2	2	1	2	2	2	4	2	3	3	3	3	3	2	3	49
14	I PUTU DIMASATYA WILWADANA	3	2	2	2	3	2	2	2	3	2	3	3	2	3	4	2	2	2	3	2	49
15	I PUTU GEDE WAHYU PUSABA	4	2	2	2	2	2	2	117	2	4	4	2	4	4	2	2	1	1	4	1	48
16	I PUTU WISMA PRAMA ARIANTA	2	3	2	3	2	2	3	3	1	2	1	2	2	4	3	3	3	4	1	3	49
17	IDA AYU DYAH PRADNYANDARI DEWI SUTA	2	3	2	3	3	2	3	3	2	3	2	3	2	3	2	2	2	2	2	2	48
18	KADEK KIRANA MAHARANI	3	2	2	2	3	3	2	_ 2	2	4	2	3	3	3	2	2	2	2	2	2	48
19	KOMANG RAI INDAH PERTIWI	2	3	2	3	3	2	3	3	2	2	2	3	2	3	3	2	2	2	2	2	48
20	KOMARIYAH	2	3	3	3	3	3	3	3	2	3	2	3	2	3	0	2	2	2	2	2	48
21	MAULANA ISHAQ	2	3	3	3	2	3	3	3	1	2	1	2	2	4	4	2	2	2	2	2	48
22	NI KOMANG ARI <mark>ST</mark> YADEWI	2	3	3	3	2	3	3	3	2	4	2	2	2	2	2	2	2	2	2	2	48
23	NI LUH PUTU PU <mark>TR</mark> I BAJRA DANI	2	2	2	2	3	2	2	2	2	3	2	3	2	3	2	3	3	3	2	3	48
24	NI LUH PUTU SA <mark>IR</mark> A PUTRI PRAMESWARI	1	2	2	2	3	2	2	2	2	3	2	3	1	3	3	3	3	3	2	3	47
25	NI LUH PUTU VID <mark>ya</mark> Kusumayanti	2	2	3	2	2	3	2	2	1	2	1	2	2	2	2	4	4	4	1	4	47
26	NI MADE DESI PUTRI RAHAYU	1	2	2	2	4	2	2	2	2	-4	2	4	1	3	3	2	2	2	2	2	46
27	NI MADE MAHA LAKSMI	1	3	3	3	3	3	-3	3	2	2	2	2	1	3	2	2	2	2	2	2	46
28	NI MADE SINTIA PRAD <mark>ny</mark> a Dewi	2	3	3	3	2	3	3	2	2	3	2	2	2	3	1	2	2	2	2	2	46
29	NI PUTU DIAH ARISANI	2	3	3	3	3	3	3	2	2	1	2	3	0	3	2	2	2	2	2	2	45
30	NI PUTU RISKA YANTI	2	2	2	2	3	2	2	2	2	4	2	3	2	3	2	2	2	2	2	2	45
31	OKTORIANCE EDOWAI	2	3	3	3	3	3	3	3	2	3	2	3	2	3	0	2	1	1	2	1	45
32	PANDE NYOMAN LIANA CANTIKA FINARTI	3	2	2	2	3	2	2	2	2	1	2	1	3	3	1	3	3	3	2	3	45
33	R.M.RENALDI ANGGA FIRMANSAH	-1	2	3	2	4	3	2	2	2	3	2	3	0	3	3	2	2	2	2	2	45
34	NI MADE RITA WIDIANI*	2	2	2	2	4	2	2	2	2	1	2	4	2	3	2	2	2	2	2	2	44
35	NI KADEK MIRA PRASTYA DEWI*	2	2	3	2	4	3	2	2	1	2	1	4	2	3	2	2	2	2	1	2	44
36	MADE PANDE WISMA PRAYOGA*	2	2	2	2	3	2	2	2	2	3	2	3	2	3	2	2	2	2	2	2	44

2.2 Analisis Indeks Daya Beda dan Tingkat Kesukaran Butir Tes Keterampilan Berpikir Kritis

KELAS ATAS (Ranking 1-28 Teratas)

			1									ſ					l					
1	ADE PRASETYA PUTRA WIBAWA	4	3	3	3	4	3	4	3	3	4	4	4	4	4	4	4	4	3	4	3	72
2	ANAK AGUNG AYU SRI WULANDARI	2	4	4	4	4	4	4	4	4	3	3	4	2	3	4	4	3	4	3	4	71
3	BAGUS MADE DHARMA SATYA PARAMAHAMSA	3	4	4	4	4	4	4	3	4	3	4	4	3	3	2	3	3	3	4	3	69
4	DEBORA AYU JESSICA PUTRI	3	4	4	4	3	4	4	4	4	3	4	3	3	3	4	2	2	2	4	2	66
5	DESAK GEDE FITRI PATRICIA	3	3	3	3	3	3	3	3	3	2	4	3	3	4	3	4	4	4	4	4	66
6	DESTA CHRISTINA FONATABA	4	4	4	4	3	4	4	3	4	3	2	4	4	2	4	3	3	2	2	3	66
7	GUSTI AYU AGUNG MANIK PURWANTINI	4	3	3	3	4	3	3	3	3	4	3	3	4	4	3	3	3	3	3	3	65
8	GUSTI AYU MADE NANDA FRISKA DEWI	1	2	4	4	3	4	4	4	4	2	4	2	1	3	4	3	3	3	4	3	62
9	I GEDE BAGAS ALBI PRAMUDYA	4	4	4	4	3	4	4	4	3	2	3	2	1	4	1	3	3	3	3	3	62
10	I GEDE RAMADHITA RAHAJENG JELANTIK	4	3	3	3	4	2	3	3	3	4	3	- 4	4	3	3	2	2	2	3	2	60
11	A.A. NGURAH DHARMA KUSUMA A	3	4	4	4	3	4	4	4	2	2	2	3	3	4	4	2	2	2	2	2	60
12	ALFRED JOANDRA PRAT <mark>OY</mark> O PUTRA	3	3	3	3	3	3	3	3	3	3	3	4	3	3	3	3	3	3	2	3	60
13	DINDA SAMHITA PANDE	3	3	3	3	3	3	3	3	3	2	3	4	3	4	3	3	3	2	3	3	60
14	ERO NANDA S <mark>AP</mark> UTRA	3	3	3	3	2	3	3	3	3	4	3	2	3	4	3	3	3	3	3	3	60
15	FITRIANA	3	4	4	4	4	4	4	4	2	2	2	4	3	0	2	2	3	3	2	3	59
16	GUSTI AGUNG AYU <mark>PR</mark> ASINTYA PARAMITHA WETAN	4	3	3	3	2	3	3	3	3	4	3	2	4	3	2	2	3	3	3	3	59
17	I DEWA MADE S <mark>ATR</mark> IYA WIBAWA	3	3	3	3	4	3	3	3	3	3	2	4	3	3	1	3	3	3	2	3	58
18	I GEDE BAGUS ARYA MERTA TIKA	4	3	3	3	3	3	3	3	3	2	3	3	4	3	4	2	2	2	3	2	58
19	I GUSTI BAGUS MADE BRAMANTA DANISWARA	4	3	4	3	3	4	3	3	2	1	2	3	4	3	2	3	3	3	2	3	58
20	I GUSTI GEDE AGUNG D <mark>WIP</mark> AYANA	4	3	3	3	2	2	3	3	3	4	3	2	4	3	1	3	3	3	3	3	58
21	ANAK AGUNG SAGUNG MIRAH INDIRA WARDHANA	3	3	3	3	3	3	3	3	3	4	3	3	3	3	3	2	2	2	3	2	57
22	ARTHUR DWIE YURINDA	2	4	3	4	4	3	4	4	2	3	2	4	2	3	2	2	2	2	2	2	56
23	DEWA AYU WINA SARASWATI	2	3	3	3	3	3	3	3	2	3	3	3	2	3	2	3	3	3	3	3	56
24	GEDE ODIANGGA KASIKA WIJAYA	3	3	3	3	3	2	3	3	2	3.	2	3	3	3	2	3	3	3	2	3	55
25	GUSTI AYU MADE KUMALA CIPTA DEWI	3	3	3	3	3	2	2	3	3	4	3	2	3	4	3	2	2	2	3	2	55
26	I DEWA AYU CINTYA DHAMAYANTI	3	3	3	3	2	3	3	2	3	2	3	2	3	3	3	3	3	3	2	3	55
27	I DEWA GDE SRIWISNU AJI KESAWA	2	3	3	3	2	2	3	2	3	2	3	2	2	3	1	4	4	4	3	4	55
28	I GEDE DEDY SETIAWAN	2	3	2	3	4	2	3	3	2	3	2	4	2	3	2	3	3	3	2	3	54
	JUMLAH	86	91	92	93	88	87	93	89	82	81	81	87	83	88	75	79	80	78	79	80	

KELAS BAWAH (Ranking 75-102 Terbawah)

75	I GUSTI AYU DYANKA NAMIRA PUTRI ARYA	2	2	2	2	3	2	2	2	2	3	2	3	2	4	1	2	2	2	2	2	44
76	I KADEK SANTIKA HARTAWAN	3	3	2	3	2	2	3	3	1	2	1	2	3	3	2	2	2	2	1	2	44
77	I KETUT GEDE ANANDA KUSUMA	1	1	2	2	3	2	2	2	2	3	2	3	1	2	2	3	3	3	2	3	44
78	KADEK DINDA WULAN PURNAMA	2	1	2	2	2	2	2	2	4	2	4	2	1	3	3	2	2	0	4	2	44
79	NI MADE RITA WIDIANI*	2	2	2	2	4	2	2	2	2	1	2	4	2	3	2	2	2	2	2	2	44
80	NI KADEK MIRA PRASTYA DEWI*	2	2	3	2	4	3	2	2	1	2	1	4	2	3	2	2	2	2	1	2	44
81	MADE PANDE WISMA PRAYOGA*	2	2	2	2	3	2	2	2	2	3	2	3	2	3	2	2	2	2	2	2	44
82	I MADE BAYU SASTRA WIGUNA	2	2	2	2	3	2	2	2	2	3	2	2	2	3	2	2	2	2	2	2	43
		4	1	1	1	3	1	1	1	2	3	2	3	4	3	3	2	2	2	2	2	
83	I MADE KRESNA DANA		-		_	20		-														43
84	I NYOMAN CITTA DIATMIKA	4	2	3	2	2	3	2	2	1	1	1	2	4	4	1	2	2	2	1	2	43
85	IDA AYU YANTI ADNYANI	2	1	2	2	2	2	2	2	2	4	2	2	2	3	3	2	2	2	2	2	43
86	KADEK LISTIA LIANTANIA	2	1	1	1	3	1	1	2	2	3	2	1	2	3	3	3	3	3	2	3	42
87	LUH KADE SURYA DWIANGGRENI	1	1	3	2	3	3	2	2	2	2	2	3	1	3	1	2	2	2	2	2	41
88	NI LUH WAYAN SUKARTINI	2	2	1	2	2	1	2	2	2	4	2	2	2	3	2	2	2	2	2	2	41
89	NI MADE DEWI PUSPITA SARI	2	2	2	2	3	2	2	2	2	2	2	3	2	3	3	1	1	1	2	1	40
90	NI MADE MUSTIKA WIDIARI	2	3	3	2	2	3	2	2	1	2	0	2	2	4	2	2	2	2	0	2	40
91	NI NYOMAN TRI ANDANI	2	1	2	2	4	2	2	2	2	2	2	4	2	0	3	1	1	1	2	1	38
92	NI PUTU RANI <mark>N</mark> ADYA SWARI	2	1	2	2	2	2	2	2	1	2	1	2	2	4	2	2	2	2	1	2	38
93	NI WAYAN SAV <mark>IT</mark> RI SATYAVATI	3	2	1	2	0	1	2	2	2	2	2	1	3	3	2	2	2	2	2	2	38
94	PUTU AYU SARININGSIH	2	3	2	3	2	2	3	3	1	3	1	2	0	3	3	1	1	1	1	1	38
95	PAULINA ARIANCE KLASJOK	2	2	2	2	3	2	2	2	2	3	2	3	2	3	3	0	0	0	2	0	37
96	PUTU AGUS PRATAMA PUTRA	3	1	2	2	2	2	2	2	1	3	1	2	3	4	2	1	1	1	1	1	37
97	PUTU BRAM ADI SANJAYA	1	2	2	2	1	2	2	2	2	2	2	0	1	3	2	2	2	2	2	2	36
98	PUTU GEDE AGUS ARTHA WIJAYA	2	2	1	2	3	1	2	2	2	3	2	3	2	3	1	0	0	0	2	0	33
99	NI PUTU VINA ADI FRIYANTIDEWI*	2	1	1	1	2	ī	1	1	2	1	2	0	2	0	2	3	3	3	2	3	33
100	RIO RAHONAHOLIL	1	1	2	2	3	2	2	2	2	3	2	3	1	3	1	0	0	0	2	0	32
101	I DEWA GEDE RADIKA SATRIA WIBAWA*	2	2	1	2	1	1	2	2	1	0	0	0	2	3	2	2	2	2	0	2	29
102	I GEDE EKO WIBAWA*	2	2	1	2	2	1	2	2	0	4	0	0	2	0	2	1	0	0	0	0	23
	JUMLAH	59	48	52	55	69	52	55	56	48	68	46	61	56	79	59	48	47	45	46	47	

								HA:	SIL ANALI	SIS IDB DA	AN IKB PER	R BUTIR SO	DAL							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
IDB	0.24107	0.38393	0.35714	0.33929	0.16964	0.3125	0.33929	0.29464	0.30357	0.11607	0.3125	0.23214	0.24107	0.08036	0.14286	0.27679	0.29464	0.29464	0.29464	0.29464
IKB	0.64732	0.62054	0.64286	0.66071	0.70089	0.62054	0.66071	0.64732	0.58036	0.66518	0.56696	0.66071	0.62054	0.74554	0.59821	0.56696	0.56696	0.54911	0.55804	0.56696

2.3 Analisis Konsistensi Internal Butir Tes Keterampilan Berpikir Kritis

HASIL UJI PRODUCT MOMEN DENGAN SPSS

		SOAL _1	SOAL_2	SOAL_3	SOAL_4	SOAL_5	SOAL_6	SOAL_7	SOAL_8	SOAL _9	SOAL_1
SOAL _1	Pearson Correlation	1	0.31723 7	0.21935	0.20864 7	0.03668	0.1886	0.23225 7	0.19655 7	0.2087	0.11393 9
	Sig. (2- tailed)		0.00115 9	0.02675	0.03533 7	0.71432 4	0.0 <mark>5764</mark> 7	0.01882	0.04770 1	0.0352 89	0.25417 7
	N	102	102	102	102	102	102	102	102	102	102
SOAL _2	Pearson Correlation	0.3172 37	1	0.62596 5	0.81768 6	0.16617	0.62877	0. <mark>84</mark> 455 1	0.76807 6	0.2429 43	0.03823 2
	Sig. (2- tailed)	0.0011 59		1.99E- 12	1.01E- 25	0.09508	1.48E- 12	7.02E- 29	7 4.52E- 21	0.0138 8	0.70282 7
	N	102	102	102	102	102	102	102	102	102	102
SOAL _3	Pearson Correlation	0.2193 53	0.62596 5	1	0.78010 8	0.23738	0.91275 1	0.7545 <mark>2</mark>	0.67337 7	0.3683 95	0.02842
	Sig. (2- tailed)	0.0267 53	1.99E- 12	5.15	4.35E- 22	0.01628 9	1.15E- 40	5.35E- 20	8.9E-15	0.0001 39	0.77675 1
	N	102	102	102	102	102	102	102	102	102	102
SOAL _4	Pearson Correlation	0.2086 47	0. <mark>8</mark> 1768 6	0.78 <mark>010</mark> 8	1	0.12651 1	0.68048 2	0.9 <mark>7</mark> 046 2	0.89332 8	0.4001 75	0.05323 6
	Sig. (2- tailed)	0.0353 37	1.01E- 25	4.35E- 22	1	0.20513	3.63E- 15	1.45E- 63	1.63E- 36	3.08E- 05	0.59513 4
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson Correlation	0.0366	0.16617	0.23738	0.12651		0.28012	0.16535 6	0.17989	0.2126	-0.0032
5	Sig. (2- tailed)	0.7143 24	0.16617	0.01628	0.20513		0.00435	0.09673	0.07041	0.0318 56	0.97456
	N	102	102	102	102	102	102	102	102	102	102
SOAL _6	Pearson Correlation	0.1886	0.62877	0.91275 1	0.68048	0.28012	1	0.70864 6	0.62006 9	0.2883 7	0.07972

	Sig. (2- tailed)	0.0576 47	1.48E- 12	1.15E- 40	3.63E- 15	0.00435		7.94E- 17	3.66E- 12	0.0032 91	0.42573 3
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.2322	0.84455	0.75452	0.97046	0.16535	0.70864	102	0.88436	0.3821	0.04497
7	Correlation	57	1	4	2	6	6	1	0.00430	96	6
·	Sig. (2-	0.0188	7.02E-	5.35E-	1.45E-	0.09673	7.94E-	•	7.35E-	7.37E-	-
	tailed)	25	29	20	63	6	17		35	05	0.65353
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.1965	0.76807	0.67337	0.89332	0.17989	0.62006	0.88436		0.2896	0.07350
_8	Correlation	57	6	7	8	1	9	1	1	43	5
	Sig. (2-	0.0477	4.52E-		1.63E-	0.07041	3.66E-	7.35E-		0.0031	0.46282
	tailed)	01	21	8.9E-15	36	9	12	35		49	1
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson		0.24294	0.36839	0.40017	<u> </u>	190	0.38219	0.28964		0.15556
_9	Correlation	0.2087	3	5	5	0.21269	0.28837	6	<i>y</i> 3	1	3
	Sig. (2-	0.0352	A	0.00013	3.08E-	0.03185	0.00329	7.37E-	0.00314		
	tailed)	89	0.01388	9	05	6	1	05	9		0.11846
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.1139	0.03823		0.05323		-	0.04497	0.07350	0.1555	
_10	Correlation	39	2	0.02842	6	-0.0032	0.07972	6	5	63	1
	Sig. (2-	0.2541	0.70282	0.77675	0.59513	0.97456	0.42573		0.46282	0.1184	
	tailed)	77	7	1	4	7	3	0.6 <mark>53</mark> 53	1	6	
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.2425	0. <mark>1</mark> 7101	0.25765	0.27536	0.18854	0.21112	0.2 <mark>8</mark> 927	0.18786	0.8717	0.22670
_11	Correlation	43	5	5	9	8	5	4	6	25	1
	Sig. (2-	0.0140	0.08569	0.00893	0.00509	0.05771	0.03316		0.05864	9.51E-	0.02194
	tailed)	43	4	8	2	8	8	0.00319	5	33	8
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.0733	0.25486	0.31943	0.22701	0.82635	0.36364	0.27620	0.21354	0.2483	0.03608
_12	Correlation	34	6	6	2	8	4	6	2	09	4
	Sig. (2-	0.4638	0.00973	0.00106	0.02176	1.11E-	0.00017	0.00495	0.03116	0.0118	0.71880
	tailed)	64	4	6	2	26	2	3	1	55	3
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.8266	0.22367	0.17507	0.11997		0.14146	0.14300	0.13491	0.0755	0.11926
_13	Correlation	07	3	6	1	0.03103	5	7	3	55	2

	Sig. (2-	1.04E-		0.07840	0.22972	0.75686	0.15611	0.15160	0.17639	0.4504	0.23251
	tailed)	26	0.02383	6	8	6	5	8	1	05	5
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.1944	0.16583	0.16981	0.12867	-	0.14416	0.12752	0.12477	0.0158	-
_14	Correlation	8	6	1	5	0.07111	3	6	8	31	0.01137
	Sig. (2-	0.0501	0.09575	0.08795	0.19743	0.47754	0.14829	0.20149	0.21146	0.8745	0.90968
	tailed)	49	8	4	3	1	1	9	3	17	3
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.0756	0.07618	0.12754	0.18253	0.06336	0.12449	0.17989	0.16541	0.3612	0.07937
_15	Correlation	59	1	2	2	7	9	1	5	17	3
	Sig. (2-	0.4497	1000	0.20143	0.06632	0.52691	0.21249	0.07041	0.09661	0.0001	0.42777
	tailed)	79	0.44665	9	5	3	4	8	6	92	7
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.1726	0.27381	0.21744	0.15307	0.10045	0.23927	0.21255	0.15621	0.1822	-
_16	Correlation	74	6	8		5	5	9	<u>y</u> 5	86	0.12342
	Sig. (2-	0.0826	0.00535	0.02813	0.12454	0.31509	0.01543	0.03196	0.11690	0.0666	
	tailed)	55	7	6	8	6	2	4	6	98	0.21651
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.1837	0.26724	0.24202	0.15466	0.12082	0.26289	0.21135	0.17302	0.1747	-
_17	Correlation	22	1	6	1	9	6	9	4	76	0.17497
	Sig. (2-	0.0645	0.00662	0.01425	0.12063	0.22638	0.00759	0.03296	0.08202	0.0789	0.07858
	tailed)	45	1	5	8	9	6	8	4	27	3
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.1299	0. <mark>2</mark> 8328	0.23364	0.15359	0.11927	0.25207	0.1 <mark>93</mark> 52	0.18263	0.0845	-
_18	Correlation	17	5	7	3	7	8	5	2	4	0.15266
	Sig. (2-	0.1931	0.00391	0.01810	0.12325	0.23245	0.01059		0.06617	0.3982	0.12557
	tailed)	06	3	6	4	5	1/	0.05131	4	18	7
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.2824	0.18368	0.27339	0.28964	0.17499	0.22647	0.30360	0.21899	0.8182	0.25899
_19	Correlation	53	2	2	2	9	1	9	1	81	8
	Sig. (2-	0.0040	0.06460	0.00543		0.07853	0.02208	0.00192	0.02701	8.69E-	0.00857
	tailed)	24	3	1	0.00315	9	7	2	1	26	6
	N	102	102	102	102	102	102	102	102	102	102
SOAL	Pearson	0.1583	0.28080	0.25602	0.17031	0.12082	0.27710	0.21135		0.1880	-
_20	Correlation	64	9	1	1	9	6	9	0.1892	4	0.18569

		Sig. (2-	0.1118	0.00425	0.00939		0.22638	0.00480	0.03296	0.05684	0.0584	0.06168
		tailed)	95	2	7	0.08701	9	9	8	3	07	1
		N	102	102	102	102	102	102	102	102	102	102
\	/AR00	Pearson	0.4809	0.68310	0.69960	0.68826	0.37564	0.66896		0.64698	0.6180	0.15701
C)21	Correlation	74	6	7	9	4	7	0.72298	1	51	1
		Sig. (2-	3.11E-	2.59E-	2.84E-	1.32E-		1.54E-		2.04E-	4.5E-	
		tailed)	07	15	16	15	0.0001	14	9.5E-18	13	12	0.11503
		N	102	102	102	102	102	102	102	102	102	102

		SOAL _11	SOAL _12	SOAL _13	SOAL _14	SOAL _15	SOAL _16	SOAL _17	SOAL _18	SOAL _19	SOAL _20	VAR00021
SOA L_1	Pearson Correlation	0.242 5	<mark>0</mark> .0733	0.8266	0.1945	0.0757	0.1727	0.1837	0.1299	0.2825	0.1584	0.481
	Sig. (2- tailed)	0.014	<mark>0.4639</mark>	1E-26	0.0501	0.4498	0.0827	0.0645	0.1931	0.004	0.1119	3E-07
	N	102	102	102	102	102	102	102	102	102	102	102
SOA L_2	Pearson Correlation	0.171	0.2549	0.2237	0.1658	0.0762	0.2738	0.2672	0.2833	0.1837	0.2808	0.6831
	Sig. (2- tailed)	0.085 7	0.0097	0.0238	0.0958	0.4467	0.0054	0.0066	0.0039	0.0646	0.0043	3E-15
	N	102	102	102	102	102	102	102	102	102	102	102
SOA L_3	Pearson Correlation	0.257 7	0.3194	0.1751	0.1698	0.1275	0.2174	0.242	0.2336	0.2734	0.256	0.6996
	Sig. (2- tailed)	0.008	0.0011	0.0784	0.088	0.2014	0.0281	0.0143	0.0181	0.0054	0.0094	3E-16
	N	102	102	102	102	102	102	102	102	102	102	102
SOA L_4	Pearson Correlation	0.275 4	0.227	0.12	0.1287	0.1825	0.1531	0.1547	0.1536	0.2896	0.1703	0.6883
	Sig. (2- tailed)	0.005	0.0218	0.2297	0.1974	0.0663	0.1245	0.1206	0.1233	0.0031	0.087	1E-15

	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.188										
L_5	Correlation	5	0.8264	0.031	-0.071	0.0634	0.1005	0.1208	0.1193	0.175	0.1208	0.3756
	Sig. (2-	0.057										
	tailed)	7	1E-26	0.7569	0.4775	0.5269	0.3151	0.2264	0.2325	0.0785	0.2264	0.0001
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.211										
L_6	Correlation	1	0.3636	0.1415	0.1442	0.1245	0.2393	0.2629	0.2521	0.2265	0.2771	0.669
	Sig. (2-	0.033		4				30.				
	tailed)	2	0.0002	0.1561	0.1483	0.2125	0.0154	0.0076	0.0106	0.0221	0.0048	2E-14
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.289	A	1	480.							
L_7	Correlation	3	0.2762	0.143	0.1275	0.1799	0.2126	0.2114	0.1935	0.3036	0.2114	0.723
	Sig. (2-	0.003	11:1			ALTAN)	4	N. P.X				
	tailed)	2	0.005	0.1516	0.2015	0.0704	0.032	0.033	0.0513	0.0019	0.033	9E-18
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.187	N.		180		A COL	N 5	000	7		
L_8	Correlation	9	<mark>0</mark> .2135	0.1349	0.1248	0.1654	0.1562	0.173	0.1826	0.219	0.1892	0.647
	Sig. (2-	0.058			124 1	7						
	tailed)	6	<mark>0.</mark> 0312	0.1764	0.2115	0.0966	0.1169	0.082	0.0662	0.027	0.0568	2E-13
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.871	100					10/1				
L_9	Correlation	7	0.2483	0.0756	0.0158	0.3612	0.1823	0.1748	0.0845	0.8183	0.188	0.6181
	Sig. (2-					A WITTE	17/3/9/	1				
	tailed)	1E-32	0.0119	0.4504	0.8745	0.0002	0.0667	0.0789	0.3982	9E-26	0.0584	4E-12
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.226	- A	1/4	1000	200	Jacob Na	. 9				
L_10	Correlation	7	0.0361	0.1193	-0.011	0.0794	-0.123	-0.175	-0.153	0.259	-0.186	0.157
	Sig. (2-	0.021		N. L.	- 100Min	4						
	tailed)	9	0.7188	0.2325	0.9097	0.4278	0.2165	0.0786	0.1256	0.0086	0.0617	0.115
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson											
L_11	Correlation	1	0.2152	0.0725	0.1096	0.2963	0.2102	0.1891	0.1052	0.957	0.1768	0.5963
	Sig. (2-											
	tailed)		0.0298	0.4692	0.273	0.0025	0.034	0.057	0.2925	2E-55	0.0755	4E-11

	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.215										
L_12	Correlation	2	1	0.1331	0.0618	0.0555	0.1023	0.1395	0.1074	0.1881	0.1395	0.468
	Sig. (2-	0.029										
	tailed)	8		0.1824	0.5371	0.5797	0.3062	0.1621	0.2824	0.0583	0.1621	7E-07
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.072					San Control					
L_13	Correlation	5	0.1331	1	0.1123	0.0287	0.1955	0.2014	0.1669	0.1079	0.1789	0.4119
	Sig. (2-	0.469		di di								
	tailed)	2	0.1824		0.2612	0.7749	0.0489	0.0423	0.0935	0.2806	0.0719	2E-05
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.109	A		180			P				
L_14	Correlation	6	0.0618	0.1123	1	0.0046	0.1283	0.123	0.1221	0.1535	0.109	0.2667
	Sig. (2-		11:11	1.50		altan)	-1	100	100			
	tailed)	0.273	0.5371	0.2612		0.9637	0.1989	0.2182	0.2214	0.1234	0.2756	0.0067
	N	102	102	102	102	102	102	102	102	<i></i> 102	102	102
SOA	Pearson	0.296	N. I	-	182		7 42%	N :	end.			
L_15	Correlation	3	<mark>0</mark> .0555	0.0287	0.0046	1	-0.044	-0.039	-0.073	0.2885	-0.039	0.2816
	Sig. (2-	0.002			23 4	7		3				
	tailed)	5	<mark>0.</mark> 5797	0.7749	0.9637	1///	0.6609	0.6941	0.4679	0.0033	0.6941	0.0041
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.210	The same	1	C.							
L_16	Correlation	2	0.1023	0.1955	0.1283	-0.044	1	0.9556	0.9 <mark>11</mark> 9	0.2016	0.9556	0.5933
	Sig. (2-						31322	A				
	tailed)	0.034	0.3062	0.0489	0.1989	0.6609		7E-55	2E-40	0.0422	7E-55	5E-11
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.189	7	1/4	Mr.	100	25.0	. 7	1			
L_17	Correlation	1	0.1395	0.2014	0.123	-0.039	0.9556	1	0.9423	0.1809	0.9876	0.6016
	Sig. (2-				Section 1		1000					
	tailed)	0.057	0.1621	0.0423	0.2182	0.6941	7E-55		3E-49	0.0688	3E-82	2E-11
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.105				_						_
L_18	Correlation	2	0.1074	0.1669	0.1221	-0.073	0.9119	0.9423	1	0.0959	0.9542	0.5546
	Sig. (2-	0.292	0.0007	0.000=	0.004.6	0.40=0	OF 15	0E 15		0.00=6	05 - /	. -
	tailed)	5	0.2824	0.0935	0.2214	0.4679	2E-40	3E-49		0.3376	3E-54	1E-09

	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson											
L_19	Correlation	0.957	0.1881	0.1079	0.1535	0.2885	0.2016	0.1809	0.0959	1	0.1681	0.6066
	Sig. (2-											
	tailed)	2E-55	0.0583	0.2806	0.1234	0.0033	0.0422	0.0688	0.3376		0.0912	1E-11
	N	102	102	102	102	102	102	102	102	102	102	102
SOA	Pearson	0.176					to.					
L_20	Correlation	8	0.1395	0.1789	0.109	-0.039	0.9556	0.9876	0.9542	0.1681	1	0.6003
	Sig. (2-	0.075		A				W.				
	tailed)	5	0.1621	0.0719	0.2756	0.6941	7E-55	3E-82	3E-54	0.0912		3E-11
	N	102	102	102	102	102	102	102	102	102	102	102
VAR												
0002	Pearson	0.596										
1	Correlation	3	0.468	0.4119	0.2667	0.2816	0.5933	0.6016	0.5546	0.6066	0.6003	1
	Sig. (2-											
	tailed)	4E-11	7E-07	2E-05	0.0067	0.0041	5E-11	2E-11	1E-09	1E-11	3E-11	
	N	102	102	102	102	102	102	102	102	102	102	102

2.4 Reliabilitas Tes Keterampilan Berpikir Kritis

Case Processing Summary

	-	N	%
Cases	Valid	102	100.0
	Excludeda	0	.0
	Total	102	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's	
Alpha	N of Items
.860	20
20	1224

Item-Total Statistics

				Cronbach's
	Scale Mean if	Scale Variance if		Alpha if Item
	Item Deleted	Item Deleted	Total Correlation	Deleted
SOAL_1	47.02	73.703	.401	.855
SOAL_2	47.05	71.136	.630	.847
SOAL_3	47.04	71.167	.650	.846
SOAL_4	46.98	72.237	.643	.847
SOAL_5	46.75	75.771	.296	.859
SOAL_6	47.07	71.728	.616	.848
SOAL_7	46.97	71.811	.682	.846
SOAL_8	47.05	72.998	.599	.849
SOAL_9	47.45	71.913	.555	.849
SOAL_10	46.95	78.641	.042	.872
SOAL_11	47.43	71.654	.525	.850
SOAL_12	46.91	73.349	.378	.857
SOAL_13	47.18	74.167	.315	.860
SOAL_14	46.49	77.322	.182	.863
SOAL_15	47.36	76.530	.178	.865
SOAL_16	47.16	72.173	.527	.850
SOAL_17	47.17	71.645	.532	.850
SOAL_18	47.21	72.086	.476	.852
SOAL_19	47.40	71.787	.540	.850
SOAL_20	47.17	71.665	.531	.850

2.5 Rekapitulasi Hasil Uji Coba Tes Keterampilan Berpikir Kritis

No Soal	Indeks Daya Beda Kriteria IDB IDB > 0,20		Indeks Kesukaran Butir Kriteria IKB IKB = 0,30 - 0,70 IKB Status		Krit	ensi Internal Butir eria KIB ang > 0,30 Status	Keputusan Digunakan/ Tidak Digunakan
1							D: 1
1	0.24	Rendah	0,64	Mudah	0,4809	Konsistensi	Digunakan
2	0,38	Rendah	0,62	Mudah	0,6831	Konsistensi	Digunakan
3	0,35	Rendah	0,64	Mudah	0,6996	Konsistensi	Digunakan
4	0,33	Rendah	0,66	Mudah	0,6882	Konsistensi	Digunakan
5	0,16	Sangat Rendah	0,70	Mudah	0,3756	Konsistensi	Tidak Digunakan
6	0,31	Rendah	0,62	Mudah	0,6689	Konsistensi	D <mark>ig</mark> unakan
7	0,33	Rendah	0,66	Mudah	0,7229	Konsistensi	D <mark>i</mark> gunakan
8	0,29	Rendah	0,64	Mudah	0,6469	Konsistensi	D <mark>i</mark> gunakan
9	0,30	Rendah	0,58	Sedang	0,6180	Konsistensi	Digunakan
10	0,11	Sangat Rendah	0,66	Mudah	0,1570	Revisi	Tidak Digunakan
11	0,31	Rendah	0,58	Sedang	0,5962	Konsistensi	Digunakan
12	0,23	Rendah	0,66	Mudah	0,4680	Konsistensi	Tidak Digunakan
13	0,24	Rendah	0,62	Mudah	0,4119	Konsistensi	Digunakan
14	0,08	Sangat Rendah	0,74	Mudah	0,2667	Revisi	Tidak Digunakan
15	0,14	Sangat Rendah	0,59	Sedang	0,2816	Revisi	Tidak Digunakan
16	0,27	Rendah	0,56	Sedang	0,5932	Konsistensi	Digunakan
17	0,29	Rendah	0,56	Sedang	0,6015	Konsistensi	Digunakan
18	0,29	Rendah	0,54	Sedang	0,5546	Konsistensi	Digunakan
19	0,29	Rendah	0,55	Sedang	0,6066	Konsistensi	Digunakan

Ī	20	0,29	Rendah	0,56	Sedang	0,6003	Konsistensi	Digunakan
1								

LAMPIRAN 3 PERANGKAT PEMBELAJARAN

Lampiran 3.1 Contoh RPP Kelas Eksperimen Pertama

Lampiran 3.2 Contoh RPP Kelas Kontrol

3.1 Contoh RPP Kelas Eksperimen Pertama

RENCANA PELAKSANAAN PEMBELAJARAN

(RPP)

KELAS EKSPERIMENT

Satuan Pendidikan : SMA Negeri 1 Tabanan

Mata Pelajaran : Fisika

Kelas/Semester : XI IPA/Ganjil

Materi Pokok : Gelombang Bunyi dan Cahaya

Alokasi Waktu : 2 JP (2 x 30 menit) Pertemuan Pertama

A. KOMPETENSI INTI

KI : Menghayati dan mengamalkan ajaran agama yang dianutnya

1

KI : Menghayati dan mengamalkan perilaku jujur, disiplin,
 tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai),
 santun, responsif dan pro aktif dan menunjukkan sikap sebagai bagian
 dari solusi atas berbagai permasalahan dalam berinteraksi secara

diri sebagai cerminan bangsa dalam pergaulan dunia.

KI : Mema<mark>h</mark>ami, menerapkan, menganalisis pengetahuan faktual

efektif dengan lingkungan sosial dan alam serta dalam menempatkan

konseptual, prosedural berdasarkan rasa ingintahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai

dengan bakat dan minatnya untuk memecahkan masalah.

KI: Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah

4 abstrak terkait dengan pengembangan dari yang dipelajarinya di seklah secara mandiri, dan mampu menggunakan metoda sesuai kaidah keilmuan.

B. KOMPETENSI DASAR

Kompetensi Dasar	Indikator Pencapaian Kompetensi				
3.10 Menerapkan konsep dan prinsip	3.10.1 Menjelaskan karakteristik				
gelombang bunyi dan cahaya dalam teknologi	gelom-bang bunyi				
	3.10.2 Menganalisis cepat rambat				
DYND	gelom-bang bunyi di berbagai				
TAS PEND	medium				
	3.10.3 Menganalisis azas Dopler				
4.10 Melakukan percobaan tentang	4.3.1 Melakukan demonstrasi				
gelombang bunyi dan/atau cahaya,	gelombang bunyi				
berik <mark>u</mark> t presentasi hasil dan makna					
fisisnya misalnya sonometer, dan					
kisi d <mark>i</mark> fraksi					

C. TUJUAN PEMBELAJARAN

Melalui pendekatan scientific dan model pembelajaran *Discovery learning*, siswa dituntut mampu menjelaskan karakteristik gelombang bunyi, menganalisis cepat rambat gelombang bunyi pada berbagai medium, sehingga siswa mampu menghayati dan mengamalkan ajaran agama yang dianutnya melalui bersyukur, menunjukan perilaku mandiri, dan mampu berkerjasama, dan dapat mengembangkan budaya literasi, keterampilan berfikir kritis, berkomunikasi berkolaborasi dan berkreasi

D. Materi Pembelajaran

Pengetahuan	1. Saat berteriak sambil memegang tenggorokan, maka kita
faktual	akan rasakan tenggorokan kita bergetar.
	2. Hand Phone yang dalam mode getar akan terdengar
	getaranya ketika bergetar
	3. Ketika senar gitar dipetik maka kita akan mendengar bunyi
	4. Kilat dan guntur bergetar secara bersama-sama tetapi kita
	selalu melihat kilat lebih dahulu baru kemudian mendengar
	bunyi gunturnya.
	5. Dua batu yang saling bertumbukan di bawah air dapat
	didengar oleh perenang di bawah permukaan
	6. Ketika mobil ambulans bergerak mendekati kita maka bunyi
	sirenenya makin tinggi dan semakin rendah ketika bergerak
	menjauhi kita
	7. Dengan telinga kita bisa mendengan bunyi
Konseptual	Bunyi adalah sebuah gelombang mekanik longitudinal yang
	menyebar melalui udara, air, dan medi <mark>a</mark> material
	lainnya.bunyi adalah bagian yang paling penting dalam
	kehidupan semua hewan tingkat tinggi, yang mempunyai
	organ khusus untuk menghasilkan dan mengetahui
1	gelombang ini. Yang berarti dari bunyi, hewan (khususnya
1	jantan) sangat mahir untuk berkomunikasi dengan yang lain
1	dan untuk memperoleh informasi tentang sekitarnya
	Gelombang bunyi mempunyai sifat-sifat gelombang yaitu
	dapat dipantulkan, dapat dibiaskan, dapat dipadukan, dan
	dapat dilenturkan.
	 Bunyi dapat merambat melalui medium padat, cair, dan gas.
	 Efek Doppler merupakan fenomena yang terjadi ketika
	sesuatu yang memancarkan suara atau cahaya bergerak
	relatif terhadap pengamat
Dungin	SIFAT-SIFAT UMUM GELOMBANG BUNYI
Prnsip	Bunyi sebagai gelombang mempunyai sifat-sifat sama
	dengan sifat-sifat dari gelombang yaitu :
	1. Gelombang bunyi memerlukan medium dalam
	perambatannya. Karena gelombang bunyi merupakan
	peramoatamiya. Karena gerombang bunyi merupakan

- gelombang mekanik, maka dalam perambatannya bunyi memerlukan medium. Hal ini dapat dibuktikan saat dua orang astronout berada jauh dari bumi dan keadaan dalam pesawat dibuat hampa udara, astronout tersebut tidak dapat bercakap-cakap langsung tetapi menggunakan alat komunikasi seperti telepon. Meskipun dua orang astronout tersebut berada dalam satu pesawat.
- 2. Gelombang bunyi mengalami pemantulan (*refleksi*). Salah satu sifat gelombang adalah dapat dipantulkan sehingga gelombang bunyi juga dapat mengalami hal ini. Hukum pemantulan gelombang: *sudut datang = sudut pantul* juga berlaku pada gelombang bunyi. Hal ini dapat dibuktikan bahwa pemantulan bunyi dalam ruang tertutup dapat menimbulkan *gaung*. Yaitu sebagian bunyi pantul bersamaan dengan bunyi asli sehingga bunyi asli terdengar tidak jelas. Untuk menghindari terjadinya gaung maka dalam bioskop, studio radio dan televisi, dan gedung konser musik dindingnya dilapisi zat peredam suara yang biasanya terbuat dari kain wol, kapas, gelas, karet, atau besi.
- 3. Gelombang bunyi mengalami pembiasan (*refraksi*). Salah satu sifat gelombang adalah mengalami pembiasan. Peristiwa pembiasan dalam kehidupan sehari-hari misalnya pada malam hari bunyi petir terdengar lebih keras daripada siang hari. Hal ini disebabkan karena pada pada siang hari udara lapisan atas lebih dingin daripada dilapisan bawah. Karena cepat rambat bunyi pada suhu dingin lebih kecil daripada suhu panas maka kecepatan bunyi dilapisan udara atas lebih kecil daripada dilapisan bawah, yang berakibat medium lapisan atas lebih rapat dari medium lapisan bawah. Hal yang sebaliknya terjadi pada malam hari. Jadi pada siang hari bunyi petir merambat dari lapisan udara atas kelapisan udara bawah.
- 4. Gelombang bunyi mengalami pelenturan (difraksi). Gelombang bunyi sangat mudah mengalami difraksi karena gelombang bunyi diudara memiliki panjang gelombang dalam rentang sentimeter sampai beberapa meter. Seperti yang kita ketahui, bahwa gelombang yang lebih panjang akan lebih mudah didifraksikan. Peristiwa difraksi terjadi misalnya saat kita dapat mendengar suara mesin mobil

- ditikungan jalan walaupun kita belum melihat mobil tersebut karena terhalang oleh bangunan tinggi dipinggir tikungan.
- 5. Gelombang bunyi mengalami perpaduan (*interferensi*). Gelombang bunyi mengalami gejala perpaduan gelombang atau interferensi, yang dibedakan menjadi dua yaitu *interferensi konstruktif* atau penguatan bunyi dan *interferensi destruktif* atau pelemahan bunyi. Misalnya waktu kita berada diantara dua buah loud-speaker dengan frekuensi dan amplitudo yang sama atau hampir sama maka kita akan mendengar bunyi yang keras dan lemah secara bergantian.

Cepat Rambat Bunyi

Bunyi merupakan gelombang longitudinal yang dapat merambat dalam medium padat, medium cair, atau medium gas. Cepat rambat bunyi bergantung pada sifat-sifat medium rambat. Cepat rambat bunyi dalam zat padat

Cepat rambat bunyi dalam zat padat bergantung pada modulus Young dan massa jenis zat padat.

$$v = \sqrt{\frac{E}{\rho}}$$

 Cepat rambat bunyi dalam zat cair
 Cepat rambat bunyi dalam zat padat bergantung pada modulus Bulk dan massa jenis zat cair.

$$v = \sqrt{\frac{B}{\rho}}$$

 Cepat rambat bunyi dalam zat gas
 Cepat rambat bunyi dalam zat padat bergantung pada suhu dan massa jenis zat gas.

$$v = \sqrt{\gamma \frac{RT}{\rho}}$$

Efek Doppler

Frekuensi bunyi dari klakson sebuah mobil yang melaju akan terdengar lebih tinggi saat mendekat. Sebaliknya frekuensi bunyi akan lebih rendah saat mobil menjauh. Peristiwa ini yang disebut efek doppler. Secara umum persamaan efek doppler ditulis sebagai berikut.

$$f_p = \frac{v \pm v_p}{v \pm v_s} \times f_s$$

Aturan menentukan tanda (+) dan (-) adalah sebagai berikut.

1. Jika pendengar p mendekati sumber, tanda v_s positif

2. Jika pendengar p menjauhi sumber, tanda v_s negatif

3. Jika sumber s mendekati pendengar, tanda v_p negatif

Jika sumber s mendekati pendengar, tanda v_p positif

E. Metode Pembelajaran

Pendekatan : Scientific

Model : Discovery learning

Metode : Studi pustaka, diskusi/tanya jawab, dan praktikum

F. Media dan Sumber Belajar

Media : Powerpoint, WhatsApp, Meet, Google Classroom, Google

Form, LKS, Kuis

Alat : *Smartphone*/laptop/PC dan alat-alat tulis

Sumber belajar : Tim Penyusun Buku Pintar Belajar Fisika kelas XII-A.

Sagufindo

Kinarya

G. Langkah-Langkah Pembelajaran

Kegiatan	Sintaks Model Discovery learning	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
In-C	lass			
Pendahulu an		 Guru dan siswa mengucapkan salam. Guru melakukan absensi. Guru menyampaikan tujuan pembelajaran yang ingin dicapai serta materi yang akan diajarkan. Guru menanyakan apakah siswa telah menonton dan memahami video tentang karakteristik gelombang bunyi 	Karakter: Rasa ingin tahu Tanggungjawab Kritis Karakter: Rasa ingin tahu Tanggungjawab Kritis	10 menit
Kegiatan Inti	Menemuk an masalah	serta efek dopler 1. Siswa diminta mencermati sebuah cerita pada LKS 01 yang diberikan oleh guru untuk menemukan masalah dari cerita tersebut	Karakter: Rasa ingin tahu Pendekatan: Mengumpulkan informasi Mengamati	45 menit
	Mendefini sikan masalah	Siswa merumuskan masalah yang ditemukan	Karakter: Rasa ingin tahu Tanggungjawab Kritis	
	Menyusu n dugaan sementar a	Siswa mengajukan dugaan sementara (hipotesis) terkait dengan masalah cepat rambat bunyi pada berbagai medium	Karakter: Kritis, tanggungjawab Pendekatan: Mengasosiasi, menalar, mengkomunikas	

Kegiatan	Sintaks Model Discovery learning	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
	Mengump ulkan fakta- fakta	Siswa mengumpulkan fakta-fakta melalui sumber belajar (buku, internet, dan portal belajar lainnya) sesuai dengan panduan LKS 01	ikan Karakter: Rasa ingin tahu, kritis, jujur	
	Pembukti an Permasal ahan	1. Siswa menyempurnakan kembali permasalahan yang telah dipecahkan dan pembuktian disesuaikan dengan penyelidikan dan fakta-fakta yang telah diperoleh.	Karakter: Kritis, tanggungjawab, bekerjasama Pendekatan: Mengasosiasi,	
	Menyimp ulkan permasal ahan	Siswa menyimpulkan permasalahan sebanyak mungkin berdasarkan verifikasi	Karakter: Kritis, tanggungjawab Pendekatan: Mengasosiasi	
Penutup		 Guru menyampaikan rencana pembelajaran selanjutnya. Guru dan siswa mengucapkan salam penutup. 		5 menit

H. Penilaian Hasil Pembelajaran

> Pengetahuan

a. Teknik Penilaian : Tes tertulisb. Bentuk Instrumen : Soal uraian

c. Jenis : LKS

No.	Indikator	Butir
1	Menjelaskan karakteristik gelom-bang bunyi Menganalisis cepat rambat gelom-bang bunyi di berbagai medium Menganalisis azas Dopler	1-2

Instrumen: lampiran 3

> Keterampilan

a. Teknik Penilaian: Observasi

b. Bentuk Instrumen: Lembar observasi

c. Aspek penilaian keterampilan pada saat diskusi

No.	Indikator	Butir Instrumen
1.	Pelaksanaan diskusi	1
2.	Menyimpulkan hasil diskusi	2
3.	Mempresentasikan hasil diskusi	3
4.	Menyerahkan hasil diskusi sesuai dengan waktu yang telah ditentukan	4

LAMPIRAN 1

ANGKET PENILAIAN DIRI KELAS XI MIPA SMA NEGERI 1 TABANAN TAHUN PELAJARAN 2020/2021

Petunjuk!

- 1. Pernyataan-pernyataan berikut merupakan tanggapan atau pendapat anda terhadap proses pembelajaran pada materi rangkaian arus searah.
- 2. Tugas anda adalah memberi tanggapan atau pendapat terhadap pernyataan yang diajukan dengan memberi tanda (√) pada salah satu pilihan yang sesuai dengan penilaian anda tentang kebenaran pernyataan tersebut. Pilihan-pilihan tersebut adalah:

SS	SR	KK	JS	TP

Keterangan

SS = Sangat Sering, S = Sering, KK = Kadang-kadang, JS = Jarang sekali, TP = Tidak pernah

- 3. Pilihan-pilihan dalam pernyataan-pernyataan tersebut tidak ada satupun yang merupakan pilihan benar.
- 4. Pilihan yang benar adalah pilihan yang sesuai dengan pendapat anda sendiri, bukan atas pendapat teman anda yang lain.
- 5. Jawaban anda tidak akan mempengaruhi prestasi belajar anda di sekolah. Oleh sebab itu, anda dimohon membaca setiap pernyataan dengan seksama dan mengisi pilihan dengan sejujur-jujurnya.

NIS:	<u> </u>		
DAFTAR PERNYAT	AAN PENILAIAN D	IRI PADA PEMREI	AIARA

Nama:.....

DAFTAR PERNYATAAN PENILAIAN DIRI PADA PEMBELAJARAN FISIKA RANGKAIAN ARUS SEARAH

No.	Daftar Pernyataan			Respon	n		
110.		SS	SR	KK	JS	TP	
1.	Saya kagum kepada Tuhan atas penciptaan manusia yang mampu menemukan kuat arus listrik, hambatan, beda potensial, dan rangkaian arus tertutup.	5					
2.	Saya mengejakan tugas individu dengan baik	\leq					
3.	Saya tidak berani mengambil resiko atas tindakan yang sudah dilakukan	8					
4.	Saya mengembalikan barang yang dipinjam	3,					
5.	Saya meminta maaf atas kesalahan yang dilakukan						
No.	Daftar Pernyataan	Respon					
2,00	2 32 33 2 3 - 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	SS	SR	KK	JS	TP	
1.	Saya menyontek dalam mengerjakan ujian/ulangan/tugas						
2.	Saya tidak pernah melakukan plagiat dalam						

	mengerjakan setiap tugas			
3.	Saya melaporkan data hasil percobaan atau informasi apa adanya			
4.	Saya enggan mengakui kesalahan atau kekurangan yang dimiliki			
5.	Saya merapikan semua alat praktikum yang sudah digunakan			
6.	Saya tidak pernah mengotori lingkungan			

Kritik dan Saran

Tulislah kritik dan saran anda tentang pembelajaran fisika yang dilakukan oleh guru anda untuk lebih meningkatkan kualitas pembelajaran fisika selanjutnya.

Kritik		5(111)2	1		
				<mark>.</mark>	
	200	A STATE OF THE PARTY OF THE PAR			
Saran				J	
				V. //	

RUBRIK PENILAIAN Rubrik Penilaian Pernyataan Positif

Respons	Skor
Sangat Sering (SS)	5
Sering (SR)	4
Kadang-Kadang (KK)	3
Jarang Sekali (JS)	2
Tidak Pernah (TP)	1

Rubrik Penilaian Pernyataan Negatif

Respons	Skor
Sangat Sering (SS)	1
Sering (SR)	2
Kadang-Kadang (KK)	3
Jarang Sekali (JS)	4
Tidak Pernah (TP)	5

LAMPIRAN 1

Pedoman Observasi Penilaian Sikap

No		redoman Observasi remialan sikaj	Rentang Skor					
•	Aspek	Kriteria		2	3	4	5	
			1	_		-		
1.	Rasa Ingin	Mampu bertanya dan mengeksplorasi						
	Tahu	informasi dari berbagai sumber						
2.	T7. •	Mampu bekerja sama dengan teman						
	Kerja sama	dalam kelompok						
3.	Tanggung	Mampu bertanggungjawab atas tugas						
	jawab	yang diberikan						
4.		Mampu kritis dalam						
	Kritis	mengasosiasi/menganalisis data dan						
		menanggapi						
	5 = sangat bai	k/sangat sering	4					
	4 = baik/serin		色		1			
3 = cukup								
2 = kurang/jarang								
	1 = sangat kur	rang/sangat jarang			ga"			

Keterangan:

1. Skor Maksimal:
$$4 \times 5 = 20$$

1. Skor Maksimal :
$$4 \times 5 = 20$$

2. $Nilai = \frac{Jumlah\ Skor}{Skor\ Maksimal} \times 100$

3. Nilai sikap dikualifikasi menjadi predikat sebagai berikut:

$$SB = Sangat \ Baik = 80 - 100$$
 $C = Cukup = 60 - 69$ $B = Baik = 70 - 79$ $K = Kurang = <60$

LAMPIRAN 2
Rubrik Penilaian Keterampilan Proses Sains:

Aspek Penilaian	3	2	1
Merumuskan masalah	Rumusan masalah sesuai konsep dan inovatif	Rumusan masalah sesuai konsep	Rumusan masalah tidak sesuai konsep
Merumuskan hipotesis	Rumusan pertanyaan sesuai konsep dan mengarah pada tahapan aktivitas mencoba	Rumusan pertanyaan sesuai konsep	Rumusan pertanyaan tidak sesuai konsep
Merancang dan melakukan percobaan	Melakukan percobaan sesuai langkah kerja, data yang diperoleh dianalisis dengan baik	Melakukan percobaan sesuai langkah kerja, analisis data belum optimal	Melakukan percobaan tidak sesuai langkah kerja
Mengumpu <mark>l</mark> kan dan mengol <mark>a</mark> h data	Data yang diperoleh sesuai, pengolahan data sistematis	Data yang diperoleh sesuai, namun pengolahan data kurang sistematis	Data yang diperoleh tidak sesuai, dan pengolahan data tidak sistematis
Menginterpretasi hasil analisis data dan pembahasan	Pembahasan tepat dan efektif	Pembahasan kurang tepat dan kurang efektif	Pembahasan tidak tepat dan tidak efektif
Menarik kesimpulan	Simpulan sesuai tujuan percobaan	Simpulan kurang sesuai tujuan percobaan	Simpulan tidak sesuai tujuan percobaan

Keterangan:

a. Skor Maksimal : $3 \times 5 = 15$ b. $Nilai = \frac{Jumlah\ Skor}{Skor\ Maksimal} \times 100$ c. Nilai sikap dikualifikasi menjadi predikat sebagai berikut:

$$SB = Sangat \ Baik = 80 - 100$$

C = Cukup = 60 - 69

$$B = Baik = 70 - 79$$

K = Kurang = <60

Lampiran 3

Lembar Kerja Siswa (LKS) 01

Materi Pokok : Gelombang Bunyi dan Cahaya

Kelas/Semester : XI MIPA/II

Alokasi Waktu : 45 menit

(Nama & No Absen)

1.

Indikator Pencapaian Kompetensi

- 3.10.1 Menjelaskan karakteristik gelombang bunyi
- 3.10.2 Menjelaskan sifat-sifat gelombang bunyi
- 3.10.3 Menganalisis cepat rambat gelombang bunyi
- 4.10.1 Melaksanakan diskusi untuk mengukur cepat rambat bunyi diudara
- 4.10.2 Melaksanakan presentasi tentang karakteristik, sifat dan cepat rambat gelombang bunyi diudara

A. Permasalahan

Mirah sedang berada di dalam aula sekolah untuk mengatur dekorasi ruangan yang akan digunakan untuk acara ulang tahun sekolah. Sementara Icha berada di halaman sekolah untuk mempersiapkan upacara pembukaan. Mirah bermaksud meminta Icha untuk memasang paku di tembok aula agar dapat digunakan untuk menggantung beberapa hiasan. Mirah kemudian menelepon Icha, tetapi suara telepon dari Mirah tidak terdengar oleh Icha karena ia meletakkan *Handphone* nya dibawah kain dekorasi.

R	Ida	nti	fil	kasi	M	[၁၄၁]	lah
D.	1(16	.		Kası	IVI	454	1411

Definisikan permasalahan dengan membuat daftar pertanyaan terkait permasalahan yang disajikan!

No	Permasalahan	
1		
2		
3		
4		
C. Me	erumuskan Hipotesis	
	T S' STEETA E 7	
D. Me	engum <mark>p</mark> ulkan fakta-fakta	
1	Yang diketahui dari masalah:	
2	Yang ingin diketahui dari masalah:	
3	Yang harus dicari dari masalah:	

E. Penyelidikan

I. Judul Percobaan: Perambatan Gelombang Bunyi

II. Alat dan Bahan

- 1. Handphone
- 2. Toples

III. Langkah-langkah percobaan

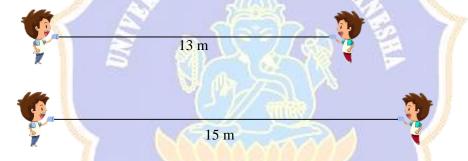
- 1. Atur *handphone* agar berbunyi setelah 1 menit sejak pengaturan.
- 2. Letakkan di atas meja dan tunggu sampai berbunyi
- 3. Ulangi langkah 1 dan 2 sebanyak 3 kali
- 4. Atur handphone seperti langkah 1
- 5. Letakkan *handphone* di atas meja, kemudian tutup dengan menggunakan toples, tunggu sampai berbunyi.
- 6. Ulangi langkah 4 dan 5 sebanyak 3 kali
- 7. Bandingkan kekerasan bunyi *handphone* yang terbuka pada langkah 1, 2, dan 3 dengan kekerasan bunyi *handphone* yang tertutup pada langkah 4, 5, dan 6.

IV. Data Hasil Percobaan

Keadaan weker/ <i>handphone</i>	Suara yang di dengar
Terbuka	
Tertutup	

F. Pembuktian permasalahan

Lakukan	pembuktian	permasalahan	sesuai	dengan	takta-takta	yang	telah
ditemuka	n!						


G. Menyimpulkan

Menyimpulkan permasalahan yang telah didapat!

QUIS

1. Yasana dan Yudik sedang mengenang masa kecil mereka pada tahun 2001 saat *smart phone* belum ada seperti saat ini. Mereka ingat pada saat itu mereka bermain telepon-teleponan buatan mereka sendiri menggunakan gelas plastik yang dihubungkan dengan karet gelang. Jari-jari karet gelang sebesar 0,1 mm dengan massa jenis sebesar 27 x 10^2 Kg/m³. Saat itu, agar terdengar suara yang jelas, mereka menarik "telepon" tersebut dengan gaya sebesar 4N sehingga karet gelang bertambah panjang seperti gambar 3 ($\sigma = 1,27x10^8N/m^2$, e = 0,15).

Analisislah cepat rambat gelombang bunyi yang merambat pada karet tersebut!

Kunci Jawaban LKS 01

Memahami masalah

Diketahui:

Jari-jari karet (r) = $0.1 \text{ mm} = 1 \times 10^{-4} \text{m}$

Massa jenis karet (ρ) = 27 x 10² Kg/m³

$$F = 4N$$

$$l_0 = 13 \text{ m}$$

$$1 = 15 \text{ m}$$

Ditanya: cepat rambat bunyi pada karet

Merancang dan merencanakan solusi

$$v = \sqrt{\frac{E}{\rho}}$$

$$E = \frac{\sigma}{e}$$

$$\sigma = \frac{F}{A} \operatorname{dan} e = \frac{\Delta l}{l_0}$$

$$A = \pi r^2$$

Menyelesaikan rencana pemecahan

$$A = \pi r^2$$

$$A = 3.14(1 \times 10^{-4})^2$$

$$A = 3.14 \times 10^{-8} m^2$$

$$\sigma = \frac{F}{A} = \frac{4}{3,14 \times 10^{-8} m^2}$$

$$\sigma = 1.27x \ 10^8 N/m^2$$

$$e = \frac{\Delta l}{l_0} = \frac{15 - 13}{13} = 0.15$$

$$E = \frac{\sigma}{e} = \frac{1,27x \cdot 10^8}{0,15} = 8,87x \cdot 10^8$$

$$v = \sqrt{\frac{E}{\rho}} = \sqrt{\frac{8,87x \cdot 10^8}{27 \times 10^2}}$$

$$v = \sqrt{0.31x \ 10^6} = 560 \ m/s$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cepat rambat gelombang bunyi yang merambat pada karet adalah sebesar $560 \ m/s$

3.2 Contoh RPP Kelas Kontrol

RENCANA PELAKSANAAN PEMBELAJARAN

(RPP)

KELAS KONTROL

Satuan Pendidikan : SMA Negeri 1 Tabanan

Mata Pelajaran : Fisika

Kelas/Semester : XI IPA/Ganjil

Materi Pokok : Gelombang Bunyi dan Cahaya

Alokasi Waktu : 2 JP (2 x 30 menit) Pertemuan Pertama

A. KOMPETENSI INTI

KI 1: Menghayati dan mengamalkan ajaran agama yang dianutnya

- KI 2 : Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
- KI3: Memahami, menerapkan, menganalisis pengetahuan faktual konseptual, prosedural berdasarkan rasa ingintahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- KI 4 : Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di seklah secara mandiri, dan mampu menggunakan metoda sesuai

kaidah keilmuan.

B. KOMPETENSI DASAR

Kompetensi Dasar	Indikator Pencapaian Kompetensi
3.10 Menerapkan konsep dan prinsip	3.10.4 Menjelaskan karakteristik gelom-
gelombang bunyi dan cahaya dalam teknologi	bang bunyi
	3.10.5 Menganalisis cepat rambat gelom-
	bang bunyi di berbagai medium
	3.10.6 Menganalisis azas Dopler
4.10 Melakukan percobaan tentang	4.3.2 Melakukan demonstrasi
gelombang bunyi dan/atau	gelombang b <mark>un</mark> yi
cahaya, berikut presentasi hasil	
dan makna fisisnya misalnya	
sonometer, dan kisi difraksi	

C. TUJUAN PEMBELAJARAN

Melalui pendekatan scientific dan model pembelajaran *Direct instruction*, siswa dituntut mampu menjelaskan karakteristik gelombang bunyi, menganalisis cepat rambat gelombang bunyi pada berbagai medium, sehingga siswa mampu menghayati dan mengamalkan ajaran agama yang dianutnya melalui bersyukur, menunjukan perilaku mandiri, dan mampu berkerjasama, dan dapat mengembangkan budaya literasi, kemampuan berfikir kritis, berkomunikasi berkolaborasi dan berkreasi

D. Materi Pembelajaran

Pengetahuan	. Saat berteriak sambil memegang tenggorokan, maka kita			
faktual	akan rasakan tenggorokan kita bergetar.			
	Hand Phone yang dalam mode getar akan terdengar getaran			
	ketika bergetar			
	0. Ketika senar gitar dipetik maka kita akan mer	ıdengar bunyi		
	1. Kilat dan guntur bergetar secara bersama-sam	a tetapi kita		

selalu melihat kilat lebih dahulu baru kemudian mendengar bunyi gunturnya. 12. Dua batu yang saling bertumbukan di bawah air dapat didengar oleh perenang di bawah permukaan 13. Ketika mobil ambulans bergerak mendekati kita maka bunyi sirenenya makin tinggi dan semakin rendah ketika bergerak menjauhi kita 14. Dengan telinga kita bisa mendengar bunyi Konseptual Bunyi adalah sebuah gelombang mekanik longitudinal yang melalui udara, air, dan media menyebar lainnya.bunyi adalah bagian yang paling penting dalam kehidupan semua hewan tingkat tinggi, yang mempunyai organ khusus untuk menghasilkan dan mengetahui gelombang ini. Yang berarti dari bunyi, hewan (khususnya jantan) sangat mahir untuk berkomunikasi dengan yang lain dan untuk memperoleh informasi tentang sekitarnya Gelombang bunyi mempunyai sifat-sifat gelombang yaitu dapat dipantulkan, dapat dibiaskan, dapat dipadukan, dan dapat dilenturkan. Bunyi dapat merambat melalui medium padat, cair, dan gas. Efek Doppler merupakan fenomena yang terjadi ketika sesuatu yang memancarkan suara atau cahaya bergerak relatif terhadap pengamat SIFAT-SIFAT UMUM GELOMBANG BUNYI **Prnsip** Bunyi sebagai gelombang mempunyai sifat-sifat sama dengan sifat-sifat dari gelombang yaitu: 6. Gelombang bunyi memerlukan medium dalam Karena perambatannya. gelombang bunyi merupakan gelombang mekanik, maka dalam perambatannya bunyi memerlukan medium. Hal ini dapat dibuktikan saat dua orang astronout berada jauh dari bumi dan keadaan dalam pesawat dibuat hampa udara, astronout tersebut tidak dapat bercakap-cakap langsung tetapi menggunakan alat komunikasi seperti telepon. Meskipun dua orang astronout tersebut berada dalam satu pesawat. 7. Gelombang bunyi mengalami pemantulan (refleksi). Salah satu sifat gelombang adalah dapat dipantulkan sehingga gelombang bunyi juga dapat mengalami hal ini. Hukum

- pemantulan gelombang: sudut datang sudut pantul juga berlaku pada gelombang bunyi. Hal ini dapat dibuktikan bahwa pemantulan bunyi dalam ruang tertutup dapat menimbulkan gaung. Yaitu sebagian bunyi pantul bersamaan dengan bunyi asli sehingga bunyi asli terdengar tidak jelas. Untuk menghindari terjadinya gaung maka dalam bioskop, studio radio dan televisi, dan gedung konser musik dindingnya dilapisi zat peredam suara yang biasanya terbuat dari kain wol, kapas, gelas, karet, atau besi.
- 8. Gelombang bunyi mengalami pembiasan (refraksi). Salah satu sifat gelombang adalah mengalami pembiasan. Peristiwa pembiasan dalam kehidupan sehari-hari misalnya pada malam hari bunyi petir terdengar lebih keras daripada siang hari. Hal ini disebabkan karena pada pada siang hari udara lapisan atas lebih dingin daripada dilapisan bawah. Karena cepat rambat bunyi pada suhu dingin lebih kecil daripada suhu panas maka kecepatan bunyi dilapisan udara atas lebih kecil daripada dilapisan bawah, yang berakibat medium lapisan atas lebih rapat dari medium lapisan bawah. Hal yang sebaliknya terjadi pada malam hari. Jadi pada siang hari bunyi petir merambat dari lapisan udara atas kelapisan udara bawah.
- 9. Gelombang bunyi mengalami pelenturan (difraksi). Gelombang bunyi sangat mudah mengalami difraksi karena gelombang bunyi diudara memiliki panjang gelombang dalam rentang sentimeter sampai beberapa meter. Seperti yang kita ketahui, bahwa gelombang yang lebih panjang akan lebih mudah didifraksikan. Peristiwa difraksi terjadi misalnya saat kita dapat mendengar suara mesin mobil ditikungan jalan walaupun kita belum melihat mobil tersebut karena terhalang oleh bangunan tinggi dipinggir tikungan.
- 10. Gelombang bunyi mengalami perpaduan (interferensi). Gelombang bunyi mengalami gejala perpaduan gelombang interferensi, yang dibedakan menjadi dua vaitu interferensi konstruktif atau penguatan bunyi dan interferensi destruktif atau pelemahan bunyi. Misalnya waktu kita berada diantara dua buah loud-speaker dengan frekuensi dan amplitudo yang sama atau hampir sama maka kita akan mendengar bunyi yang keras dan lemah secara bergantian.

Cepat Rambat Bunyi

Bunyi merupakan gelombang longitudinal yang dapat merambat dalam medium padat, medium cair, atau medium gas. Cepat rambat bunyi bergantung pada sifat-sifat medium rambat. Cepat rambat bunyi dalam zat padat

Cepat rambat bunyi dalam zat padat bergantung pada modulus Young dan massa jenis zat padat.

$$v = \sqrt{\frac{E}{\rho}}$$

 Cepat rambat bunyi dalam zat cair
 Cepat rambat bunyi dalam zat padat bergantung pada modulus Bulk dan massa jenis zat cair.

$$v = \sqrt{\frac{B}{\rho}}$$

4. Cepat rambat bunyi dalam zat gas

Cepat rambat bunyi dalam zat padat bergantung pada
suhu dan massa jenis zat gas.

$$v = \sqrt{\gamma \frac{RT}{\rho}}$$

Efek Doppler

Frekuensi bunyi dari klakson sebuah mobil yang melaju akan terdengar lebih tinggi saat mendekat. Sebaliknya frekuensi bunyi akan lebih rendah saat mobil menjauh. Peristiwa ini yang disebut efek doppler. Secara umum persamaan efek doppler ditulis sebagai berikut.

$$f_p = \frac{v \pm v_p}{v \pm v_s} \times f_s$$

Aturan menentukan tanda (+) dan (-) adalah sebagai berikut.

- 4. Jika pendengar p mendekati sumber, tanda v_s positif
- 5. Jika pendengar p menjauhi sumber, tanda v_s negatif
- 6. Jika sumber s mendekati pendengar, tanda v_p negatif

Jika sumber s mendekati pendengar, tanda v_p positif

E. Metode Pembelajaran

Pendekatan : Scientific

Model : Direct instruction (DI)

Metode : Studi pustaka, diskusi/tanya jawab, dan praktikum

F. Media dan Sumber Belajar

Media : Powerpoint, WhatsApp, Meet, Google Classroom, Google

Form, LKS, Kuis

Sumber belajar : Tim Penyusun Buku Pintar Belajar Fisika kelas XII-A.

Sagufindo

Kinarya

G. Langkah-Langkah Pembelajaran

Kegiatan	Sintaks Model DI	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
In	-Class			
Pendahulu	Menyampaikan	5. Guru	Karakter:	10 menit
an	tujuan dan mempersiapan kan siswa	membangkitkan dan memotivasi minat belajar siswa 6. Guru memberikan sugesti yang positif 7. Guru mengemukakan	Rasa ingin tahu Tanggungjawab Kritis Karakter:	

Kegiatan	Sintaks Model	Deskripsi Kegiatan	Kompetensi yang	Alokasi
Kegiatan	DI	Deskripsi Regiatan	dikembangkan	Waktu
		tujuan pembelajaran 8. Guru mengajukan pertanyaan- pertanyaan untuk menggali pengetahuan awal siswa	Rasa ingin tahu Tanggungjawab Kritis	
Kegiatan	Mempresentasi	1. Guru	Karakter:	45 menit
Inti	kan	menyampaikan	Rasa ingin tahu	
	pengetahuan atau kete-	dan menjelaskan		
	rampilan	materi pelajaran	Pendekatan:	
	1	sesuai dengan	Mengumpulkan informasi	
		pokok-pokok	Mengamati	
	40	materi pelajaran	Wiengamati	
	(1)	terkait		
7		karakteristik		
	S	gelombang bunyi	24	
1	3	seperti yang		
		terkandung dalam		
¥.		indikator hasil		
1		belajar.	J/	
1		2. Siswa menyimak		
		dan		
		mendengarkan	3//	
		deng <mark>an</mark> seksama	- //	
		penjelasan dari		
		guru.		
	1	3. Guru dan siswa		
		melakukan		
		kegiatan tanya		
		jawab.		
		4. Guru memotivasi		
		siswa untuk		
		terlibat langsung		
		dalam proses		
		pembelajaran dangan		
		dengan menyampaikan		
		menyamparkan		

Kegiatan	Sintaks Model	Deskripsi Kegiatan	Kompetensi yang	Alokasi
Kegiatan	Membimbing pelatihan	beberapa pertanyaan 2. Guru memberikan LKS terkait dengan materi yang telah dijelaskan dan didemonstrasikan secara bertahap. 3. Siswa mencari data untuk menjawab pertanyaan pada LKS dengan membaca berbagai sumber/literatur yang tersedia secara mandiri. 4. Siswa bertanya kepada guru apabila terdapat hal-hal yang belum dipahami. 5. Guru menjelaskan kembali hal-hal yang dianggap sulit dan belum dipahami siswa.	Karakter: Rasa ingin tahu Tanggungjawab Kritis	Waktu
	Mengecek pemahaman dan memberi umpan balik	Guru memeriksa keberhasilan siswa dalam mengerjakan LKS. Siswa	Karakter: Rasa ingin tahu, kritis, bekerjasama, jujur	

Kegiatan	Sintaks Model	Deskripsi Kegiatan	Kompetensi yang	Alokasi
IXCgiatan	DI	Deskripsi Regiatan	dikembangkan	Waktu
	A RAIT	mempresentasika n hasil pengerjaan LKS. 3. Guru memberikan komentar terhadap pekerjaan siswa. 4. Guru menyimpulkan materi pelajaran. 5. Siswa mencermati dan mencatat kesimpulan materi pelajaran.	G. H.	
	Memberi kesempatan untuk pelatihan untuk pelatihan lanjutan dan penerapan	2. Guru mempersiapkan kesempatan melakukan pelatihan lanjutan dengan perhatian khusus pada penerapan kepada situasi lebih kompleks dalam kehidupan sehari- hari. 3. Siswa melakukan pelatihan lanjutan, yang berhubungan dengan penerapan materi pelajaran pada situasi yang lebih	Karakter: Kritis, tanggungjawab, bekerjasama Pendekatan: Mengasosiasi, menalar, mengkomunikasikan	

Kegiatan	Sintaks Model DI	Deskripsi Kegiatan	Kompetensi yang dikembangkan	Alokasi Waktu
	A BAIT	kompleks.	CHIES	
Penutup		 3. Guru menyampaikan rencana pembelajaran selanjutnya. 4. Guru dan siswa mengucapkan salam penutup. 		5 menit

H. Penilaian Hasil Pembelajaran

> Pengetahuan

d. Teknik Penilaian : Tes tertulise. Bentuk Instrumen : Soal uraianf. Jenis : LKS

No.	Indikator	Butir
1	Menjelaskan karakteristik gelom-bang bunyi Menganalisis cepat rambat gelom-bang bunyi di berbagai medium	1-2

Menganalisis azas Dopler	

Instrumen: lampiran 3

> Keterampilan

d. Teknik Penilaian: Observasi

e. Bentuk Instrumen: Lembar observasi

f. Aspek penilaian keterampilan pada saat diskusi

No.	Indikator	Butir Instrumen
1.	Pelaksanaan diskusi	1
2.	Menyimpulkan hasil diskusi	2
3.	Mempresentasikan hasil diskusi	3
4.	Menyerahkan hasil diskusi sesuai dengan waktu yang telah ditentukan	4

LAMPIRAN 1

ANGKET PENILAIAN DIRI KELAS XI MIPA SMA NEGERI 1 TABANAN TAHUN PELAJARAN 2020/2021

Petunjuk!

- 6. Pernyataan-pernyataan berikut merupakan tanggapan atau pendapat anda terhadap proses pembelajaran pada materi rangkaian arus searah.
- 7. Tugas anda adalah memberi tanggapan atau pendapat terhadap pernyataan yang diajukan dengan memberi tanda ($\sqrt{}$) pada salah satu pilihan yang sesuai dengan penilaian anda tentang kebenaran pernyataan tersebut. Pilihan-pilihan tersebut adalah:

SS	SR	KK	JS	TP
	A Principal of the Paris	- APRIL 18 (1)		State of the state

Keterangan

SS = Sangat Sering, S = Sering, KK = Kadang-kadang, JS = Jarang sekali, TP = Tidak pernah

- 8. Pilihan-pilihan dalam pernyataan-pernyataan tersebut tidak ada satupun yang merupakan pilihan benar.
- 9. Pilihan yang benar adalah pilihan yang sesuai dengan pendapat anda sendiri, bukan atas pendapat teman anda yang lain.
- 10. Jawaban anda tidak akan mempengaruhi prestasi belajar anda di sekolah. Oleh sebab itu, anda dimohon membaca setiap pernyataan dengan seksama dan mengisi pilihan dengan sejujur-jujurnya.

Nama :	TRS
NIS :	

DAFTAR PERNYATAAN PENILAIAN DIRI PADA PEMBELAJARAN FISIKA RANGKAIAN ARUS SEARAH

No.	Daftar Pernyataan		Respon					
1100		SS	SR	KK	JS	TP		
1.	Saya kagum kepada Tuhan atas penciptaan manusia yang mampu menemukan kuat arus listrik, hambatan, beda potensial, dan rangkaian arus tertutup.							

2.	Saya mengejakan tugas individu dengan baik					
3.	Saya tidak berani mengambil resiko atas tindakan yang sudah dilakukan					
4.	Saya mengembalikan barang yang dipinjam					
5.	Saya meminta maaf atas kesalahan yang dilakukan					
No. Daftar Pernyataan				Respo	n	
110.	Dartai I Cinyataan	SS		KK	JS	TP
1.	Saya menyontek dalam mengerjakan ujian/ulangan/tugas					
2.	Saya tidak pernah melakukan plagiat dalam mengerjakan setiap tugas	N.C.				
3.	Saya melaporkan data hasil percobaan atau informasi apa adanya		18.5			
4.	Saya enggan mengakui kesalahan atau kekurangan yang dimiliki	Š				
5.	Saya merapikan semua alat praktikum yang sudah digunakan	4		To the second		
6.	Saya tidak pernah mengotori lingkungan			11		

Kritik dan Saran

Tulislah kritik dan saran anda tentang pembelajaran fisika yang dilakukan oleh guru anda untuk lebih meningkatkan kualitas pembelajaran fisika selanjutnya.

Kritik		

Saran

RUBRIK PENILAIAN

Rubrik Penilaian Pernyataan Positif

Respons	Skor
Sangat Sering (SS)	5
Sering (SR)	4
Kadang-Kadang (KK)	3
Jarang Sekali (JS)	2
Tidak Pernah (TP)	$\mathbb{R}^{\frac{1}{2}}$

Rubrik Penilaian Pernyataan Negatif

Respons	Skor
Sangat Sering (SS)	7 1
Sering (SR)	2
Kadang-Kadang (KK)	3
Jarang Sekali (JS)	4
Tidak Pernah (TP)	5

LAMPIRAN 2

Pedoman Observasi Penilaian Sikap

No		Tedoman Observasi Fermalan Sikap		Rentang Sl			kor
•	Aspek	Kriteria		2	3	4	5
			1			•	
1.	Rasa Ingin	Mampu bertanya dan mengeksplorasi					
	Tahu	informasi dari berbagai sumber					
2.	17.	Mampu bekerja sama dengan teman					
	Kerja sama	dalam kelompok					
3.	Tanggung	Mampu bertanggungjawab atas tugas					
	jawab	yang diberikan					
4.		Mampu kritis dalam	100				
	Kritis	mengasosiasi/menganalisis data dan					
		menanggapi					
	5 = sangat bai	k/sangat sering			1		
	4 = baik/sering						
	3 = cukup						
	2 = ku <mark>r</mark> ang/jar	rang		J	3		
	1 = sangat kurang/sangat jarang						

Keterangan:

4. Skor Maksimal:
$$4 \times 5 = 20$$

4. Skor Maksimal:
$$4 \times 5 = 20$$
5. $Nilai = \frac{Jumlah\ Skor}{Skor\ Maksimal} \times 100$

6. Nilai sikap dikualifikasi menjadi predikat sebagai berikut:

$$SB = Sangat \ Baik = 80 - 100$$
 $C = Cukup = 60 - 69$ $B = Baik = 70 - 79$ $K = Kurang = <60$

LAMPIRAN 3
Rubrik Penilaian Keterampilan Proses Sains:

Aspek Penilaian	3	2	1
Merumuskan masalah	Rumusan masalah sesuai konsep dan inovatif	Rumusan masalah sesuai konsep	Rumusan masalah tidak sesuai konsep
Merumuskan hipotesis	Rumusan pertanyaan sesuai konsep dan mengarah pada tahapan aktivitas mencoba	Rumusan pertanyaan sesuai konsep	Rumusan pertanyaan tidak sesuai konsep
Merancang dan melakukan percobaan	Melakukan percobaan sesuai langkah kerja, data yang diperoleh dianalisis dengan baik	Melakukan percobaan sesuai langkah kerja, analisis data belum optimal	Melakukan percobaan tidak sesuai langkah kerja
Mengumpu <mark>l</mark> kan dan mengol <mark>a</mark> h data	Data yang diperoleh sesuai, pengolahan data sistematis	Data yang diperoleh sesuai, namun pengolahan data kurang sistematis	Data yang diperoleh tidak sesuai, dan pengolahan data tidak sistematis
Menginterpretasi hasil analisis data dan pembahasan	Pembahasan tepat dan efektif	Pembahasan kurang tepat dan kurang efektif	Pembahasan tidak tepat dan tidak efektif
Menarik kesimpulan	Simpulan sesuai tujuan percobaan	Simpulan kurang sesuai tujuan percobaan	Simpulan tidak sesuai tujuan percobaan

Keterangan:

d. Skor Maksimal : $3 \times 5 = 15$

e.
$$Nilai = \frac{Jumlah\ Skor}{Skor\ Maksimal} \times 100$$

f. Nilai sikap dikualifikasi menjadi predikat sebagai berikut:

$$SB = Sangat \ Baik = 80 - 100$$
 $C = Cukup = 60 - 69$ $B = Baik = 70 - 79$ $K = Kurang = <60$

Lampiran 4

Lembar Kerja Siswa (LKS) 01

Materi Pokok : Gelombang Bunyi dan Cahaya

Kelas/Semester : XI MIPA/II

Alokasi Waktu : 45 menit

(Nama & No Absen)

l.

Indikator Pencapaian Kompetensi

- 3.10.4 Menjelaskan karakteristik gelombang bunyi
- 3.10.5 Menjelaskan sifat-sifat gelombang bunyi
- 3.10.6 Menganalisis cepat rambat gelombang bunyi
- 4.10.3 Melaksanakan diskusi untuk mengukur cepat rambat bunyi diudara
- 4.10.4 Melaksanakan presentasi tentang karakteristik, sifat dan cepat rambat gelombang bunyi diudara

I. Permasalahan

Raka sedang berada di dalam aula sekolah untuk mengatur dekorasi ruangan yang akan digunakan untuk acara ulang tahun sekolah. Sementara Radha berada di

halaman sekolah untuk mempersiapkan upacara pembukaan. Raka bermaksud meminta Radha untuk memasang paku di tembok aula agar dapat digunakan untuk menggantung beberapa hiasan. Raka kemudian menelepon Radha, tetapi suara telepon dari Raka tidak terdengar oleh Radha karena ia meletakkan *Handphone* nya dibawah kain dekorasi.

J. Identifikasi Masalah

Definisikan permasalahan dengan membuat daftar pertanyaan terkait permasalahan yang disajikan!

No	Permasalahan
1	
2	S BRUDINE S
3	23 A 180
4	

K. Mengumpulkan fakta-fakta

1	Yang diketahui dari masalah:
2	Yang ingin diketahui dari masalah:
3	Yang harus dicari dari masalah:

T	TA /F	1		TT.	4	•
L.	Vier	umus	kan	Hir	MTP	CIC
┸.	111	umus	m		ou	SIS

I. Penyel	lidikan					
V. Jud	ul Percobaan: Perambatan	Gelombang Bunyi				
VI. Ala	t dan Bahan					
3.	Handphone					
4.	Toples	<u> </u>				
VII.Lan	ngkah-langkah percobaan					
8.	Atur handphone agar berbu	nyi setelah 1 menit sejak pengaturan.				
9.	Letakkan di atas meja dan ti	unggu sampai berbunyi				
10	. Ulangi langkah 1 dan 2 s	sebanyak 3 kali				
11	. Atur handphone seperti l	angkah 1				
12	12. Letakkan <i>handphone</i> di atas meja, kemudian tutup dengan					
	menggunakan toples, tungg	u sampai berbunyi.				
13	. Ulangi langkah 4 dan 5 s	sebanyak 3 kali				
14	Bandingkan kekerasan b	unyi <i>handphone</i> yang terbuka p <mark>ad</mark> a langkah 1,				
	2, dan 3 dengan kekerasan b	<mark>ounyi <i>handphone</i> y</mark> ang tertutu <mark>p</mark> pada langkah				
	4, 5, dan 6.					
	17.					
VIII.	Data <mark>H</mark> asil Percobaan	IKSH				
	Keadaan weker/handphone	Suara yang di dengar				
	Terbuka					
	Tertutup					

3.	Hal apa sajakah yang mempengaruhi intensitas suara yang dihasilkan oleh
	weker/Handphone?
N.	. Menyempurnakan permasalahan
n n	dempurnakan permasalahan yang telah didefinisikan dengan merefleksikan nelalui penyelidikan yang telah dilakukan dan perbaiki pernyataan rumusan nasalah menggunakan kata yang lebih tepat!
O. N	Menyi <mark>m</mark> pulkan alternatif-alternatif pemecahan secara kolabora <mark>ti</mark> f
	lenyim <mark>pu</mark> lkan terkait hasil pemecahan masalah dan konsep yang digunakan ntuk memecahkan masalah!
	ND TKSB"

QUIS

1. Suatu hari Kristina ingin melakukan percobaan sederhana untuk mengukur cepat rambat bunyi di udara. Kristina berdiri di antara dua dinding A dan B seperti yang ditunjukan pada gambar 2. Kristina kemudian bertepuk tangan satu kali. Ia mendapati bahwa selisih waktu terdengarnya bunyi pantul dari dinding A dan dinding B adalah sebesar 2,1 sekon. Berdasarkan hal ini, tentukanlah Berapa cepat rambat bunyi di udara?

Kunci Jawaban Quis 01

Memahami Masalah

Diketahui:

Selang waktu = 2,1 s

$$S_1 = 450 \text{ m}$$

$$S_2 = 100 \text{ m}$$

Ditanya: Cepat rambat bunyi di udara?

Merancang dan merencanakan solusi

$$v = 2 \frac{(S_1 - S_2)}{\Delta t}$$

Menyelesaikan rencana pemecahan

$$v = 2 \frac{(S_1 - S_2)}{\Delta t}$$

$$v = 2\frac{(450 - 100)}{2,1} = 333,33 \text{ m/s}$$

Memeriksa Kembali

Setelah diperiksa baik konsep, dan perhitungan tidak terdapat kekeliruan. Simpulan yang dapat diambil adalah cepat rambat gelombang bunyi di udara sebesar 333,33 m/s

LAMPIRAN 4

DATA HASIL PENELITIAN

Lampiran 4.1 Data Hasil *pretest* Keterampilan Berpikir Kritis Siswa Kelompok Eksperimen

Lampiran 4.2 Data Hasil *pretest* Keterampilan Berpikir Kritis Siswa Kelompok Kontrol

Lampiran 4.3 Data Hasil *posttest* Keterampilan Berpikir Kritis Siswa Kelompok Eksperimen

Lampiran 4.4 Data Hasil *posttest* Keterampilan Berpikir Kritis Siswa Kelompok Kontrol

Lampiran 4.5 Hasil Analisis Korelasi 2 Kreator

4.1 Data Hasil *pretest* Keterampilan Berpikir Kritis Siswa Kelompok Eksperimen

NO	NIS	NAMA	L/P							JA	AW A	BA	N						JUMLAH
110	1120		22,1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	14739	A A PUTRI ADIA PRAMESUARI	P	4	4	2	0	4	3	2	0	4	3	3	0	0	4	4	37
2	14740	AMANDA MELLYUANA	P	3	3	2	0	3	3	2	0	3	4	3	3	3	2	0	34
3	14741	AYU KOMANG BERLIAN SARASWATI	P	4	4	2	10	4	3	2	0	4	3	3	0	3	4	4	41
4	14742	BHATHIYA DHARMAWAN	L	3	4	3	3	2	4	3	3	2	2	3	2	2	3	3	42
5	14743	CHALIMUS CANDRA DANISWARA WISAM PRAKOSO	L	0	4	3	4	2	4	4	2	4	3	4	3	3	4	0	44
6	14744	DAMODARA DAS PRAYOGA	L	3	0	4	0	4	3	0	4	0	0	4	0	4	0	4	30
7	14745	DEWA AYU ADELIA PUTRI	P	3	4	4	3	4	4	4	3	0	3	4	0	0	0	0	36
8	14746	DEWA PUTU SATYA PARAYANA	L	3	4	4	3	4	3	2	4	4	0	0	0	0	0	0	31
9	14747	I GEDE ARYA MUDANA	L	3	4	4	0	4	0	4	0	4	3	4	0	0	0	4	34

		PUTRA																	
10	14748	I GEDE PUTU PANDE INDRA LAKSMANA	L	3	2	3	3	3	2	2	3	2	3	4	3	3	2	3	41
11	14749	I GUSTI AGUNG AYU PUTU MAHARANI PUTRI	P	4	4	3	0	4	3	4	4	0	0	0	3	0	4	3	36
12	14750	I GUSTI AGUNG AYU PUTU NANDARI NAESUARI	P	3	0	3	3	0	3	0	4	0	3	2	3	0	0	4	28
13	14751	I GUSTI AGUNG MEILINDA PUTRI RAINDRA	P	4	4	4	3	0	3	4	0	4	3	3	3	3	3	4	45
14	14752	I KOMANG ANDI PRASTYA	L	3	4	4	3	4	4	4	3	0	3	4	0	0	0	0	36
15	14753	I MADE WIN MERTAYASA	L	3	4	4	3	4	3	0	3	4	3	3	3	3	0	4	44
16	14754	I.G.A.PT. TRISNA MURNI CAHYANI	Р	3	0	3	0	3	3	3	0	3	0	4	0	3	0	4	29
17	14755	IDA BAGUS ADI SURYA	L	3	4	3	4	4	4	4	3	4	3	0	0	0	0	0	36

		DHARMA																	
18	14756	IDA BAGUS PUTU ADITYA WIGUNA	L	3	0	0	3	0	3	0	3	4	3	0	3	3	4	4	33
19	14757	JODY PRATHAMA HANDYANTA	L	4	4	4	3	4	2	4	3	4	3	3	3	0	4	3	48
20	14758	KADEK BAGUS SURYANATHA WIBAWA	L	4	4	3	3	4	4	4	3	4	3	0	0	0	0	4	40
21	14759	KOMANG TRISYA JANU PRATIWI	P	3	4	3	2	2	3	3	3	0	3	3	2	2	2	3	38
22	14760	KRISTIAN KUSUMADEWA	L	0	4	4	3	4	3	4	4	2	3	4	3	2	3	0	43
23	14761	LUH MADE ARI PUSPITADEWI	P	3	2	3	3	3	3	2	4	4	3	2	3	3	4	3	45
24	14762	LUH MADE MIRAH RAHMA DEWI	P	4	4	4	3	4	4	4	3	4	3	0	0	0	0	0	37
25	14763	MADE MAHATVA WIBAWA	L	3	4	3	3	4	3	0	0	4	3	0	2	2	0	3	34
26	14764	NI LUH GEDE WULAN ASTARI PUTRI	P	4	4	4	4	4	4	4	3	0	0	0	0	0	0	0	31
27	14765	NI LUH MADE	P	3	4	3	3	4	3	4	4	3	3	2	3	3	3	3	48

		AYU PRADNYA NINGSIH																	
28	14766	NI PUTU INDIRA DEVI LAKSMITHA ISHWARYA	Р	0	4	3	4	2	3	0	0	0	3	3	2	2	4	4	34
29	14767	NI PUTU LISTA PUTRI WINATA	P	3	4	3	3	3	3	4	3	4	3	3	2	3	3	3	47
30	14768	NI PUTU NEILA MAHAYANI	P	4	3	4	3	4	3	4	3	3	3	2	3	2	4	3	48
31	14769	NI PUTU RIA PERMASARI PUTRI	P	3	0	3	2	4	3	0	4	4	3	3	2	2	4	4	41
32	14770	NI PUTU SRI LISTYA DEWI	P	4	4	3	3	4	3	4	3	4	3	2	3	2	2	4	48
33	14771	PUTU GEDE BAGUS UDIYANA D	L	3	0	4	4	4	3	0	4	4	4	3	3	0	3	4	43
34	14772	PUTU NANDA REIDINO PUTRA VALLENTINO	L	3	4	2	3	2	3	0	0	0	3	3	2	0	3	3	31
35	14773	PUTU SHINTA LETISIA DEWI	P	3	4	3	2	2	3	3	3	0	3	3	2	2	2	3	38
36	14774	VICTORIA ANASTASIA ANANDA	Р	4	4	3	3	4	3	4	3	4	3	2	4	2	2	4	49

DUTDI									
I PUIRI									
1 0 110									

4.2 Data Hasil *pretest* Keterampilan Berpikir Kritis Siswa Kelompok Kontrol

NO	NIS	NAMA	L/P					A		JA	WA	BA	N						JUMLAH
110	11120	1 (1 11 1 1 1		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	14595	I DEWA GEDE ESSA SATRIA WIDANA	L	3	4	3	3	3	3	2	0	4	3	3	4	0	3	3	41
2	14596	I GEDE MADE BAYU PREMANA HARTHA	L	3	0	3	2	2	3	2	4	3	3	2	3	3	2	4	39
3	14597	I GEDE PUTU RIKO ANTON <mark>I</mark>	L	0	2	0	3	3	3	4	0	4	3	3	0	0	3	3	31
4	14598	I GEDE PUTU TEJA GUSWANDI	L	3	4	3	3	2	3	2	4	4	4	3	4	3	4	3	49
5	14599	I GEDE ROMI ADITYA PUTRA	L	3	2	3	4	2	4	3	2	4	3	4	2	4	2	4	46
6	14600	I GUSTI AGUNG MELIA PUTRI NINGRAT	P	3	2	3	3	2	0	4	3	2	2	4	2	3	3	3	39
7	14601	I GUSTI PUTU YUDHISTIRA JAGADHITA	L	0	4	3	2	3	4	4	4	3	2	0	0	2	3	3	37

8	14602	I KADEK MAHENDRA PUTRA	L	3	2	2	3	4	2	3	3	4	3	4	2	4	2	4	45
9	14603	I KOMANG ADITYA PRAYOGA	L	3	2	0	4	2	3	4	3	2	2	4	2	0	0	3	34
10	14604	I NYOMAN G. DIVHNATA VIJAYA. MN.	L	4	4	3	3	4	1	0	3	4	3	3	3	3	3	3	44
11	14605	I PUTU ARDIANA DEVA LAKSANA	L	0	4	2	4	3	4	2	4	2	3	4	4	2	3	4	45
12	14606	I PUTU AYANDA RIZ <mark>K</mark> I	L	3	4	4	4	3	2	2	0	0	3	2	3	3	2	0	35
13	14607	I PUTU DESWANTARA WIRATHA	L	4	2	3	4	0	3	2	0	0	2	3	2	1	3	4	33
14	14608	I WAYAN PASA GAUTAMA	L	3	2	4	3	4	1	3	4	4	3	4	2	4	2	3	46
15	14609	IDA AYU KADE BINTANG KARTIKASARI	P	3	4	4	3	0	4	0	3	0	0	3	4	4	0	4	36
16	14610	IDA AYU KOMANG RATIH TRI ASTUTI	Р	3	2	3	4	2	3	4	3	4	3	2	4	4	3	0	44

17	14611	KADEK BINTANG ARISTA MAHARANI	P	3	4	0	4	2	4	2	3	2	3	4	4	3	4	0	42
18	14612	KOMANG HELDA ADHI PRASETYA	L	3	2	3	2	2	2	4	3	2	3	4	3	2	4	3	42
19	14613	KRISTINA DEWI HANDAYANI	P	3	4	2	2	4	4	3	4	4	3	3	3	3	4	3	49
20	14614	MASQILA REVITA NINGRUM	Р	3	2	3	3	4	3	2	2	0	0	4	4	4	4	2	40
21	14615	NAUFAL DWI SURYA PUTRANANTA	L	3	2	3	3	4	2	4	2	3	4	3	1	4	2	3	43
22	14616	NI KADEK AYU DWI RAMAYANTI	P	3	4	3	2	4	2	4	4	2	3	3	4	3	4	3	48
23	14617	NI KADEK DWI PRADNYA LESTARI	P	3	4	3	3	0	3	4	4	4	3	4	3	2	4	3	47
24	14618	NI KOMANG AYU DIAH DIANASARI	P	3	2	4	3	4	3	4	2	4	3	3	4	2	4	3	48
25	14619	NI LUH GEDE WINDA ADITYA	Р	3	4	3	3	4	4	2	3	4	3	3	3	4	3	0	46

		SARASWATI																	
26	14620	NI LUH KETUT MARSANDA PUTRI PRASANTI	Р	3	2	4	3	2	4	2	4	2	4	3	4	3	4	3	47
27	14621	NI LUH PUTU ARDINI ASTINA PUTRI	Р	3	2	2	4	3	3	2	3	0	2	0	0	3	2	3	32
28	14622	NI MADE RIKA DWI DAMAYANTI	P	3	2	3	4	3	3	4	3	2	3	2	4	4	3	3	46
29	14623	NI NENGAH DINA JULIANI	P	2	4	3	2	4	4	2	2	4	3	3	7 4	3	3	0	43
30	14624	NI PUTU INTAN SRIWAHYUNI	P	3	2	2	3	4	0	4	0	4	0	4	2	3	4	3	38
31	14625	NI PUTU SINTA ROSIANA DEWI	P	3	4	2	4	3	3	0	4	3	3	4	2	4	0	3	42
32	14626	NI PUTU WIDYA AGUSTYANI PUTRI	Р	0	4	3	3	2	4	3	3	0	3	2	2	3	2	3	37
33	14627	NI.L.K. WAHYU PRAMACINTYA PUTRI	Р	4	2	3	3	2	4	4	3	2	2	3	3	4	3	3	45
34	14628	PUTU AGUS DEVA PRASTYAWAN	L	3	4	3	0	0	2	2	3	2	4	3	0	3	2	3	34

		WIBAWA																	
35	14629	PUTU INDIRA KUSUMA ARIPUTRI	P	4	2	3	4	0	3	2	0	0	2	3	2	1	3	4	33
30	14630	PUTU MERRY SURYAPUTRI	P	3	4	3	3	4	4	2	3	4	3	3	3	4	3	0	46

4.3 Data Hasil *posttest* Keterampilan Berpikir Kritis Siswa Kelompok Eksperimen

NO	NIS	NAMA	L/P		K	10			ς.	J.	AWA	BA	N						JUMLAH
110	1416	IVANIA		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	-
1	14739	A A PUTRI ADIA PRAMESUARI	P	4	4	4	3	4	4	2	0	4	4	3	4	4	4	4	52
2	14740	AMANDA MELLYUANA	P	4	4	4	3	3	3	3	3	3	3	3	4	3	4	4	51
3	14741	AYU KOMANG BERLIAN SARASWATI	P	3	4	2	3	4	3	2	3	4	4	4	3	4	4	4	51
4	14742	BHATHIYA DHARMAWAN	L	3	4	4	4	4	3	3	3	4	4	3	3	3	3	4	52
5	14743	CHALIMUS CANDRA DANISWARA WISAM PRAKOSO	L	4	4	2	4	3	3	4	4	4	3	4	4	3	4	3	53

6	14744	DAMODARA DAS PRAYOGA	L	3	4	4	4	4	4	4	1	4	3	3	4	4	3	4	53
7	14745	DEWA AYU ADELIA PUTRI	P	3	4	4	3	4	4	4	4	3	3	3	3	3	3	3	51
8	14746	DEWA PUTU SATYA PARAYANA	L	4	4	4	0	4	4	4	4	4	3	3	3	3	4	4	52
9	14747	I GEDE ARYA MUDANA PUTRA	L	3	4	4	3	0	4	4	0	4	4	4	4	4	4	4	50
10	14748	I GEDE PUTU PANDE INDRA LAKSMANA	L	3	4	4	3	4	4	4	0	4	4	4	4	3	4	4	53
11	14749	I GUSTI AGUNG AYU PUTU MAHARANI PUTRI	P	4	4	4	3	4	4	4		4	3	4	4	3	4	4	54
12	14750	I GUSTI AGUNG AYU PUTU NANDARI NAESUARI	Р	3	4	3	3	4	4	4	3	4	3	3	4	4	4	0	50
13	14751	I GUSTI AGUNG MEILINDA PUTRI	P	4	2	4	3	3	4	4	2	4	3	3	4	4	4	4	52

		RAINDRA																	
14	14752	I KOMANG ANDI PRASTYA	L	3	4	4	3	4	3	4	3	4	3	3	4	3	4	4	53
15	14753	I MADE WIN MERTAYASA	L	3	4	4	3	4	4	4	3	4	3	3	4	4	4	4	55
16	14754	I.G.A.PT. TRISNA MURNI CAHYANI	Р	4	4	3	3	3	3	4	3	4	4	2	4	4	3	4	52
17	14755	IDA BAGUS ADI SURYA DHARMA	L	3	4	3	3	4	4	4	3	4	3	3	4	4	4	4	54
18	14756	IDA BAGUS PUTU ADITYA WIGUNA	L	3	4	4	4	4	4	4	4	0	3	4	0	4	4	4	50
19	14757	JODY PRATHAMA HANDYANTA	L	4	4	3	4	4	4	4	3	4	3	4	3	4	4	4	56
20	14758	KADEK BAGUS SURYANATHA WIBAWA	L	4	4	4	3	3	4	4	2	4	3	3	4	4	3	4	53
21	14759	KOMANG TRISYA JANU PRATIWI	Р	3	4	4	3	4	4	4	4	3	3	4	4	3	4	4	55
22	14760	KRISTIAN KUSUMADEWA	L	3	4	4	3	4	4	4	4	4	3	4	4	4	4	4	57

23	14761	LUH MADE ARI PUSPITADEWI	P	3	4	4	3	3	4	4	3	4	3	4	3	4	4	3	53
24	14762	LUH MADE MIRAH RAHMA DEWI	P	4	4	4	3	4	4	4	3	4	3	3	4	4	4	4	56
25	14763	MADE MAHATVA WIBAWA	L	2	2	3	3	4	4	4	4	4	4	4	2	4	4	4	52
26	14764	NI LUH GEDE WULAN ASTARI PUTRI	P	4	4	4	4	4	0	4	4	4	4	4	3	3	4	4	54
27	14765	NI LUH MADE AYU PRADNYA NINGSIH	P	3	4	4	3	3	4	4	4	4	4	4	4	4	4	3	56
28	14766	NI PUTU INDIRA DEVI LAKSMITHA ISHWARYA	Р	3	2	4	3	3	4	2	4	4	4	3	2	4	4	4	50
29	14767	NI PUTU LISTA PUTRI WINATA	Р	3	4	4	3	4	4	4	4	4	4	3	2	4	4	3	54
30	14768	NI PUTU NEILA MAHAYANI	P	4	4	4	4	3	4	3	4	3	3	4	4	4	4	4	56
31	14769	NI PUTU RIA PERMASARI PUTRI	Р	3	2	4	3	4	4	4	4	4	4	4	2	4	3	4	53

32	14770	NI PUTU SRI LISTYA DEWI	P	3	4	4	3	3	4	4	4	4	4	4	4	4	4	4	57
33	14771	PUTU GEDE BAGUS UDIYANA D	L	4	2	4	4	4	4	2	4	4	4	4	4	2	4	4	54
34	14772	PUTU NANDA REIDINO PUTRA VALLENTINO	L	3	2	4	3	4	4	3	3	4	4	4	3	3	3	4	51
35	14773	PUTU SHINTA LETISIA DEWI	Р	3	2	4	3	3	4	2	4	4	4	3	2	4	3	4	49
36	14774	VICTORIA ANASTASIA ANANDA PUTRI	P	3	4	4	3	4	4	4	3	4	3	3	4	4	4	4	55

4.4 Data Hasil *posttest* Keterampilan Berpikir Kritis Siswa Kelompok Kontrol

NO	NIS	NAMA	L/P				1	1		J	AWA	BA	N	No.					JUMLAH
	1120	1112112	23,2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	14595	I DEWA GEDE ESSA SATRIA WIDANA	L	3	4	4	3	2	4	4	3	4	3	3	4	3	4	4	52
2	14596	I GEDE MADE BAYU PREMANA	L	3	2	4	4	4	2	4	4	2	3	3	4	3	4	3	49

		HARTHA																	
3	14597	I GEDE PUTU RIKO ANTONI	L	3	4	3	3	3	4	3	4	4	4	3	0	4	4	4	50
4	14598	I GEDE PUTU TEJA GUSWANDI	L	3	4	3	3	3	4	3	4	4	4	3	3	4	4	4	53
5	14599	I GEDE ROMI ADITYA PUTRA	L	3	4	3	4	4	3	4	3	4	3	3	2	4	4	3	51
6	14600	I GUSTI AGUNG MELIA PUTRI NINGRAT	P	2	2	4	4	3	4	4	4	2	2	3	4	4	4	3	49
7	14601	I GUSTI PUTU YUDHISTIRA JAGADHITA	L	0	4	3	4	3	3	4	4	4	3	3	4	3	3	3	48
8	14602	I KADEK MAHENDRA PUTRA	L	4	4	4	3	3	4	3	3	4	4	3	3	4	4	3	53
9	14603	I KOMANG ADITYA PRAYOGA	L	4	4	2	4	3	4	4	3	3	4	2	2	4	4	4	51
10	14604	I NYOMAN G. DIVHNATA VIJAYA. MN.	L	4	0	3	3	3	4	4	4	3	4	3	3	4	4	3	49

11	14605	I PUTU ARDIANA DEVA LAKSANA	L	3	4	3	4	4	2	4	4	4	3	3	4	4	4	3	53
12	14606	I PUTU AYANDA RIZKI	L	3	4	2	4	4	4	2	4	2	3	3	4	4	4	3	50
13	14607	I PUTU DESWANTARA WIRATHA	L	2	2	3	4	4	4	4	4	4	3	4	4	4	3	3	52
14	14608	I WAYAN PASA GAUTAMA	L	3	4	4	4	4	4	4	4	4	3	3	4	2	4	3	54
15	14609	IDA AYU KADE BINTANG KARTIKASARI	P	3	4	3	3	4	3	4	4	4	3	4	4	4	4	4	55
16	14610	IDA AYU KOMANG RATIH TRI ASTUTI	P	3	2	4	4	4	3	4	4	3	3	3	3	4	4	4	52
17	14611	KADEK BINTANG ARISTA MAHARANI	P	3	4	3	3	4	4	3	3	4	3	4	4	4	4	4	54
18	14612	KOMANG HELDA ADHI PRASETYA	L	3	4	3	4	4	3	4	4	3	3	3	4	4	4	3	53
19	14613	KRISTINA	P	0	4	4	3	4	4	4	2	4	3	3	4	4	4	4	51

		DEWI HANDAYANI																	
20	14614	MASQILA REVITA NINGRUM	P	3	4	3	4	4	3	4	4	4	3	3	4	4	3	4	54
21	14615	NAUFAL DWI SURYA PUTRANANTA	L	3	4	4	4	4	3	4	0	4	3	3	3	4	4	4	51
22	14616	NI KADEK AYU DWI RAMAYANTI	P	3	4	4	4	4	4	4	4	4	3	3	4	3	3	3	54
23	14617	NI KADEK DWI PRADNYA LESTARI	P	3	4	4	3	4	4	4	4	3	4	3	2	4	4	3	53
24	14618	NI KOMANG AYU DIAH DIANASARI	Р	3	2	4	4	3	4	4	3	4	3	3	4	2	4	4	51
25	14619	NI LUH GEDE WINDA ADITYA SARASWATI	P	3	4	3	4	4	4	4	4	4	4	3	4	4	3	3	55
26	14620	NI LUH KETUT MARSANDA PUTRI PRASANTI	P	3	4	0	3	4	4	2	4	4	4	3	4	4	4	2	49
27	14621	NI LUH PUTU	P	4	4	3	4	4	4	3	4	3	3	2	3	3	3	4	51

		ARDINI ASTINA PUTRI																	
28	14622	NI MADE RIKA DWI DAMAYANTI	P	3	2	4	3	4	4	4	3	4	3	4	3	4	2	3	50
29	14623	NI NENGAH DINA JULIANI	P	3	4	4	4	4	4	4	4	4	4	3	4	4	4	2	56
30	14624	NI PUTU INTAN SRIWAHYUNI	P	3	4	4	3	4	3	4	3	4	3	4	4	4	4	3	54
31	14625	NI PUTU SINTA ROSIANA DEWI	P	3	4	4	3	4	4	4	4	3	3	4	4	3	4	4	55
32	14626	NI PUTU WIDYA AGUSTYANI PUTRI	P	3	4	4	4	3	4	4	4	3	3	3	4	4	4	0	51
33	14627	NI.L.K. WAHYU PRAMACINTYA PUTRI	P	4	4	4	3	4	4	4	3	4	4	3	3	3	4	3	54
34	14628	PUTU AGUS DEVA PRASTYAWAN WIBAWA	L	4	4	4	4	3	4	4	3	2	4	4	3	4	3	3	53
35	14629	PUTU INDIRA KUSUMA ARIPUTRI	P	3	4	0	3	4	4	2	4	4	4	3	4	4	4	2	49

4.5 Hasil Analisis Korelasi 2 Kreator

A. Hasil Analisis Korelasi 2 Korektor Kelas Eksperimen

Correlations

		S1_K1	S1_K2
S1_K1	Pearson Correlation	1	.772**
	Sig. (2-tailed)		.000
	N	36	36
S1_K2	Pearson Correlation	.772**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

		S2_K1	S2_K2
S2_K1	Pearson Correlation	1	.819**
	Sig. (2-tailed)		.000
	N	36	36
S2_K2	Pearson Correlation	.819**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

		S3_K1	S3_K2
S3_K1	Pearson Correlation	1	.827**
	Sig. (2-tailed)		.000
	N	36	36
S3_K2	Pearson Correlation	.827**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

		S4_K1	S4_K2
S4_K1	Pearson Correlation	1	.901**
	Sig. (2-tailed)		.000
	N	36	36
S4_K2	Pearson Correlation	.901**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

		S5_K1	S5_K2
S5_K1	Pearson Correlation	1	.955**
	Sig. (2-tailed)		.000
	N	36	36
S5_K2	Pearson Correlation	.955**	1
	Sig. (2-tailed)	.000	
	N	36	36

	-	S5_K1	S5_K2
S5_K1	Pearson Correlation	1	.955**
	Sig. (2-tailed)		.000
	N	36	36
S5_K2	Pearson Correlation	.955**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

	-	S6_K1	S6_K2
S6_K1	Pearson Correlation	1	.901**
	Sig. (2-tailed)		.000
	N	36	36
S6_K2	Pearson Correlation	.901**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

	-	S7_K1	S7_K2
S7_K1	Pearson Correlation	1	.896**
	Sig. (2-tailed)		.000
	N	36	36
S7_K2	Pearson Correlation	.896**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

	-	S8_K1	S8_K2
S8_K1	Pearson Correlation	1	.955**
	Sig. (2-tailed)		.000
	N	36	36
S8_K2	Pearson Correlation	.955**	1
	Sig. (2-tailed)	.000	tr.
	N	36	36
**. Correlation is significant at the 0.01 level (2-tailed).			
MINIMA			

		S9_K1	S9_K2
S9_K1	Pearson Correlation	1	.896**
	Sig. (2-tailed)		.000
	N	36	36
S9_K2	Pearson Correlation	.896**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

	-	S10_K1	S10_K2
S10_K1	Pearson Correlation	1	.734**
	Sig. (2-tailed)		.000
	N	36	36
S10_K2	Pearson Correlation	.734**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

		S11_K1	S11_K2
S11_K1	Pearson Correlation	1	.823**
	Sig. (2-tailed)		.000
	N	36	36
S11_K2	Pearson Correlation	.823**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

	-	S12_K1	S12_K2
S12_K1	Pearson Correlation	1	.899**
	Sig. (2-tailed)		.000
	N	36	36
S12_K2	Pearson Correlation	.899**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

		S13_K1	S13_K2
S13_K1	Pearson Correlation	1	.806**
	Sig. (2-tailed)		.000
	N	36	36
S13_K2	Pearson Correlation	.806**	1
	Sig. (2-tailed)	.000	
	N	36	36
**. Correlation is significant at the 0.01 level (2-tailed).			
(S S FIV TIME)			

	_	S14_K1	S14_K2
S14_K1	Pearson Correlation	1	.713**
	Sig. (2-tailed)		.000
	N	36	36
S14_K2	Pearson Correlation	.713**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

		S15_K1	S15_K2
S15_K1	Pearson Correlation	1	.851 ^{**}
	Sig. (2-tailed)		.000
	N	36	36
S15_K2	Pearson Correlation	.851**	1
	Sig. (2-tailed)	.000	
	N	36	36

**. Correlation is significant at the 0.01 level (2-tailed).

B. Hasil Analisis Korelasi 2 Korektor Kelas Kontrol

Correlations

	-	S1_K1	S1_K2
S1_K1	Pearson Correlation	1	.927**
	Sig. (2-tailed)		.000
	N	36	36
S1_K2	Pearson Correlation	.927**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

	-	S2_K1	S2_K2
S2_K1	Pearson Correlation	1	.893**
	Sig. (2-tailed)		.000
	N	36	36
S2_K2	Pearson Correlation	.893**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

		S3_K1	S3_K2
S3_K1	Pearson Correlation	1	.968**
	Sig. (2-tailed)		.000
	N	36	36
S3_K2	Pearson Correlation	.968**	1
	Sig. (2-tailed)	.000	
	N	36	36

Correlations

	-	S4_K1	S4_K2
S4_K1	Pearson Correlation	1	.832**
	Sig. (2-tailed)		.000
	N	36	36
S4_K2	Pearson Correlation	.832**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

	-	S5_K1	S5_K2
S5_K1	Pearson Correlation	1	.800**
	Sig. (2-tailed)		.000
	N	36	36
S5_K2	Pearson Correlation	.800**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

	-	S6_K1	S6_K2
S6_K1	Pearson Correlation	1	.878**
	Sig. (2-tailed)		.000
	N	36	36
S6_K2	Pearson Correlation	.878**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

	-	S7_K1	S7_K2
S7_K1	Pearson Correlation	1	.727**
	Sig. (2-tailed)		.000
	N	36	36
S7_K2	Pearson Correlation	.727**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

	-	S8_K1	S8_K2
S8_K1	Pearson Correlation	1	.935**
	Sig. (2-tailed)		.000
	N	36	36
S8_K2	Pearson Correlation	.935**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

	-	S9_K1	S9_K2
S9_K1	Pearson Correlation	1	.882**
	Sig. (2-tailed)		.000
	N	36	36
S9_K2	Pearson Correlation	.882**	1
	Sig. (2-tailed)	.000	
	N	36	36
**. Correlation is significant at the 0.01 level (2-tailed).			
	MINIMI		

	_	S10_K1	S10_K2
S10_K1	Pearson Correlation	1	.868**
	Sig. (2-tailed)		.000
	N	36	36
S10_K2	Pearson Correlation	.868**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

	-	S11_K1	S11_K2
S11_K1	Pearson Correlation	1	.856**
	Sig. (2-tailed)		.000
	N	36	36
S11_K2	Pearson Correlation	.856**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

	-	S12_K1	S12_K2
S12_K1	Pearson Correlation	1	.945**
	Sig. (2-tailed)		.000
	N	36	36
S12_K2	Pearson Correlation	.945**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

		S13_K1	S13_K2
S13_K1	Pearson Correlation	1	.838**
	Sig. (2-tailed)		.000
	N	36	36
S13_K2	Pearson Correlation	.838**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

00.1010110							
		S14_K1	S14_K2				
S14_K1	Pearson Correlation	1	.798**				
	Sig. (2-tailed)		.000				
	N	36	36				
S14_K2	Pearson Correlation	.798**	1				
	Sig. (2-tailed)	.000					
	N	36	36				
**. Correlation is significant at the 0.01 level (2-tailed).							
		C & P. D.	WILLIAM TO				

	_	S15_K1	S15_K2
S15_K1	Pearson Correlation	1	.870**
	Sig. (2-tailed)		.000
	N	36	36
S15_K2	Pearson Correlation	.870**	1
	Sig. (2-tailed)	.000	
	N	36	36

^{**.} Correlation is significant at the 0.01 level (2-tailed).

LAMPIRAN 5

ANALISIS DATA

Lampiran 5.1 Output SPSS Analisis Hasil Uji Normalitas

Lampiran 5.2 Output SPSS Analisis Hasil Uji Homogenitas

Lampiran 5.3 Output SPSS Analisis Hasil Uji Linieritas

Lampiran 5.4 Output SPSS Analisis Kovarian (ANAKOVA) Satu Jalur

Lampiran 5.5 Hasil Analisis LSD

5.1 Output SPSS Analisis Hasil Uji Normalitas

Case Processing Summary

	_			Case	es		
		Valid		Miss	sing	Tota	al
	KELAS	N	Percent	N	Percent	Ν	Percent
PRETEST	EKSPERIMEN	36	100.0%	0	.0%	36	100.0%
	KONTROL	36	100.0%	0	.0%	36	100.0%
POSTEST	EKSPERIMEN	36	100.0%	0	.0%	36	100.0%
	KONTROL	36	100.0%	0	.0%	36	100.0%

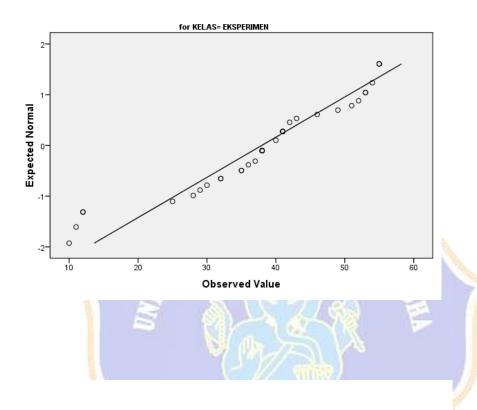
Descriptives

Descriptiv					r
					Std.
	KELAS			Statistic	Error
PRETEST EKSPERIME N	EKSPERIME	Mean		37.94	2.104
	95% Confidence Interval for Mean	Lower Bound	33.67		
		Upper Bound	42.22		
	5% Trimmed Mean		38.52		
		Median		38.00	
		Variance		159.368	
		Std. Deviation		12.624	
		Minimum		10	
		Maximum		55	
		Range		45	
		Interquartile Range		16	

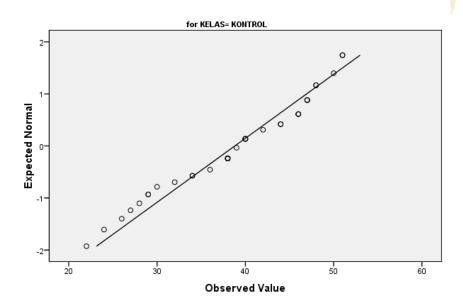
	Skewness		724	.393
	Kurtosis		.204	.768
KONTROL	Mean 3			1.355
	95% Confidence	Lower Bound	36.05	
	Interval for Mean	Upper Bound	41.56	
	5% Trimmed Mean	oppor zouna	39.01	
	Median		39.50	
	Variance		66.104	
	Std. Deviation		8.130	
	Minimum Minimum			
			22	
	Maximum		51	
	Range		29	
	Interquartile Range		14	
	Skewness		363	.393
 	Kurtosis		847	.768
EKSPERIME	Mean		53.03	.355
N	95% Confidence	Lower Bound	52.31	
	Interval for Mean	Upper Bound	53.75	
	5% Trimmed Mean		53.01	
	Median		53.00	
	Variance		4.542	
	Std. Deviation		2.131	
	Minimum		49	
	Maximum		57	
	Range		8	

-		-			
		Interquartile Range		4	
		Skewness		.130	.393
		Kurtosis		754	.768
K	KONTROL	Mean		51.86	.365
		95% Confidence	Lower Bound	51.12	
		Interval for Mean	Upper Bound	52.60	
		5% Trimmed Mean		51.87	
		Median		52.00	
		Variance		4.809	
		Std. Deviation		2.193	
		Minimum		48	
		Maximum		56	
		Range		8	
		Interquartile Range		4	
		Skewness		071	.393
		Kurtosis		-1.017	.768

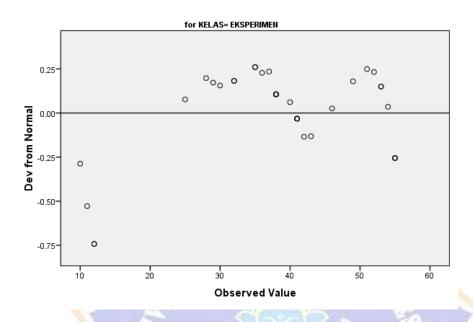
Tests of Normality

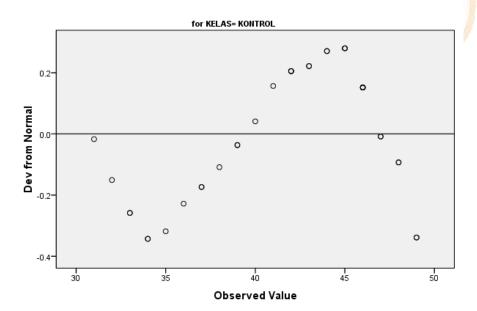

,										
	-	Kolmogorov-Smirnov ^a			Shapiro-Wilk					
	KELAS	Statistic	df	Sig.	Statistic	df	Sig.			
PRETEST	EKSPERIMEN	.130	36	.130	.914	36	.009			
	KONTROL	.127	36	.150	.952	36	.118			
POSTEST	EKSPERIMEN	.116	36	.200*	.962	36	.256			
	KONTROL	.143	36	.062	.952	36	.120			

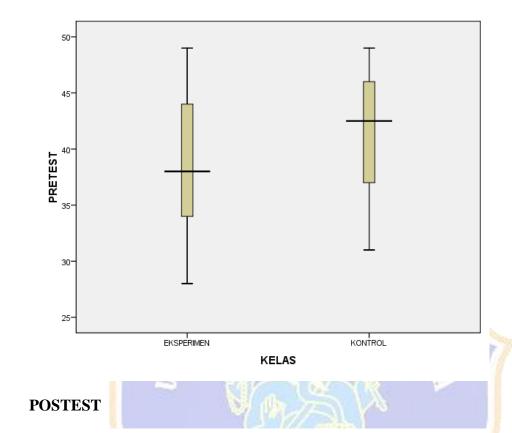
a. Lilliefors Significance Correction


^{*.} This is a lower bound of the true significance.

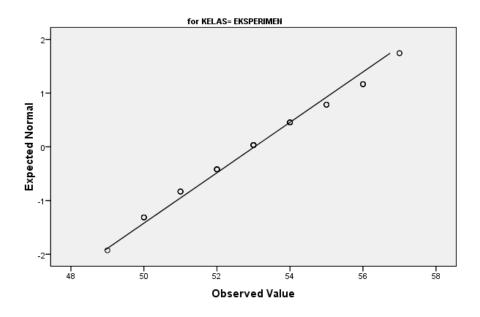
PRETEST


Normal Q-Q Plot of PRETEST

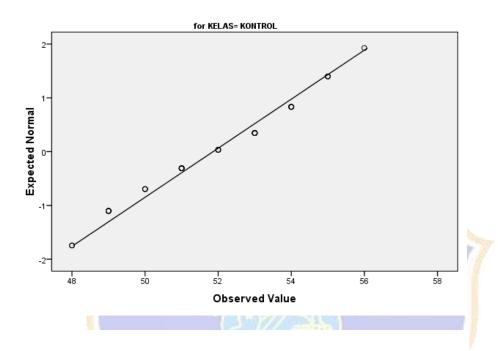

Normal Q-Q Plot of PRETEST

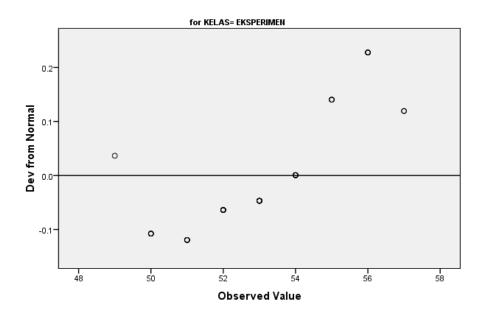


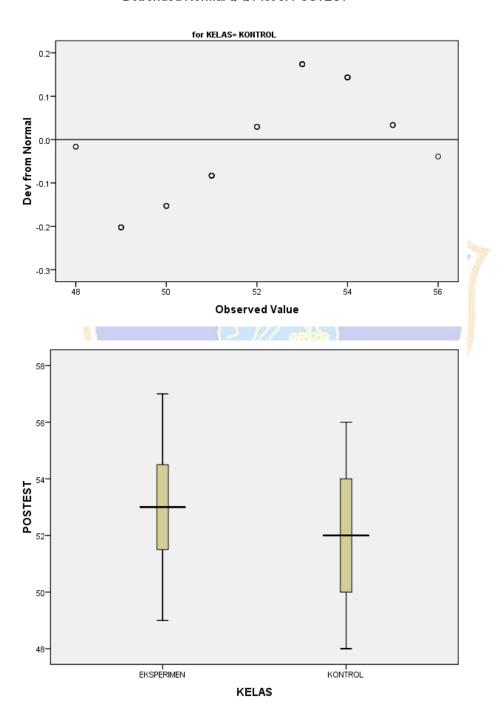
Detrended Normal Q-Q Plot of PRETEST



Detrended Normal Q-Q Plot of PRETEST




Normal Q-Q Plot of POSTEST


Normal Q-Q Plot of POSTEST

Detrended Normal Q-Q Plot of POSTEST

Detrended Normal Q-Q Plot of POSTEST

5.2 Output SPSS Analisis Hasil Homogenitas

Test of Homogeneity of Variance

		Levene Statistic	df1	df2	Sig.
PRETEST	Based on Mean	2.845	1	70	.096
	Based on Median	2.815	1	70	.098
	Based on Median and with adjusted df	2.815	1	54.844	.099
	Based on trimmed mean	2.897	1	70	.093
POSTEST	Based on Mean	.366	1	70	.547
	Based on Median	.350	1	70	.556
	Based on Median and with adjusted df	.350	1	69.111	.556
	Based on trimmed mean	.382	1	70	.538

5.3 Output SPSS Analisis Hasil Linieritas

Case Processing Summary

		Cases								
	Included		Excluded		Total					
	N	Percent	N	Percent	N	Percent				
POSTEST * PRETEST	72	98.6%	1	1.4%	73	100.0%				

		Report		
POSTE	ST			
PR	Mean	N	Std. Deviation	Service - F
28	50.00	1		MIDIE
29	52.00	1		
30	53.00	1		IDIKA
31	51.75	4	1.708	1))-
32	51.00	1		<u></u>
33	50.33	3	1.528	9/ (d.
34	51.17	6	1.169	
35	50.00	1		
36	53.40	5	1.517	
37	51.75	4	3.304	VIIIII
38	52.67	3	3.215	
39	49.00	2	.000	AL AL
40	53.50	2	.707	11/1/2/2
41	52.25	4	.957	
42	53.50	4	1.291	
43	54.50	4	2.646	KSE
44	52.25	4	2.500	3.1
45	53.00	5	.707	6 5
46	51.60	5	2.881	1
47	52.00	3	2.646	
48	55.00	6	2.191	
49	53.00	3	2.000	
Total	52.44	72	2.226	

ANOVA Table

			Sum of Squares	df	Mean Square	F	Sig.
POSTEST * PRETEST	Between Groups	(Combined)	139.711	21	6.653	1.569	.097
		Linearity	38.604	1	38.604	9.102	.004
		Deviation from Linearity	101.107	20	5.055	1.192	.300
	Within Groups		212.067	50	4.241		
	Total		351.778	71			

Measures of Association

	R	R Squared	Eta	Eta Squared	
POSTEST * PRETEST	.331	.110	.630	.397	

5.4 Output SPSS Analisis Kovarian (ANAKOVA) Satu Jalur

Between-Subjects Factors

		Value Label	N
KELAS	1	EKSPERIM EN	36
	2	KONTROL	36

Tests of Between-Subjects Effects

Dependent Variable:POSTEST

Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Corrected Model	80.356ª	2	40.178	10.214	.000			
Intercept	3054.849	1	3054.849	776.593	.000			
PRETEST	55.856	1	55.856	14.199	.000			
KELAS	41.751	1	41.751	10.614	.002			
Error	271.422	69	3.934					
Total	198382.000	72						
Corrected Total	351.778	71						

a. R Squared = .428 (Adjusted R Squared = .406)

5.4 Out Put SPSS Analisis LSD

Estimates

Dependent Variable: POSTEST

			95% Confidence Interval		
KELAS	Mean	Std. Error	Lower Bound	Upper Bound	
EKSPERIMEN	53.225ª	.335	52.557	53.892	
KONTROL	51.664	.335	50.996	52.332	

a. Covariates appearing in the model are evaluated at the following values: $\mathsf{PRETEST} = 40.17$.

Pairwise Comparisons

Dependent Variable: POSTEST

_	Dependent variable:POSTEST							
						95% Confidence Interval for Difference		
	(I) KELAS	(J) KELAS	Mean Difference (I- J)	Std. Error	Sig.ª	Lower Bound	Upper Bound	
	EKSPERIMEN	KONTROL	1.561	.479	.002	.605	2.516	
	KONTROL	EKSPERIMEN	-1.561	.479	.002	-2.516	605	

Based on estimated marginal means

- *. The mean difference is significant at the .05 level.
- a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: POSTEST

	Sum of Squares	df	Mean Square	F	Siq.
Contrast	41.751	1	41.751	10.614	.002
Error	271.422	69	3.934		

The F tests the effect of KELAS. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

Perbedaan signifikansi nilai rata-rata keterampilan berpikir kritis siswa kelompok model *Discovery learning*, dan model *Direct Intruction*. Adapun uraianya sebagai berikut, untuk *Discovery learning* $^{\Delta\mu}$ =10,215. Berdasarkan hasil diats diperoleh bahwa:

$$LSD = t\alpha/2.N - a\sqrt{MS_{\varepsilon}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Keterangan α = taraf dignifikansi = 0,05

N = jumlah sampel total = 72

a = jumlah kelompok = 2

 n_1 = jumlah sampel kelompok pertama = 36

 n_2 = jumlah sampel kelompok kedua = 36

Maka nilai t tabel = t(0,025;70) =1,994437 Berdasarkan analisis kovarian satu jalur diperoleh nilai MS_e untuk keterampilan berpikir kritis siswa sebesar 3,934 maka besar penolakan LSD adalah sebagai berikut.

$$LSD = {^t\alpha}/{_2} \cdot N - a \sqrt{MS_{\varepsilon} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

$$LSD = (1,994437)\sqrt{3,934\left(\frac{1}{36} + \frac{1}{36}\right)}$$

$$LSD = (1,994437)\sqrt{0,220304}$$

LSD = 0.936

Jadi, untuk $\Delta\mu = \mu(I) - \mu(J) = 1,561$ maka yang artinya $\mu(I) - \mu(J) > LSD$ yang artinya H_0 ditolak.

Berdasarkan hasil perhitungan yang telah diuraikan dapat diinterprestasikan bahwa terdapat perbedaan yang signifikan antara skor rata-rata keterampilan berpikir kritis siswa kelompok *Discovery learning* dan kelompok *Direct Intruction*. Keterampilan berpikir kritis yang dicapai oleh siswa yang belajar menggunakan model *Discovery learning* lebih tinggi dibandingkan dengan siswa yang belajar dengan model *Direct Intruction*.

LAMPIRAN 6

SURAT KETERANGAN

Lampiran 6.1 Surat Keterangan Telah Melaksanakan Uji Coba Intrumen Lampiran 6.2 Surat Keterangan Telah Melaksanakan Penelitian

PEMERINTAH PROVINSI BALI DINAS PENDIDIKAN, KEPEMUDAAN DAN OLAHRAGA SMA NEGERI 2 TABANAN

NSS: 3012203008008, NIS: 300080 Jalan Mawar, Gerokgak, Tabanan. Telp. (0361) 811445 Email: sman2 tabanan@yahoo.co.id http://www.sman2tabanan.sch.id

SURAT KETERANGAN

Nomor: 421.3/2502/SMAN 2 Tbn

Yang bertanda tangan di bawah ini Kepala SMA Negeri 2 Tabanan dengan ini menerangkan sebenarnya :

Nama

: I Putu Albert Purnama Putra

MIM

: 1713021044

Prodi

: Pendidikan Fisika

Jurusan

: Fisika dan Pengajaran IPA

Fakultas

: Matematika dan Ilmu Pengetahuan Alam

Institusi

: Universitas Pendidikan Ganesha

Memang benar yang bersangkutan telah melakukan uji coba instrumen penelitian pada siswa SMA Negeri 2 Tabanan pada hari Jumat, 12 Pebruari 2021 untuk keperluan penyusunan skripsi.

Demikian surat keterangan ini dibuat agar dapat dipergunakan sebagaimana mestinya.

Pabanan 11 Mej 2021

Kepala SMA Negeri 2 Tabanan

Drs. Dewa Gede Wijaya, M.Pd.

PEMERINTAH PROVINSI BALI DINAS PENDIDIKAN KEPEMUDAAN DAN OLAHRAGA SMA NEGERI 1 TABANAN

Alamat Jalan Gunung Agung No. 122 Tabanan Telephone (0361) 811164, Fax (0361) 811164

SURAT KETERANGAN

Nomor: 420/377/SMAN 1 Tbn/2021

Yang bertanda tangan di bawah ini Kepala SMA Negeri 1 Tabanan dengan ini menerangkan sebenarnya:

Nama

: I Putu Albert Purnama Putra

NIM

: 1713021044

Prodi

: Pendidikan Fisika

Fakultas

: Matematika dan Ilmu Pengetahuan Alam

Institusi

: Universitas Pendidikan Ganesha

Memang benar yang bersangkutan telah melakukan penelitian pada siswa SMA Negeri 1 Tabanan untuk keperluan penyusunan skripsi.

Demikian surat keterangan ini dibuat agar dapat dipergunakan sebagaimana mestinya.

Tabanan, 11 Mei 2021

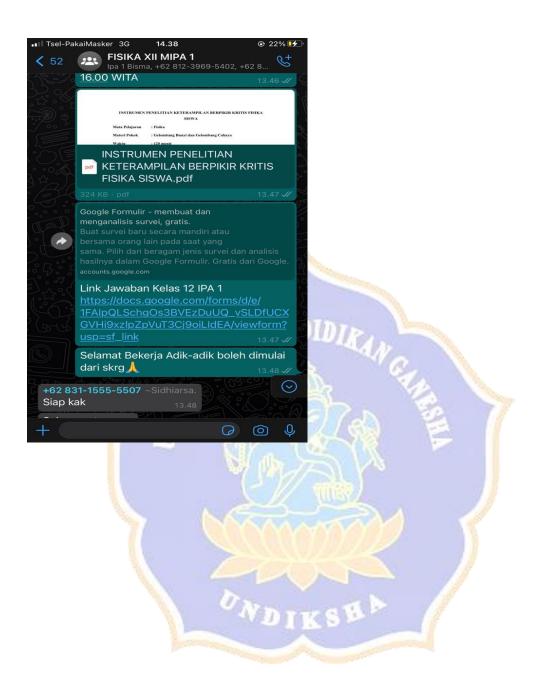
Kepala SMA Negeri 1 Tabanan,

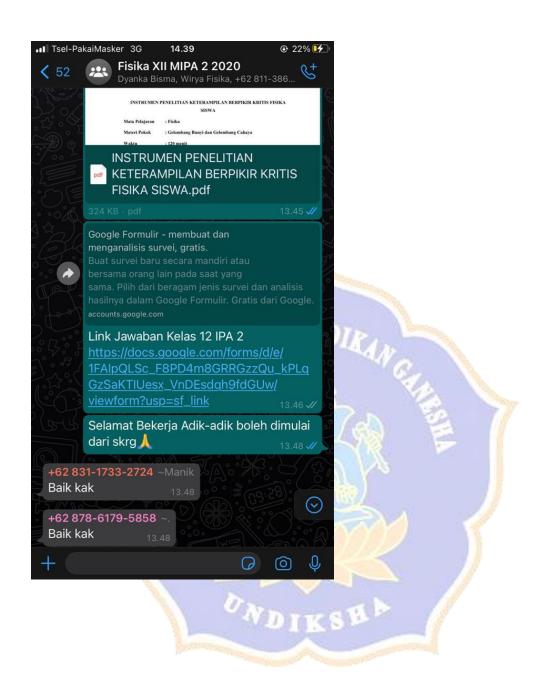
Nyoman Surjana, S.Pd., M.Pd NIP. 19650412 198703 1 026

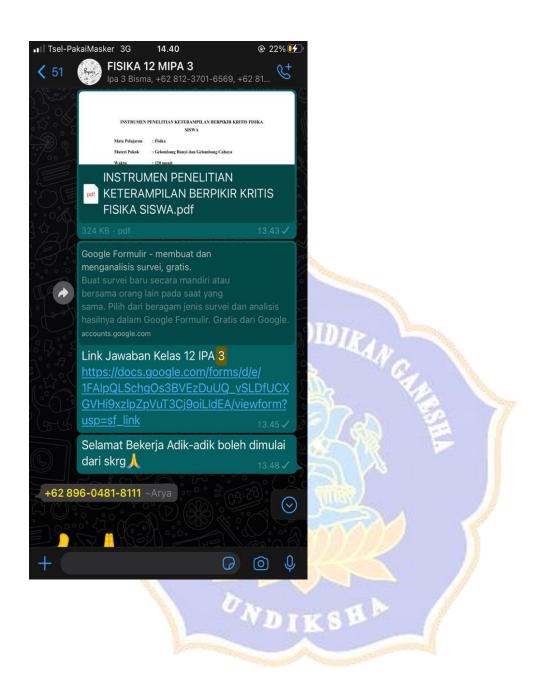
LAMPIRAN 7

DOKUMENTASI

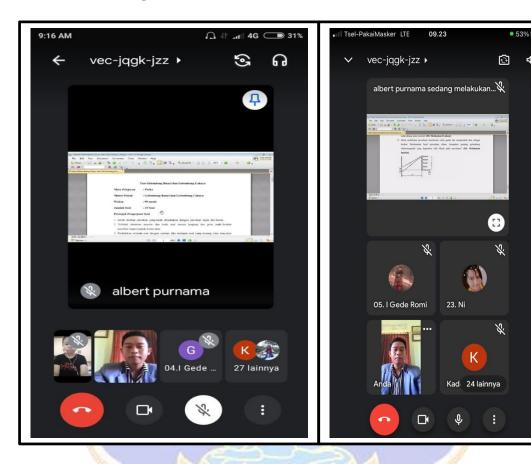
Lampiran 7.1 Dokumentasi Kegiatan Uji Coba Intrumen


Lampiran 7.2 Dokumentasi Kegiatan Pretest

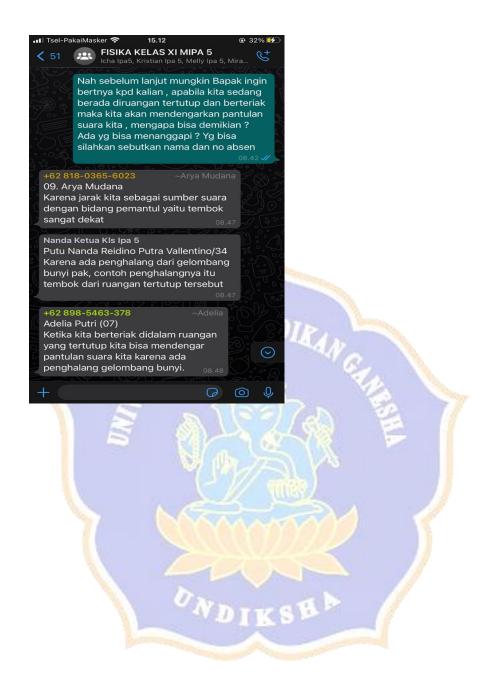

Lampiran 7.3 Dokumentasi Kegiatan Pembelajaran


Lampiran 7.4 Dokumentasi Kegiatan *Posttest*

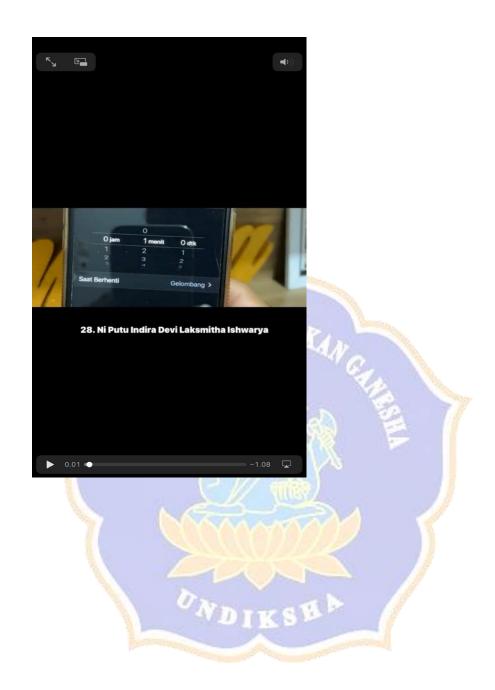
7.1 Dokumentasi Kegiatan Uji Coba Intrumen

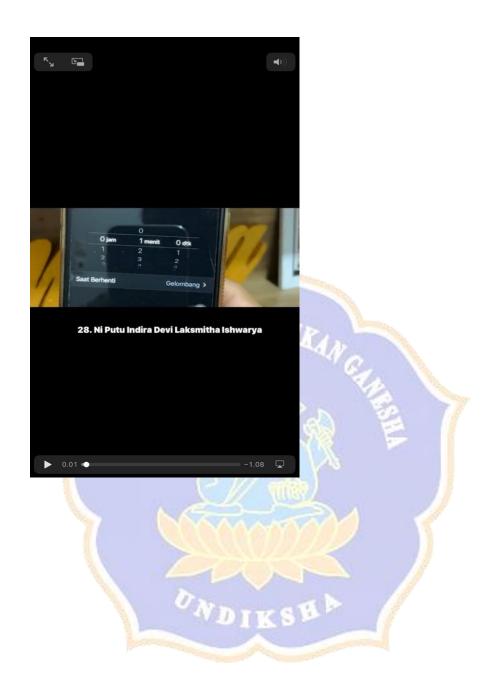


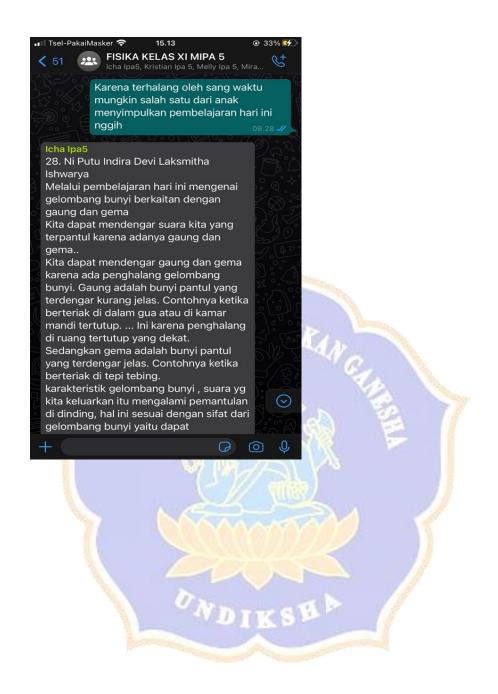

7.2 Dokumentasi Kegiatan *Pretest*

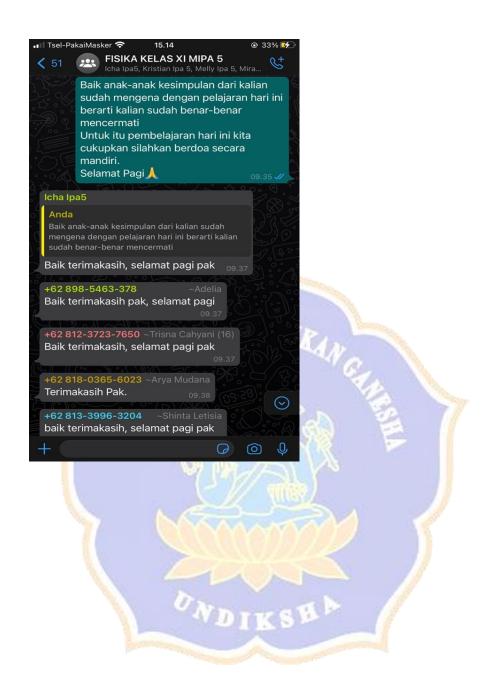


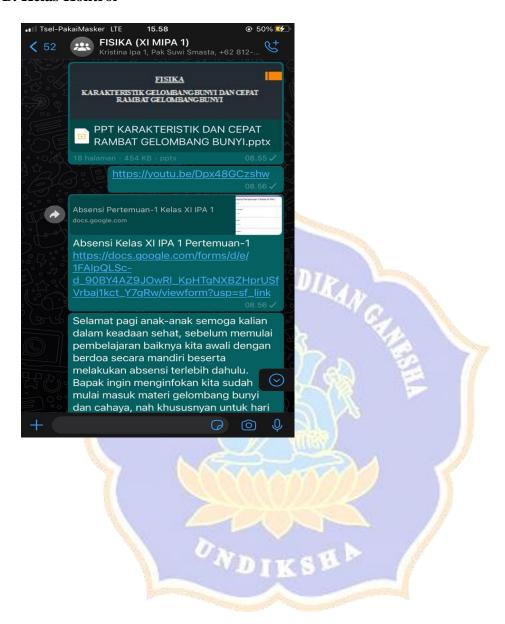
7.3 Dokumentasi Kegiatan Pembelajaran

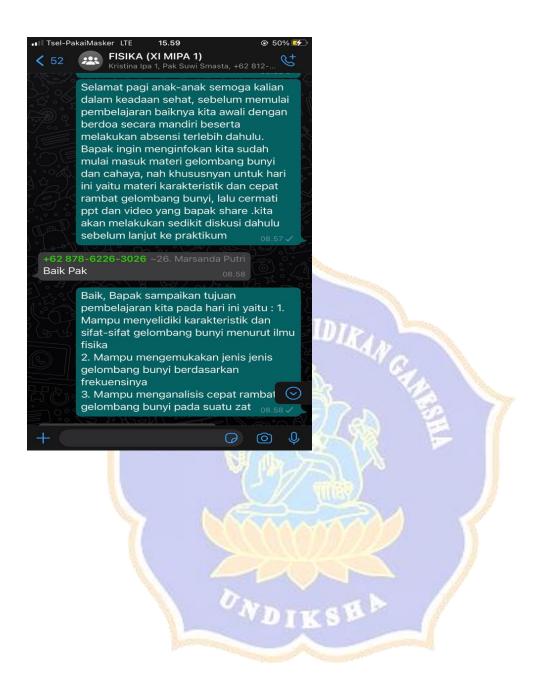

A. Kelas Eksperimen

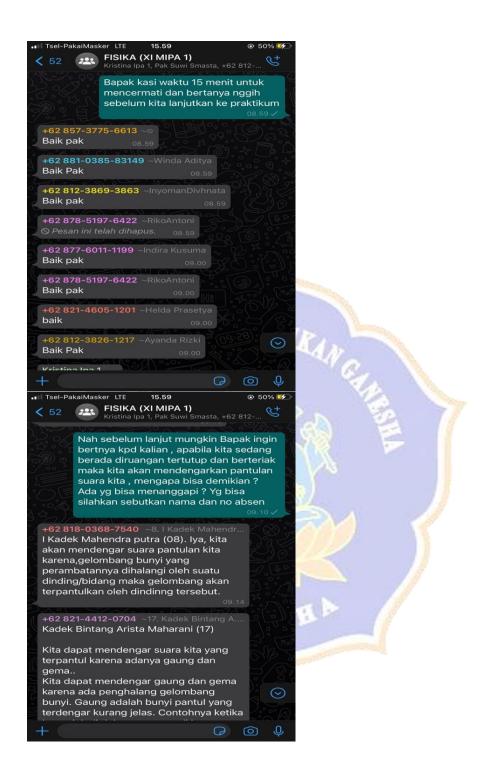


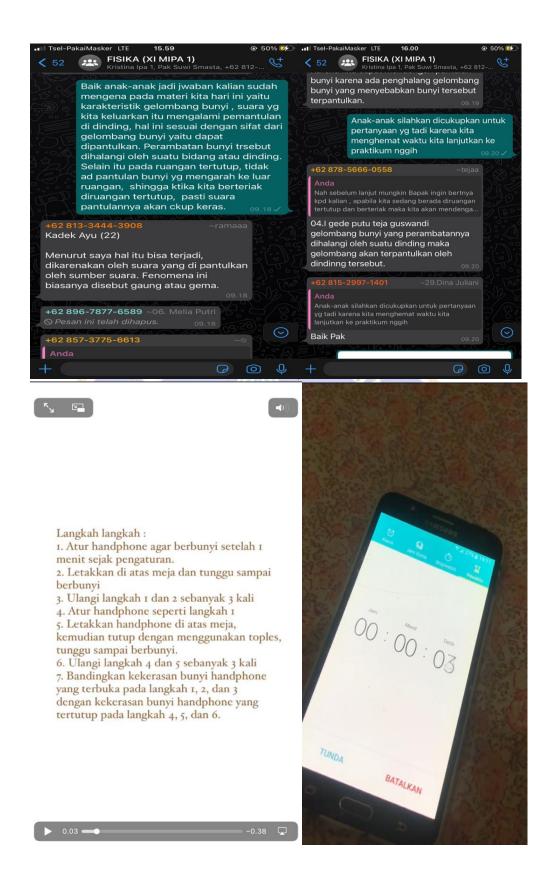


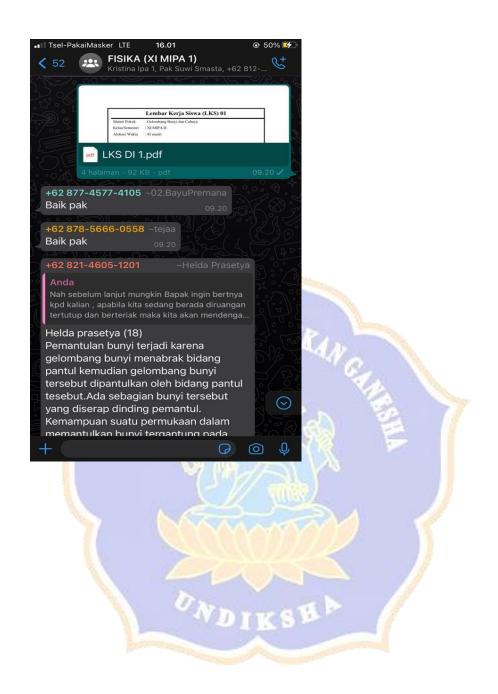


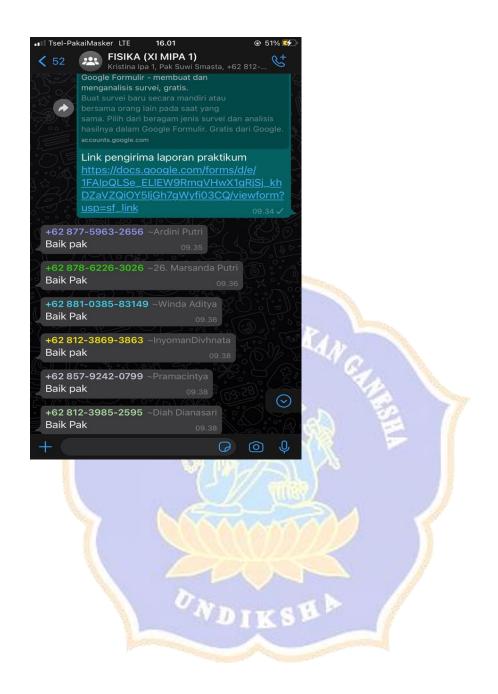


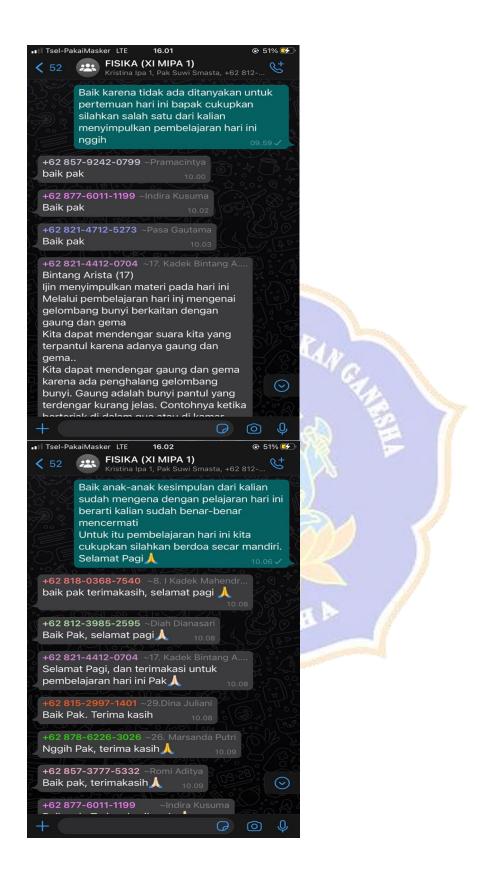


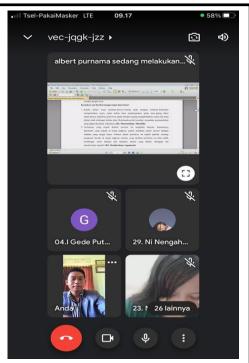





B. Kelas Kontrol







7.4 Dokumentasi Kegiatan *Posttest*

RIWAYAT HIDUP

I Putu Albert Purnama Putra lahir di Kambangan pada tanggal 1 Februari 1999. Penulis merupakan anak pertama dari pasangan suami istri Bapak I Wayan Semara Putra dan Ibu Ni Wayan Putriani. Penulis

berkebangsaan Indonesia dan beragama Hindu. Kini penulis beralamat di Br. Kambangan, Desa Apuan, Kecamatan Baturiti, Kabupaten Tabanan. Penulis menyelesaikan pendidikan dasar di SD Negeri 2 Apuan dan lulus pada tahun 2011 Kemudian penulis melanjutkan kejenjang pendidikan menengah pertama di SMP Negeri 3 Penebel dan lulus pada tahun 2014. Pada tahun tersebut juga penulis melanjutkan pendidikan menengah atas di SMA Negeri 1 Tabanan kemudian lulus pada tahun 2017. Kemudian penulis melanjutkan jenjang pendidikan ke tingkat pendidikan tinggi yaitu di Program Studi Pendidikan Fisika, Universitas Pendidikan Ganesha. Pada semester akhir tahun 2021 penulis menyelesaikan karya sekripsi yang berjudul "Pengaruh Model *Discovery learning* berbantuan daring terhadap Keterampilan Berpikir Kritis dalam Pembelajaran Fisika Kelas XI MIPA di SMA Negeri 1 Tabanan". Selanjutnya dari tahun 2017 sampai dengan penulisan skripsi ini, penulis masih terdaftar sebagai mahasiswa Program studi Pendidikan Fisika di Universitas Pendidikan Ganesha.